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Purpose: To compare performance of independently developed deep learning
algorithms for detecting glaucoma from fundus photographs and to evaluate strategies
for incorporating new data into models.

Methods: Two fundus photograph datasets from the Diagnostic Innovations in
GlaucomaStudy/AfricanDescent andGlaucomaEvaluation Study andMatsue RedCross
Hospital were used to independently develop deep learning algorithms for detection
of glaucoma at the University of California, San Diego, and the University of Tokyo. We
compared three versions of the University of California, San Diego, and University of
Tokyo models: original (no retraining), sequential (retraining only on new data), and
combined (training on combined data). Independent datasets were used to test the
algorithms.

Results: The original University of California, San Diego and University of Tokyo models
performed similarly (area under the receiver operating characteristic curve = 0.96 and
0.97, respectively) for detection of glaucoma in the Matsue Red Cross Hospital dataset,
but not the Diagnostic Innovations in Glaucoma Study/African Descent and Glaucoma
Evaluation Study data (0.79 and 0.92; P < .001), respectively. Model performance was
higher when classifying moderate-to-severe compared with mild disease (area under
the receiver operating characteristic curve = 0.98 and 0.91; P < .001), respectively.
Models trained with the combined strategy generally had better performance across
all datasets than the original strategy.

Conclusions: Deep learning glaucoma detection can achieve high accuracy across
diverse datasets with appropriate training strategies. Because model performance was
influenced by the severity of disease, labeling, training strategies, and population
characteristics, reporting accuracy stratified by relevant covariates is important for cross
study comparisons.
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Translational Relevance: High sensitivity and specificity of deep learning algorithms
for moderate-to-severe glaucoma across diverse populations suggest a role for artificial
intelligence in the detection of glaucoma in primary care.

learning algorithms. Trans Vis Sci
Tech. 2020;9(2):27,
https://doi.org/10.1167/tvst.9.2.27

Introduction

Early diagnosis of glaucoma is essential to halting
irreversible vision loss and preventing blindness. An
assessment of two-dimensional fundus photographs
centered on the optic disc historically has been one of
the most frequently used basic ophthalmologic tools
for the detection of glaucomatous optic neuropathy.
However, the reproducibility of detecting glaucoma-
tous optic neuropathy from fundus photographs by
clinicians can be limited.1,2 In 2013, the US Preven-
tative Services Task Force reported that population-
based screening for glaucoma cannot be recommended
based on several issues, including a lack of a consistent
definition of glaucoma and insufficient sensitivity
and specificity for detecting glaucoma using fundus
photographs.3 The use of automated evaluation of
fundus photographs may be the key to addressing these
issues and developing practical glaucoma detection
programs. To address this issue, various groups around
the world, using different photographic techniques
and deep learning strategies,4 have proposed methods
for automated evaluation of fundus photographs to
detect glaucoma.5–13 We recently have shown that
these approaches can be effective despite differences
in fundus camera resolution capability or sensor
type.5 Most important, deep learning-based methods
have been shown to achieve high accuracy on unseen
datasets, thanks to their ability to use complex visual
features in fundus photographs for the assessment.5–13

Currently, however, little is known about how gener-
alizable these deep learning algorithms for glaucoma
detection are to new and independent patient popula-
tions and how well different models perform on
the same datasets. Often, models are developed and
trained on data collected from a specific geographic
region or from a homogeneous population and their
performance on different populations (e.g., patients
from racial groups that are not represented in the
training data) is not well-characterized.14 This is
important for detecting glaucoma from information
available in fundus photographs because it has been
widely reported that there are considerable differ-
ences in the shape and appearance of optic discs
across different races and ethnicities. For instance,
differences in optic disc size, shape, and cup-to-disc

ratio have been reported across races in healthy,15–19
glaucomatous,20,21 and ocular hypertensive individ-
uals.22 Differences in retinal appearance based on
pigment in the retinal pigment epithelium also exist
across populations and the effect of these morphologic
differences on the accuracy of automated glaucoma
detection are an important consideration, especially
when deploying these tools throughout the world. For
example, if a model is trained using primarily data
from patients of European descent collected in the
United States, is that model effective at classifying
data from patients of Japanese or African descent
collected elsewhere in the world? What clinical and
demographic characteristics influence model perfor-
mance? An objective of this report is to exchange test
datasets between two institutions, the University of
California, San Diego (UCSD), and the University of
Tokyo (UTokyo), that have developed deep learning
models using datasets from their own countries in
order to directly address this question.

One advantage of deep learning over many tradi-
tional machine learning methods is the ability to incor-
porate new data to improve already existing models. A
deep learning model trained for one task is used as a
starting point and weights are updated by additional
training for a different task.23,24 Transfer learning
approaches like this can help to address issues related
to limited training data, can decrease training time,
and can improve performance. Indeed, our research
teams from UCSD and UTokyo recently reported
the benefits of transfer learning using Imagenet in
glaucoma detection from fundus photographs as
well as diagnosing early stage glaucoma from optical
coherence tomography (OCT) images.5,6,25,26 In both
cases, diagnostic performance of the deep learning
model was significantly improved by pretraining using
transfer learning.5,6 Updating the trained model with
new images for the same specialized task can also
improve performance. This goal can be accomplished
by adding new similar images to the existing model
with or without freezing weights of specific layers of
the original model. One can also retrain themodel from
scratch by creating a new training set by combining the
original and new data. A quantitative comparison of
different strategies for incorporating new data in deep
learning models for application to independent patient
populations has not been explored previously in the

https://doi.org/10.1167/tvst.9.2.27
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diagnosis of glaucoma using deep learning analysis of
fundus photographs. Another objective of this report
is to quantitatively compare strategies for incorporat-
ing new data into deep learning models using datasets
from the United States and Japan.

Thus, the current study had three primary goals with
respect to detecting glaucoma in fundus photographs
using deep learning: (1) to compare the performance
of different deep learning algorithms developed on
independent datasets, (2) to characterize model perfor-
mance stratified by relevant demographic and clinical
covariates collected from diverse patient populations,
and (3) to evaluate strategies for incorporating new
data obtained from independent populations into
existing models.

Methods

The fundus photographs used for training and
initial evaluation of the deep learning models were
taken from two independent datasets collected in the
United States and Japan: The Diagnostic Innovations
in Glaucoma Study/African Descent and Glaucoma
Evaluation Study (DIGS/ADAGES) dataset and the
Matsue Red Cross Hospital (MRCH) dataset. In
addition to fundus photographs, several demographic
and clinical variables including race, axial length
(AL), and/or spherical equivalent (SE), and standard
automated perimetry visual field (VF) testing results
also were collected for each participant. Several
additional, independent testing datasets were used
to evaluate the models to help estimate their generaliz-
ability. All study and data collection protocols adhered
to the Declaration of Helsinki. Table 1 summarizes the
datasets used in the analysis.

The DIGS/ADAGES Dataset6

All participants were recruited as part of the
UCSD-based DIGS or the multicenter ADAGES.27
DIGS (clinicaltrials.gov identifier: NCT00221897) and
ADAGES (clinicaltrials.gov identifier: NCT00221923)
are prospective studies designed to evaluate longitudi-
nal changes in glaucoma. ADAGES participants were
recruited as part of a multicenter collaboration that
included the UCSD Hamilton Glaucoma Center (San
Diego, CA), Columbia University Medical Center
Edward S. Harkness Eye Institute (New York, NY),
and theUniversity of Alabama at BirminghamDepart-
ment of Ophthalmology (Birmingham, AL). Informed
consent was obtained from all participants. At study
entry, participants had open angles on examination

and a best-corrected visual acuity of 20/40 or better, at
least one good quality stereophotograph, and at least
two reliable VF tests with less than 33% fixation losses
and false negatives and less than 15% false positives
with no evidence of test artifacts. Participants with
high myopia, defined as a SE of −6 diopters or lower,
were excluded. Recruitment and data collection proto-
cols were approved by the institutional review boards
at each institution and adhered to theHealth Insurance
Portability and Accountability Act.

The DIGS/ADAGES study population and proto-
col has been described previously.27 The fundus
photographs used in this analysis were captured on film
between 2000 and 2011 as simultaneous stereoscopic
photographs using the Nidek Stereo Camera Model
3-DX (Nidek Inc., Palo Alto, CA). Photographs were
digitized and stored as high resolution (∼2200 ×
∼1500) TIFF images. The entire dataset consisted of
7411 stereo pairs split into 14,822 individual images
collected from 2920 normal and 1443 glaucoma eyes of
1561 normal and 768 patients with glaucoma.Multiple
photographs per eye acquired at different study visits
were included if available. Themethods for photograph
grading have been described previously.27,28 In brief,
stereoscopic images were classified as glaucoma or
normal by two independent graders, with all disagree-
ments resolved by consensus (discussion among the
graders to come to an agreed upon decision) or adjudi-
cation by a third senior grader if no consensus after
discussion by graders (majority rule). All graders were
trained and certified for photograph grading according
to standard protocols of UCSD Optic Disc Reading
Center. Senior graders had at least 2 years grading
experience. Graders consisted of faculty in the UCSD
Department of Ophthalmology and ophthalmolo-
gists who were completing glaucoma fellowships at
UCSD. Photographs were excluded from the analysis
only when graders determined that the photograph
quality was insufficient to make a classification. No
good quality photograph was excluded owing to an
inability to classify the photograph. Neither VF testing
or OCT imaging were used to diagnose glaucoma for
this dataset. This dataset was randomly split by patient
into training, validation, and testing subsets using an
85–5–10 percentage split.

The VF mean deviation (MD) was based on
Humphrey Field Analyzer 24-2 SITA standard VF
testing. AL was measured using the IOLMaster (Carl
Zeiss Meditec, Dublin, CA).27

The MRCH Dataset

Data were collected at the MRCH and the study
protocol was approved by the Research Ethics
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Committee of theMRCH and the Faculty of Medicine
at UTokyo.5,11 The requirement of informed consent
was waived and the study protocol was posted in
the clinic to inform patients about the research in
accordance with the regulations of the Japanese
Guidelines for Epidemiologic Study issued by the
Japanese Government.

The MRCH protocol has been previously
described.5,11 The fundus images were digitally
captured using the Nonmyd WX fundus camera
(Kowa Company Ltd., Aichi, Japan). Fundus images
had a field of view of 45 degrees and were stored as
2144 × 1424 pixel JPEG images. The training dataset
consisted of 3132 images collected from 1768 normal
and 1364 glaucoma eyes of 1768 normal and 1364
patients with glaucoma. Training images were classi-
fied as glaucoma based on review by a single glaucoma
specialist based on the recommendations of the Japan
Glaucoma Society Guidelines for Glaucoma.29 This
training dataset was randomly split into training and
validation subsets using an 95–5 percentage split. The
testing dataset was collected from a nonoverlapping
cohort and consisted of 110 images collected from
49 normal and 61 glaucoma eyes of 49 normal and
61 patients with glaucoma. For the testing cohort,
glaucoma classification was based on expert review
of both fundus and OCT images (RS-3000, Nidek,
Gamagori, Japan). A glaucomatous classification
required visible glaucomatous features in the fundus
and OCT imaging, whereas a normal classification
required the absence of glaucomatous features or
signs of other retinal pathologies. More specifically,
as detailed in our previous reports,5,11 the labeling of
glaucoma was performed according to the recommen-
dations of the Japan Glaucoma Society Guidelines
for Glaucoma29; signs of glaucomatous changes were
judged comprehensively, such as focal rim notching or
generalized rim thinning, large cup-to-disc ratio with
cup excavation with or without a laminar dot sign,
retinal nerve fiber layer defects with edges at the optic
nerve head margin, and disc edge hemorrhages. Other
optic nerve head pathologies, such as optic nerve/optic
nerve head hypoplasia and optic nerve pit, and other
retinal pathologies such as retinal detachment, age-
related macular degeneration, myopic macular degen-
eration, macular hole, diabetic retinopathy, and arterial
and venous obstruction were carefully excluded, but
mild epiretinal membrane (without any apparent
retinal traction) andmild drusen (without any apparent
degeneration) were not excluded. Fundus photographs
free of signs of glaucoma and other optic nerve
head/retinal pathologies were assigned to the norma-
tive dataset. Review was performed independently by
three glaucoma specialists (M.T., H.M., and R.A.).

and required unanimous agreement. Photographs were
excluded if the diagnoses of the three examiners did
not agree or if any grader classified the photograph as
ungradable.

The SE was measured using RC-5000 refract-
keratometer (Tomey GmbH, Nuremberg, Germany).
VF testing was performed using the 30-2 test pattern
of the Humphrey Field Analyzer (Carl Zeiss Meditec)
and standard quality control protocols.

External Testing Datasets

The deep learning models were evaluated using an
additional three independent, external datasets. The
first external dataset (Iinan Dataset) was collected
from patients visiting the glaucoma clinic at Iinan
Hospital (Iinan Town, Japan) and included 215 images
collected from 110 normal and 95 glaucoma eyes of 110
normal and 95 patients with glaucoma. The second
external dataset (Hiroshima Dataset) was collected
by the Department of Ophthalmology, Hiroshima
University (Hiroshima, Japan) and included 171
images collected from 78 normal and 93 glaucoma
eyes of 78 normal and 95 patients with glaucoma.
In both of these datasets, fundus imaging, circum-
papillary OCT imaging, refractive error, and 30-2
VF testing were collected. Like the MRCH dataset,
classification was based on review of fundus and OCT
images (RS-3000, Nidek, Gamagori, Japan) by three
expert ophthalmologists (M.T., H.M., and R.A.) and
required unanimous agreement with photos excluded
in the case of disagreement or classified as ungrad-
able.11 The glaucoma and normal groups were defined
in the same manner with the MRCH dataset.

The third external dataset was the publicly avail-
able ACRIMA dataset.7 This dataset was collected as
part of an initiative by the government of Spain and
consisted of 705 images collected from 309 normal
and 396 glaucoma eyes of 309 normal and 396 patients
with glaucoma. Classification was based on review
by a single experienced glaucoma expert (personal
communication with Dr Diaz-Pinto, Nov 23, 2019).
Classification was based solely on fundus photo review
and no other clinical information was considered.
Images were excluded if they did not provide a clear
view of the optic nerve head region.

Deep Learning Strategies

Investigators at the UTokyo and UCSD indepen-
dently developed deep learning systems to detect
glaucoma from fundus images of the optic nerve head
and have been described previously.6,11 In develop-
ing these models, much of the deep learning model
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Table 2. Description of the Deep Learning Models and Training Approaches at UCSD and UTokyo

Parameter UCSD Deep Learning Model UTokyo Deep Learning Models

Network architecture ResNet5030 ResNet3430

Weight initialization Pretraining on ImageNet24 Pretraining on ImageNet24

Data augmentation Translation, horizontal flipping Translation, scaling, rotation, and
horizontal flipping

Training datasets
Original DIGS/ADAGES, (ImageNet pretraining) MRCH, (ImageNet pretraining)
Sequential DIGS/ADAGES, weights updated using

MRCH, (ImageNet pretraining)
MRCH, weights updated using
DIGS/ADAGES, (ImageNet pretraining)

Combined DIGS/ADAGES & MRCH (ImageNet
pretraining)

MRCH & DIGS/ADAGES (ImageNet
pretraining)

development strategies were similar (both used
ResNet30 architectures and horizontal flipping to
augment data), but some differences did exist (layer
depth and training hyperparameters).24 However, there
were small differences in implementation, such as the
preprocessing of the photographs (how photographs
were cropped, and data augmentation strategies used).
These variations in the implementation of the deep
learningmethods resulted in relatively small differences
in results.

In addition to evaluating these original UTokyo and
UCSD models, we explored how the incorporation
of additional training datasets affects model perfor-
mance and generalizability. Specifically, we defined
two additional strategies: sequential and combined
training. In the sequential approach, each model was
first trained on an initial training dataset and then
further optimized on the other dataset by updating the
weights of the deepmodel layers. That is, the sequential
UTokyo model was first trained on the MRCH dataset
and weights were then updated by additional training
on the DIGS/ADAGES dataset (and vice versa for the
sequential UCSD model) without freezing weights of
any layer. In the combined approach, all training data
(DIGS/ADAGES+MRCH)were pooled together and
a single round of training on this combined train-
ing dataset was performed without using initializing
weights from either dataset. Table 2 summarizes these
models and training strategies. Applying these strate-
gies to both the UTokyo and UCSD models resulted
in six combinations (an original, sequential, and
combined for each) that were evaluated using the avail-
able testing datasets. The combined models developed
at UCSD and UTokyo use the same combined dataset,
but development of the deep learning models was done
independently using the deep learning algorithms and
strategies developed at each institution (Table 2), result-
ing in two different combined models.

Model Evaluation

Models were first evaluated using the independent
testing subsets of the DIGS/ADAGES and MRCH
datasets. To characterize the effects of demographic
and clinical covariates on model predictions, perfor-
mance stratified by race, myopia status, and disease
severity was computed. For this analysis, perfor-
mance by race was computed for three groups based
on participant self-reported race: African descent,
Japanese descent, and European descent. Participants
without a self-reported race were excluded from this
analysis. Myopia status was based on AL and SE.
Where AL was available, eyes with an AL of 26 mm or
greater were classified as high myopes. If AL was not
available, eyes with an SE of less than −6.0 diopters
were classified as high myopes. If neither was available,
the eye was excluded from the analysis of high myopes.
Disease severity was characterized based on VF MD.
Glaucoma eyes with an MD of greater than −6.0
dB were classified as mild glaucoma and glaucoma
eyes with an MD of −6.0 dB of less were classified as
moderate-to-severe glaucoma.

Statistical Analysis

Model evaluation was performed using sensitiv-
ity, specificity, and area under the receiver operating
characteristic curve (AUC). For all analyses, the AUC
with 95% confidence intervals (CIs) and sensitivity at
fixed levels of specificity (80%, 85%, 90%, and 95%)was
computed. DeLong’s test was used to assess the statis-
tical significance of differences in AUC values. Because
the DIGS/ADAGES testing set contained multiple
images of the same eye, a clustered bootstrap approach
was adopted to compute AUCs, bias-corrected confi-
dence intervals, and conduct hypothesis tests.31 An
additional evaluation also was performed on the



Performance of Deep Learning to Detect Glaucoma TVST | Special Issue | Vol. 9 | No. 2 | Article 27 | 7

Table 3. Performance of UCSD and UTokyo Models Using the Original, Sequential, and Combined Strategies on
the DIGS/ADAGES Testing Dataset

Sensitivity @

Model AUC (95% CI) 80% Specificity 85% Specificity 90% Specificity 95% Specificity

UCSD
Original 0.92 (0.89–0.94) 0.87 0.83 0.76 0.49
Sequential 0.83 (0.78–0.87) 0.74 0.67 0.58 0.32
Combined 0.90 (0.87–0.93) 0.86 0.81 0.71 0.53

UTokyo
Original 0.79 (0.74–0.83) 0.61 0.54 0.49 0.42
Sequential 0.88 (0.84–0.92) 0.82 0.77 0.72 0.55
Combined 0.90 (0.87–0.93) 0.85 0.82 0.72 0.57

Table 4. Performance of UCSD and UTokyo Models Using the Original, Sequential, and Combined Strategies on
the MRCH Testing Dataset

Sensitivity @

Model AUC (95% CI) 80% Specificity 85% Specificity 90% Specificity 95% Specificity

UCSD
Original 0.96 (0.94–0.99) 0.95 0.95 0.92 0.85
Sequential 0.94 (0.91–0.99) 0.92 0.90 0.88 0.86
Combined 0.94 (0.92–0.99) 0.92 0.92 0.86 0.81

UTokyo
Original 0.97 (0.93–1.00) 0.95 0.95 0.93 0.88
Sequential 0.96 (0.93–1.00) 0.95 0.90 0.90 0.90
Combined 0.95 (0.91–0.99) 0.88 0.86 0.86 0.86

independent, external datasets to estimate the ability
of the models to generalize to other study populations.

Results

The demographic and clinical characteristics of
the study populations and datasets are presented
in Table 1. The DIGS/ADAGES dataset consisted of
patients who were of European and African descent,
whereas the MRCH, Iinan, and Hiroshima datasets
included photographs from Japanese individuals exclu-
sively. The ACRIMA dataset consisted of individuals
from Spain. The healthy participants of both the
DIGS/ADAGES and MRCH populations were gener-
ally younger than the patients with glaucoma by
approximately 10 years. DIGS/ADAGES patients
with glaucoma had less severe VF damage than the
MRCH dataset (mean VF MD of −4.1 dB and
−10.5 dB, respectively). The myopia patients were
from the MRCH dataset almost exclusively because

DIGS/ADAGES excluded high myopia from its study
population.

The AUC and sensitivities at fixed specificities
(80%, 85%, 90%, and 95%) of all models on the
DIGS/ADAGES and MRCH testing data are summa-
rized in Tables 3 and 4. Using the DIGS/ADAGES
testing data, the UCSD original model and combined
models performed significantly better (P = .002 and
P = .014, respectively) than the sequential model
(AUCs 0.92, 95% CI 0.89–0.94; AUC 0.90, 95% CI
0.87–0.93; and AUC 0.83, 95% CI 0.79–0.87, respec-
tively). The UTokyo sequential, and combined models
that included DIGS/ADAGES data in the training
set performed significantly better (P = .002 and P
< .001, respectively) on the DIGS/ADAGES dataset
than the original model which was based exclusively
on Japanese data AUCs of 0.88 (95% CI 0.84–0.92),
0.90 (95% CI 0.87–0.93), and 0.79 (95% CI 0.74, 0.83),
respectively. On the MRCH testing data, the original,
sequential, and combined UCSD and UTokyo models
achieved similar diagnostic accuracy with AUCs
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Table 5. Performance of the UCSD and UTokyo Models Stratified by Race on the Combined DIGS/ADAGES and
MRCH Testing Datasets

AUC (95% CI)

Model
African Descent

(n = 306)
Japanese Descent

(n = 131)
European Descent

(n = 422)

Mean glaucoma VF MD (dB) −3.93 (−5.03 to −2.82) −8.73 (−10.59 to −6.86) −3.06 (−3.86 to −2.23)
UCSD
Original 0.95 (0.91 to 0.98) 0.94 (0.88 to 0.97) 0.90 (0.86 to 0.93)
Sequential 0.89 (0.83 to 0.94) 0.92 (0.86 to 0.96) 0.81 (0.74 to 0.86)
Combined 0.93 (0.87 to 0.96) 0.93 (0.88 to 0.97) 0.88 (0.84 to 0.92)

UTokyo
Original 0.87 (0.80 to 0.93) 0.92 (0.86 to 0.97) 0.74 (0.67 to 0.80)
Sequential 0.94 (0.90 to 0.97) 0.91 (0.81 to 0.97) 0.86 (0.80 to 0.91)
Combined 0.95 (0.90 to 0.97) 0.90 (0.82 to 0.96) 0.87 (0.82 to 0.92)

Table 6. Performance of the UCSD and UTokyo Models by High Myopia Status on the Combined DIGS/ADAGES
and MRCH Testing Datasets

AUC (95% CI)

Model High Myopia (n = 43) Not High Myopia (n = 761)

Mean Glaucoma VF MD (dB) −10.48 (−13.56, −7.41) −4.18 (−4.92, −3.44)
UCSD
Original 0.95 (0.82 to 1.00) 0.92 (0.89 to 0.95)
Sequential 0.97 (0.89 to 1.00) 0.84 (0.80 to 0.88)
Combined 0.98 (0.90 to 1.00) 0.90 (0.87 to 0.93)

UTokyo
Original 0.97 (0.88 to 1.00) 0.81 (0.76 to 0.86)
Sequential 0.94 (0.83 to 1.00) 0.90 (0.87 to 0.93)
Combined 0.97 (0.88 to 1.00) 0.91 (0.88 to 0.94)

ranging between 0.94 and 0.96 for the UCSD models
and between 0.95 and 0.97 for the UTokyo models.

At a fixed specificity of 90% and 95% on theMRCH
testing dataset, the best UCSD models achieved sensi-
tivity of 92% and 86%, respectively, and the best
UTokyo models achieved sensitivity of 93% and 90%,
respectively. At a fixed specificity of 90% and 95% on
the DIGS/ADAGES testing dataset, the best UCSD
models achieved a sensitivity of 76% and 53%, respec-
tively, whereas the best UTokyo models achieved a
sensitivity of 72% and 57%, respectively.

The results of model performance by race are
presented in Table 5. The eyes of individuals of
Japanese descent had significantly worse glaucoma-
tousVFdamage than the eyes of individuals of African
and European descent (mean VF MD of −8.73 dB,
−3.93 dB, and −3.06 dB, respectively). The diagnostic
accuracy of the UCSD and UTokyo models tended
to perform better in the individuals of Japanese and

African descent than of European descent, although
these differences did not reach statistical significance.

The model performance of eyes with and without
high myopia is provided in Table 6. Eyes with high
myopia had significantly worse glaucomatous VF
damage than eyes without high myopia (mean VFMD
of −10.48 dB and −4.18 dB, respectively). In general,
both the UCSD models and UTokyo models had high
diagnostic accuracy for detecting glaucoma in the eyes
with high myopia (the AUC ranged between 0.94 and
0.98) and lower diagnostic accuracy in eyes without
high myopia (the AUC ranged between 0.81 and 0.92),
likely owing to the more severe glaucoma in the eyes
with high myopia.

As expected, both the UCSD and UTokyo model
performance was higher in eyes with moderate-to-
severe disease compared with eyes with mild disease
(Table 7). Specifically, in the mild glaucoma eyes,
the diagnostic accuracy of the UCSD model (AUCs
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Table 7. Performance of the UCSD and UTokyo Models by Glaucoma Severity on the Combined DIGS/ADAGES
and MRCH Testing Data Sets.

AUC (95% CI)

Model Any Glaucoma (n = 318) Mild (n = 231) Moderate-to-Severe (n = 87)

Mean Glaucoma VF MD (dB) −4.76 (−5.48 to −4.04) −1.34 (−1.57 to −1.10) −13.86 (−15.09 to −12.63)
UCSD
Original 0.92 (0.90 to 0.94) 0.91 (0.88 to 0.93) 0.98 (0.96 to 0.99)
Sequential 0.85 (0.81 to 0.88) 0.82 (0.77 to 0.86) 0.95 (0.93 to 0.97)
Combined 0.91 (0.88 to 0.93) 0.89 (0.85 to 0.92) 0.98 (0.96 to 0.99)

UTokyo
Original 0.82 (0.77 to 0.86) 0.78 (0.73 to 0.83) 0.94 (0.90 to 0.98)
Sequential 0.90 (0.86 to 0.93) 0.88 (0.84 to 0.92) 0.97 (0.94 to 0.99)
Combined 0.91 (0.88 to 0.93) 0.89 (0.86 to 0.92) 0.98 (0.94 to 0.99)

Table 8. The Performance of UCSD and UTokyo Models on External Testing Datasets

AUC (95% CI)

Model Iinan (n = 205) Hiroshima (n = 186) ACRIMA (n = 705)

Mean glaucoma VF MD (dB) −4.31 (−5.42 to −3.19) −13.54 (−15.38 to −11.71) —
UCSD
Original 0.94 (0.91 to 0.97) 0.96 (0.93 to 0.99) 0.84 (0.81 to 0.87)
Sequential 0.91 (0.87 to 0.95) 0.99 (0.98 to 1.00) 0.75 (0.72 to 0.79)
Combined 0.91 (0.87 to 0.95) 0.97 (0.95 to 0.99) 0.80 (0.80 to 0.84)

UTokyo
Original 0.95 (0.92 to 0.97) 0.99 (0.99 to 1.0) 0.82 (0.79 to 0.85)
Sequential 0.97 (0.94 to 0.99) 0.99 (0.99 to 0.99) 0.86 (0.83 to 0.89)
Combined 0.90 (0.86 to 0.94) 0.95 (0.95 to 0.98) 0.85 (0.82 to 0.88)

between 0.89 and 0.91) was similar to the UTokyo
models (AUCs between 0.78 and 0.89) and lower than
the UCSD and Tokyo models for detecting moderate
to severe disease (AUCs between 0.94 and 0.98).

The bestUCSDandUTokyomodels also performed
similarly on the external datasets (Table 8) with AUCs
of 0.94 and 0.97, respectively, on the Iinan dataset,
AUCs of 0.99 on the Hiroshima dataset, and AUCs of
0.84 and 0.86, respectively, on the ACRIMA dataset.

The Figure shows a heat map comparing the
glaucoma probability predictions of the UCSD and
UTokyo combined models. To characterize cases of
model disagreement, we identified images with good
and poor levels of agreement between glaucoma proba-
bilities for the two combined models. The combined
UCSD and UTokyo models agree on the vast majority
of cases (see the high density in the lower left and
upper right corners of Fig. A). Example photographs
where the models agree on correct predictions of
glaucoma and normal images (Figs. B and C), as
well as examples where the models disagree (Figs. D

and E) are provided. In these cases of agreement, the
images display typical signs of glaucomatous (Fig.
B) or normal (Fig. C) optic discs. In these cases of
disagreement, the discs have a less clear diagnosis
(Fig. D) or have image quality issues (Fig. E). To help
understand how these models make their decisions,
we used class activation maps to identify the most
informative regions of the fundus photos.32

Discussion

This report compared several deep learning model
training strategies and quantified the impact of
demographic and clinical covariates of the study
populations on model performance for detection of
glaucoma from optic disc photographs. To our knowl-
edge, this study is the first to directly compare the
performance of deep learning algorithms developed by
two independent investigators to detect glaucoma in
very different glaucoma populations. Overall, the deep
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Figure. Case examples illustrating good and poor levels of agree-
ment between the UCSD and UTokyo combined deep learning
models. (A) A heat map showing the density of predictions from
the combined UCSD and UTokyo models. Examples of both models
agreeing on a correct classification of a glaucoma (B) and normal
(C) images are provided along with the predicted probabilities of
glaucoma from the combined models. Similar examples are shown
for cases when the models disagreed about a glaucoma (D) and
normal (E) image. In (B–E), the original fundus image (left) is shown
along with a class activation map identifying informative regions
used by the UCSD combined (middle) and UTokyo combined (right)
models.

learningmodels performed very well with a best perfor-
mance of 0.92 (95% CI 0.90–0.94) in detecting any
glaucoma, 0.91 (95% CI 0.88–0.93) in detecting mild
glaucoma, and 0.98 (95% CI 0.96–0.99) in detecting
moderate-to-severe glaucoma in the primary datasets

(DIGS/ADAGES and MRCH) that consisted of a
large, diverse cohort of patients of African, Japanese,
and European descent collected in the United States
and Japan. Moreover, the UCSD and UTokyo models
for detecting glaucoma in the MRCH dataset had a
high sensitivity of at least 90% at a fixed specificity of
90%. This high diagnostic accuracy was similar to that
of the first deep learning based algorithm approved by
the US Food and Drug Administration for the detec-
tion of referral diabetic retinopathy, which is based on
testing in 10 primary care sites, had a sensitivity of
87.2% and specificity of 90.8%.33 This finding suggests
that the UCSD and UTokyo deep learning algorithms
for the detection of moderate-to-severe glaucoma
may be ready for testing in primary care settings.
Because patients with moderate to severe disease are
at a high risk of visual impairment and blindness
owing to glaucoma, and up to 50% of glaucoma goes
undetected in the population, detection of this stage
of disease is a public health priority.34 Placement of
fundus cameras with automated glaucoma detection
in primary care settings and/or in underserved areas
can help to reach many individuals who do not receive
regular eye examinations.

In the current study, we first evaluated the perfor-
mance of existing deep learning models on indepen-
dent datasets that included patient populations that
were substantially different from the training data.
We then used two additional strategies, sequential and
combined for integrating new training data into model
development. Because model performance was overall
quite high in the mostly moderate-to-severe glaucoma
MRCH dataset, it is more informative to compare
the performance of the original, sequential, and
combined modeling strategies on the DIGS/ADAGES
testing dataset, which included mostly eyes with mild
glaucoma. It was not surprising that adding Japanese
training examples to the UCSDmodel did not improve
its ability to detect glaucoma in the DIGS/ADAGES
dataset, because these examples were not relevant to
the task of detecting glaucoma in eyes of African and
European descent. In contrast, adding African and
European eyes to the training of the Japanese model
significantly increased its ability to detect glaucoma in
the DIGS/ADAGES testing dataset from the original
model (AUC 0.79, 95% CI 0.74–0.83) compared with
the combined model (AUC 0.90, 95% CI 0.87–0.93; P
< .001) and the sequential model (AUC 0.88, 95% CI
0.84–0.92, P = .002).

A strength of this study is that we computed model
performance stratified by disease severity, myopia
status, and race using the combined DIGS/ADAGES
and MRCH testing data. With respect to disease
severity (Table 7), all models performed better at
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detecting moderate-to-severe glaucoma compared
with detecting mild or any glaucoma. The current
results also suggest that the diagnostic accuracy of
the trained deep learning model may be poorer when
there are differences in the disease severity between the
training and testing datasets. For example, the original
UCSD model did significantly better than the original
UTokyo model in detecting mild disease, likely because
the MRCH training dataset had fewer examples
of mild glaucoma, likely a result of the MRCH
grading protocol that excluded cases of disagreement.
Similarly, the MRCH glaucoma eyes had significantly
more severe disease (as measured by VFMD) than the
DIGS/ADAGES glaucoma eyes. In fact, it is likely that
disease severity in the MRCH data accounts, at least in
part, for the strong performance of all models in this
dataset. This finding may also explain why the addition
of the MRCH data to the DIGS/ADAGES dataset did
not improve the performance of the UCSD model; the
UCSD model had a sufficient number of moderate-to-
severe cases in its training set to correctly identify the
Japanese eyes, which consisted of mostly moderate-
to-severe glaucoma in the MRCH dataset. Moreover,
the disease severity could also help to explain the high
performance of both the UCSD and UTokyo models
in eyes with high myopia, even though there were
very few high myopes in the DIGS/ADAGES training
dataset (Table 6). A similar problem exists in deter-
mining the impact of race on model performance. All
eyes of Japanese descent came from the MRCH data
and again had relatively severe disease, whereas the
eyes of African descent and European descent came
from the DIGS/ADAGES data and had relatively mild
disease. The result is that the models tended to perform
well on the eyes of Japanese descent, even when they
were not represented in the corresponding training set
(e.g., original UCSD). It is unclear why all the models
performed better on the eyes of African descent than
the eyes of European descent. These subsets both came
from the DIGS/ADAGES data and had similar disease
severity (VF MD −3.93 dB vs. −3.06 dB, Table 5).

Numerous studies have evaluated deep learn-
ing methods for detection of glaucoma in a variety
of populations. The diagnostic accuracy reported is
generally very good, but varies considerably withAUCs
ranging from 0.87 to 0.99.5–13 Most studies train and
test on the same source population, which could gener-
ally lead to better performance than if the algorithm
was tested in an independent population. To address
this issue, an increasing number of studies include
an independent testing data from other populations
and geographic regions.7,8,14 Many studies do not,
however, report disease severity or other important
clinical (e.g., myopia) and demographic variables (e.g.,

race).7,8,13,14 Because these variables can substantially
impact diagnostic accuracy, it is extremely important
to report model performance as in stratified analysis
by these covariates. For example, in a stud by Liu et
al,14 the deep learning model performed much better
in the Chinese datasets (the AUC ranged from 0.964
to 0.997) than the HGC DIGS/ADAGES (0.923)
or public website (0.823) images. It is unclear why
diagnostic accuracy varies across these study popula-
tions, but reporting accuracy by disease severity,
myopia status, race, or other relevant covariates would
make it easier to compare models across different
studies.33,35 Additionally, care should be taken when
comparing AUC values between models and datasets
owing to differing healthy/glaucoma observation ratios
(class imbalance).36 To this end, we have provided
sensitivities at fixed specificities (Tables 3 and 4) as
an additional performance metric and race-stratified
sensitivities/specificities for all datasets (Supplemen-
tary Table S1).

With respect to the external testing datasets, perfor-
mance was best across all models on the Hiroshima
dataset (AUCs of 0.95–0.99), followed by the Iinan
dataset (AUCs of 0.90–0.97), and was worst on the
ACRIMA dataset (AUCs of 0.75–0.86). The relatively
good performance on the Hiroshima dataset is likely
due primarily to the very severe glaucoma included
in the dataset (mean VF MD of −13.54 dB), which
makes the detection task relatively easy. The models
had themost trouble with the ACRIMAdataset, which
differed not only in population (it was collected from a
Spanish cohort), but also in glaucoma definition. For
theMRCH datasets, glaucoma labeling was performed
by three expert graders assessing fundus photographs
as well as additional clinical information (e.g., VF and
OCT imaging). When these experts disagreed on the
labeling, that eye was excluded. This process would
lead to these datasets being depleted of difficult cases,
resulting in better model performance on the MRCH
dataset, regardless of deep learning strategy. In the
ACRIMA (and DIGS/ADAGES) datasets, no similar
exclusion based on disagreement was performed,
leading to datasets with more difficult cases and gener-
ally poorer model performance. Our highest AUC on
ACRIMA (0.86) was, however, higher than previously
reported results for this dataset (0.77).7 With respect
to the original, sequential, and combined training
strategies, there was no clear best performing strategy
across these external datasets. Moreover, the original
UCSD and UTokyo models performed similarly on
each of these three external datasets.

For automated assessment of fundus photographs
using deep learning algorithms to be accepted and used
in clinical settings, it is important to open the “black
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box” and provide some insight into the inner workings
of the model and to evaluate the possible reasons for
algorithm failure. In the current study, we generated a
heat map to compare the predictions of the UCSD and
UTokyo combined models and qualitatively evaluated
several example fundus photographs. Although the
overall diagnostic accuracy of the UCSD and UTokyo
algorithms was similar, there were cases in which
they disagreed. This finding suggests that, although
the algorithms perform similarly, the algorithms may
fail on different eyes. We manually reviewed several
cases and presented selected, illustrative cases in the
Figures B–E. The Figure B provides an example of
agreement on a glaucomatous image demonstrating
inferior–temporal neuroretinal rim thinning. Similarly,
the models strongly agreed on the example case
provided in the Figure C, which was a typical normal
optic disc. It is interesting to note that even when the
UCSD and UTokyo models agreed on the correct
predictions (Figs. B and C) and gave special attention
to the inferior neuroretinal rim region, the size and
location of the informative regions differed. In the
one case of disagreement (Fig. D), the optic disc may
have been challenging because the participant was a
high myope (SE = −6.75 diopters) with relatively mild
disease (MD = −4.25 dB). The informative regions
for the models were similar (inferior neuroretinal
rim region), and it is unclear why the UCSD model
correctly classified this eye and the UTokyo model
did not. In the final case (Fig. E), although reviewers
accepted this image for grading, there may have been
image quality issues that likely led to an incorrect
prediction by the UCSD model, suggesting that the
quality of fundus photographs should be considered
when applying these models. The UTokyo model may
have correctly predicted this case because it was highly
focused on the optic disc, whereas the UCSD model
was not. These cases illustrate the need for more
research into understanding how the models use the
images in their decision-making processes.

One of the limitations of the current study is the
discrepancy in glaucoma definitions and labelling
used in the different datasets, in particular between
DIGS/ADAGES, MCRH/Iinan/Hiroshima, and
ACRIMA datasets. For example, in the Japanese
datasets, photographs were excluded if there was not
complete agreement among the three graders. This
factor could have the effect of excluding more difficult
and/or early cases from the dataset, resulting in an
easier task for the deep learning models. In addition,
OCT was used to confirm the diagnosis in the Japanese
dataset. Alternatively, the differences in severity of
disease, definitions, and labelling from the published
studies included in the current analysis can be consid-

ered a study strength. Specifically, it allows quanti-
tative estimates of how diagnostic performance can
vary depending on the reference standard or labelling
strategy used. Another limitation is that this study only
considered the impact of a small number of covari-
ates on model performance (disease severity, myopia
status, and race). Many additional demographic and
clinical variables could impact model performance and
additional work is needed to quantify their impact.
Finally, there are numerous considerations that can
affect the choice of a particular deep learning strategy
for a prediction task. The choice of network architec-
ture, hyperparameters, transfer learning versus training
from scratch (and more) can affect not only the final
accuracy, but also the number of learned parameters,
training time and/or data needed, and the types of
errors made by the model.37 In our previous work,
we performed more extensive analyses to optimize
our models with respect to these concerns.5,6,11 This
study focused on diagnostic accuracy and how it
changed across datasets and populations, because this
is directly relevant to translating deep learning results
into improvements in clinical care.

In conclusion, the current results suggest that the
detection of glaucoma by trained deep learning models
can achieve high accuracy across diverse populations,
and provides quantitative comparisons of how model
performance can vary across datasets consisting of
glaucoma of different disease severity and ethnicity.
Moreover, the results also show that consideration
must be given to the selection of training data, label-
ing, severity of disease, and training strategies. Finally,
the high sensitivity and specificity of these models for
detection of moderate-to-severe glaucoma is similar to
that of systems approved by the US Food and Drug
Administration for the detection of referable diabetic
retinopathy,12,33 which suggests a role for artificial
intelligence in the detection of glaucoma in primary
care.
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