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Are short-term responses by tropical rainforest to drought (e.g. during El Niño)

sufficient to predict changes over the long-term, or from repeated drought?

Using the world’s only long-term (16-year) drought experiment in tropical

forest we examine predictability from short-term measurements (1–2 years).

Transpiration was maximized in droughted forest: it consumed all available

throughfall throughout the 16 years of study. Leaf photosynthetic capacity

ðVcmaxÞ was maintained, but only when averaged across tree size groups.

Annual transpiration in droughted forest was less than in control, with initial

reductions (at high biomass) imposed by foliar stomatal control. Tree mortality

increased after year three, leading to an overall biomass loss of 40%; over the

long-term, the main constraint on transpiration was thus imposed by the associ-

ated reduction in sapwood area. Altered tree mortality risk may prove

predictable from soil and plant hydraulics, but additional monitoring is

needed to test whether future biomass will stabilize or collapse. Allocation of

assimilate differed over time: stem growth and reproductive output declined

in the short-term, but following mortality-related changes in resource avail-

ability, both showed long-term resilience, with partial or full recovery.

Understanding and simulation of these phenomena and related trade-offs in

allocation will advance more effectively through greater use of optimization

and probabilistic modelling approaches.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
The impacts on land of the El Niño Southern Oscillation (ENSO) include extended

extremes of drying and warming, with notable climate anomalies usually seen in

SE Asia, East Africa and eastern Amazonia [1]. The effects on the tropical land sur-

face are often associated with net emissions of carbon dioxide (CO2) to the

atmosphere, with notable peaks observed from the ENSO events of 1982/83

and 1997/98 (e.g. [2]), and the recent 2015/16 event showing strong regionally

variable signals across the tropics [3]. The CO2 emissions anomalies associated

with ENSO are frequently large, ranging up to 2.5 Pg C yr21 [4]. They provide
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strong evidence that tropical forests exert a dominant influence

on inter-annual and longer-term variations in the global flux of

CO2 from the land to the atmosphere [5].

Measurements at smaller scales have proved consistent with

these inferred atmospheric fluxes. Regional-scale airborne data

have confirmed the potential for large areas of tropical forest

such as those in the Amazon basin to alter the sign of their

land carbon sink in response to extremes of climatic warming

and drying, with at least half of the signal caused by changes

in ecophysiological processes in natural ecosystems [6]. Exten-

sive ground-based measurements of tree growth, recruitment

and mortality in an Amazon-wide forest plot monitoring net-

work have further demonstrated how extreme drought events

can cause reductions in growth and increases in tree mortality,

with the effects of reducing the regional net carbon sink [7], or

of switching the sink to a temporary source [8].

Following early climate-driven modelling of switches in the

tropical land carbon sink [9,10], studies of gas exchange at leaf

and stand scales have since helped enable significant advances

in understanding and simulation [11–18]. However, it remains

unclear whether the ecophysiological process modelling

described from short-term observations made during an El

Niño or similar short-term drought equip us with enough infor-

mation to understand (and then predict) the impacts of possible

future repeated ENSO events [19], or of a drier, warmer climate.

The need to bridge timescales has become much stronger

in view of future climate predictions of increased drought

resulting from extended dry seasons and a higher frequency

in extreme events, including more ENSO events, particula-

rly in areas of Amazônia [19–23]. With a few exceptions

(e.g. the responses to elevated CO2), simulations of future

land–atmosphere interactions necessarily tend to make the

assumption that process representation derived from short-

term observations can be extrapolated to simulate responses

at multi-annual and multi-decadal timescales. However, funda-

mental limitations in ecological understanding exist with

respect to connecting our understanding of processes across

timescales, particularly from seasonal and annual scales

(which tend to be fairly well studied) to decadal scales and

beyond [24]. Beyond short-term (less than 1 year) responses

in, for example, gas exchange by leaves and soil, additional eco-

logical responses to drought may need to be accounted for, such

as changes in phenology, reproductive output, carbon allo-

cation to growth above- and below-ground, differential tree

mortality and ultimately changes in taxonomic composition

and their impacts on community-level functional trait distri-

butions and overall functioning (e.g. [25,26]). Understanding

these changes and then accounting for them in a model require

an adequate (and parsimonious) series of connections to be

made between the acquisition of carbon by trees and its diverse

and changing metabolic destinations. Chronosequence studies

can only partially inform this question; the only way to test

the responses to a direct climate perturbation such as drought

is to use experimental manipulation [27].

Only three such multi-year ecosystem-scale ‘drought’ exper-

iments in tropical rainforest have been published to date, two in

Amazonia and one in Sulawesi [28]; a fourth is in progress, in NE

Australia [29]. The Amazonian experiments have generated

multi-annual (greater than 5 years) datasets [30,31], and one of

these, examined here, has reported decadal-scale data during

which longer-term ecological processes have become quantifi-

able [28,32]. Both the field data from the Amazon and Sulawesi

experiments, and initial testing of dynamic vegetation model
performance against growth and mortality data, have identified

the need for better connections between soil and plant hydrau-

lics, and tissue structure [14,17,18,32–34]. Most notably, the

inclusion of plant water potential and plant trait-based con-

straints determining the limits to water transport in woody

tissue have begun to be used to link drought stress with tree

mortality; Eller et al. [35] report on one such model development.

The mismatches between model performance and

observed long-term responses to drought underline funda-

mental uncertainties over whether a simple accumulation of

short-term responses or qualitatively distinct response modes

determine ecological change over time. For example, can obser-

vations of declines in photosynthesis or growth made during

short-term drought (e.g. [30,36–38]) predict the response to

repeated or longer-term climatic drought? The answer is key

to assessing how reliable multi-decadal model predictions

might be (and their importance for environmental policy),

but few data are available to constrain the large inherent uncer-

tainty over whether long-term stabilization or continued rapid

biomass decline can be expected [24,28,39–41].

Vegetation models generally describe a principal response

to climate, consistent with the idea of resistance [42]: climate

alters photosynthetic supply to growth leading to declines or

increases in performance. In reality however, an initial

reduction may be followed by recovery in one or more com-

ponent processes; or stem density and species composition

may change, with functional effects at individual and commu-

nity levels. Recovery in a process may denote resilience to the

climate stress, perhaps also including wider coordinated

changes in growth, reproduction and mortality. Short-term

examples of such switches in response to drought that could

not be predicted purely from a change in gross productivity

include mast flowering responses in SE Asian Dipterocarps

(e.g. [43]) and the prioritization of stem growth in SW

Amazonia [44,45]. The lack of consistent mortality and

growth responses in Amazonian trees following two near-con-

secutive severe regional drought events in 2005 and 2010 [7,8]

illustrates the need for new insight. Here, high mortality but a

smaller overall reduction in growth in the 2005 drought was

followed by a smaller mortality signal but a larger reduction

in growth during the 2010 drought [7]. These differences in

growth and mortality might merely have resulted from spatial

and temporal variation in climate, plant hydraulic vulner-

ability and gross photosynthesis, or alternatively, additional

growth responses may have played important roles.

Here we use the leverage of the only decadal-scale rainfall

exclusion experiment in tropical forest to test whether obser-

vations made over minutes to months can be used to predict

changes in ecological function at longer timescales. Field-

based drought experiments are implemented by deflecting

away from the soil a fraction of the rainfall that penetrates the

canopy (‘throughfall exclusion’, TFE), thus increasing soil

moisture deficit [28,46]. This manipulation separates the influ-

ences of soil and atmospheric drought on vegetation

processes, but it also results in less extreme stress than a natural

drought would exert with similarly low rainfall, as the maxima

of air temperature and vapour pressure deficit are smaller.

Thus, while the long experimental time-series in this study pro-

vides particular insight, we acknowledge that more extreme or

more rapid responses to ENSO-related or other drought events

could occur. We focus our analysis on processes at different eco-

logical scales, but all cover more than a decade of experimental

soil moisture deficit: leaf photosynthetic capacity, sap flux,
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litterfall, tree growth and mortality, and soil respiration. Our

goal is to test whether long- and short-term (e.g. ENSO-related)

responses to drought can be treated as similar or whether they

differ qualitatively, with consequences for model represen-

tation. We pose a single hypothesis and examine it with

respect to each metric in turn: ‘the response to soil moisture

deficit is similar at short (1–2 year) and decadal timescales’.
 blishing.org
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2. Methods
The site of the long-term through-fall exclusion (TFE) experiment is

the Caxiuanã National Forest Reserve in the eastern Amazon, Pará

State, Brazil (18430 S, 518270 W). Rainfall is 2000–2500 mm yr21,

with a pronounced dry season (June–November, rainfall less

than 100 mm month21). It is situated on terra firme forest, with

yellow oxisol soils [47].

The TFE experiment consists of two 1 ha plots located in old-

growth forest. The treatment (TFE) plot has been covered with

plastic panels and guttering placed at 1–2 m above the soil since

January 2002. This structure excludes approximately 50% of the

incoming canopy through-fall from the soil. A ‘Control’ plot on

which no rainfall exclusion has taken place is located less than

50 m away. For details on the experimental design, see [28,31].

Multiple measures of growth and physiology have been made

on the trees and soil during the experiment [28]. The metrics and

source studies used here are summarized below. Continuous or

semi-continuous datasets have been recorded for on-site meteorol-

ogy and soil moisture content, growth, mortality and recruitment

of all trees above 10 cm stem diameter [31,32], and for litterfall

[48]. Most other metrics have been obtained in campaign mode,

with intensive periods of measurement at the outset of the exper-

iment and more recently, from 2012. Soil properties and CO2

effluxes are reported in [47,49–51]. Soil CO2 efflux (soil respiration,

Rsoil) sampling was made using the closed-circuit infrared gas

analyser method [49]. Temperature-corrected leaf photosynthetic

capacity ðVcmaxÞ measurements followed standard procedures

[13], with Vcmax derived from full A/Ci response curves. Mea-

surements of Vcmax were made seasonally during 2001/2003, and

then during 2013/2014 [32], with recent intensive data from 2016

(L Rowland et al., unpublished data). Sap flux measurements were

made using the same heat-balance method in both periods

[14,52,53]. The sampling of trees and species for physiology and

sap flux measurements was guided by canopy access at the start

of the experiment, and subsequently by mortality data [31], which

enabled the identification of species with high and low mortality

responses to the TFE treatment that could be then be sampled

with replication in focused ecophysiological studies. Additional

measurements that have been made but are not considered in

detail here include: hydraulic vulnerability of xylem tissue and the

concentration of non-structural carbohydrate in leaves, stems and

roots [32]; leaf water relations and cellular structure [18,34,54]; and

the flux of CO2 from leaves and woody tissue [55–57].

Reported values and error terms use those presented in the

original publications. Our comparative framework tests whether

drought responses observed over the early phase of the TFE can

be used to reliably predict those same responses over the long

term and therefore suggesting simple and reversible resistance to

moisture stress, or whether we observe more complex behaviour

including resilience in some ecological metrics over the long-term.
3. Results
(a) Ecophysiology of leaves, soil and canopy
Our photosynthetic capacity data have been limited by the total

number of species measured and the goal of replication of
species showing high and low mortality rates in response to

drought (15 species in 2001/2003 and 10 species in 2013/2014)

[55]. In this work, Vcmax showed no significant change under

drought (TFE treatment) in comparison to the un-droughted

(Control) forest (figure 1a). However, over time, mortality

opened up the canopy, changing competition for resources

and significantly increasing light availability to some trees.

Recent intensive sampling of Vcmax shows the mean Vcmax of

sunlit canopy leaves across all tree sizes to remain unchanged,

consistent with previous findings, but where tree crowns have

become fully exposed to light, some downward acclimation of

Vcmax is observed. By contrast, the soil respiration flux (Rsoil)

declined immediately in response to the experimental soil moist-

ure deficit during 2001/2003, reaching a reduction of more than

20% [49], but later showed evidence of long-term recovery, with

Rsoil in the TFE returning to near that of the Control forest after

four years (figure 1c) [50,51,57].

A short- and long-term comparison of leaf stomatal con-

ductance is not yet available, but tree-level sap flux data were

obtained during both 2001/2003 and 2014/2016. A significant

relationship ( p , 0.01) was observed between stem diameter

and maximum sap flux (the average daytime wet-season

flux, kg cm21 h21) over a large range in stem sizes, 5–70 cm

diameter [14,53]. This relationship was used to model annual

water use together with: inventory data for each plot; sap

flux measurements in both dry and wet seasons from 2014 to

2016; and accompanying meteorological and soil moisture dri-

vers. Transpiration was 68–71% lower in the TFE than the

Control (879 versus 1238 mm yr21 in 2002/2003 and 945

versus 1389 mm yr21 in 2014/2016 (figure 1b)). In each

period, very close to 100% of the rain-fed water available

after TFE was recycled as transpiration, significantly more

than the 67–74% recycling of normal rainfall performed by

non-droughted Control forest (figure 1b and [53]). While

light and vapour pressure deficit drove daily sap flux in both

forest plots, soil moisture availability mainly determined tran-

spiration in the TFE in the dry season, but was not a constraint

in the wet season [14,53,58]. Leaf area index in the TFE was

reduced by 12–20% during 2001 to 2015 [14,32], although esti-

mates of leaf area index contain measurement uncertainty [59];

this implies slightly higher leaf-level stomatal conductance

during wet season release from drought. However, the princi-

pal cause of the reductions in stand-scale transpiration in the

TFE differed over time. In 2001/2003, at high biomass and pre-

sumably more intense competition for water, stomatal control

at the leaf level strongly reduced canopy water use [14,60].

During 2014/2016, however, stand-scale water use was

mainly controlled by the reductions in sapwood area that

had resulted from high preceding mortality during the

experiment [53]. The high recycling rate (approx. 100%;

figure 1b) observed during 2014/2016 was facilitated by

markedly increased wet-season rates of transpiration in the

surviving trees, consistent with higher stomatal conduc-

tances; conversely, dry season transpiration rates were very

low, constrained by low soil moisture availability.

(b) Biomass change, tree mortality and litter
production

Increased tree mortality rates in response to the experimental

drought were not observed for the first three years after the

TFE began in 2002, but after this point mortality rates

increased, with large peaks in 2005 and 2010. Increased
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mortality was strongly associated with the largest tree size

group (stem diameter greater than 40 cm; figure 2). Overall,

mortality and related biomass loss were substantially

higher in the droughted TFE forest, with a loss of nearly

20% biomass by 2008, accelerating to an overall loss of 40%

by 2015 (figure 2) [31,32]. Woody tissue production declined

during the first seven years of the TFE by 30% relative to the

Control forest, but only in the medium and large stems

(diameters 20–40 cm and greater than 40 cm), with little

growth reduction in the smaller stems (diameter 10–20 cm)

[31]. From year eight, after initial mortality and associated

changes in resource availability, especially light and moist-

ure, TFE tree growth rates recovered relative to the Control

[32], with higher rates than in Control for small and

medium trees (10–20 cm and 20–40 cm diameter), and

similar rates in the largest trees (greater than 40 cm).

The production of leaves, flowers and fruits, and fine

wood (twigs) all declined in response to the experimental

drought in the first 3 years of TFE, although fine wood litterfall

showed high variance and little pattern (figure 3a–c and [48]).

A sharp decline (greater than 50%) in fruit and flower pro-

duction occurred in the first year of TFE, compared to a

smaller decline in leaf litter of 10–20%. The normal pattern of

an early dry-season peak in flower- and fruit-fall was entirely

lost during the early phase of the experiment (figure 3b). How-

ever, after 10 years of experimental drought, reproductive

output recovered, and the original seasonal pattern in fruit-

and flower-fall also re-established itself (figure 3b). The

declines in leaf litterfall during the experiment were less

marked, ranging 10–20%, with little disruption of the seasonal

pattern of litterfall (figure 3a). However, after the long-term

drought treatment, a strong negative correlation between leaf

litterfall and mean tree growth increment was observed,
showing a tighter trade-off in the TFE between these two prin-

cipal above-ground production terms (figure 4) than found in

non-droughted Control forest.

4. Discussion
The results presented here from the only long-term drought

experiment in tropical forest suggest that forest function

during long-term drought (greater than 10 years) is largely

not predictable simply from the effects observed over the

short-term (1–2 years). Stand-scale transpiration was the main

exception and proved to be the most predictable flux. It was

maximized throughout the experiment, although the main con-

straining drivers changed from physiological at the leaf and tree

scale (stomata) to structural at the stand-scale (reduced sap-

wood area). Photosynthetic capacity of sunlit canopy leaves

appeared relatively constant over time when averaged across

all tree sizes, with later indications of downward acclimation

to combined high light exposure and drought, following

mortality-related impacts to the overall TFE canopy light

environment. However, the remaining responses, in mortality,

growth and reproduction, showed more complex behaviour,

altering over time to reflect both resistance and resilience; they

could not be predicted either from their own early-phase

behaviour, or from simple changes in gas exchange activity.

Increased complexity in models and observations could

account for these phenomena, but the introduction of simplify-

ing analytical approaches that assume specific trade-offs in the

components of plant production in order to maximize plant

fitness may prove more effective [24,61,62]. At both experi-

mental and regional scales there is evidence that specific

wet-affiliated genera bear a higher mortality risk than others

during drought [26,28,31], meaning that the process-based
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responses described here will be both accompanied by

future changes in species abundances, and affected by any

consequent changes in stand-scale functioning.

(a) El Niño Southern Oscillation climate and the effects
of experimental drought

The El Niño-driven climate anomalies that are important

here comprise extended periods of reduced rainfall and soil

moisture availability, and increases in solar radiation, air

temperature and vapour pressure deficit [1]. By contrast, the

experimental (TFE) drought manipulation has a single main

initial effect: a large reduction in soil moisture availability

[28]. Over the longer term this is coupled with the effects of

high mortality [31,32] causing alterations to canopy structure

and related availability of light, water and nutrients, which

influence functioning at tree and/or stand scales. The TFE

treatment thus enhances natural climatic extremes in low rain-

fall and high vapour pressure deficit, first imposing significant

hydraulic limitations on plant function and then additional

longer-term changes in resource availability and competition

caused by alterations in overall forest structure. However,

because it does not impose a continuous atmospheric drought

in addition to that of the soil, the TFE treatment enables trees to

recover partially from naturally co-occurring drought cycles

(e.g. ENSO).
(b) Ecophysiological responses
Overall, the observed biophysical controls over transpiration

are consistent with water use always proceeding to a maximum

however this is achieved, as long as the gains from assimilation

outweigh losses from hydraulic constraints [63,64]. The TFE

plot consistently used close to 100% of the available throughfall

reaching the soil (figure 1b), a substantially higher rate than

observed for Control forest (70%). Despite this constancy in

maximum water use, the dominant controls on transpiration

changed from individual-level stomatal control during the

early, high-biomass phase of the experiment, to the reduction

in sapwood area resulting from preceding mortality imposing

stand-scale structural constraints on transpiration [53]. Thus,

long-term transpiration is predictable from short-term

measurements, at least to the extent of the current levels of

structural change (i.e. 40% biomass loss). However, further

substantial loss of sapwood area through mortality might

reduce the capacity of the ecosystem to recycle the 900–

1000 mm (approx. 50% rainfall) it currently receives. Uncer-

tainty over whether continued TFE treatment will cause

further biomass collapse or lead to a new equilibrium state

therefore challenges our understanding of the response to

drought at multi-decadal scales.

The average maximum photosynthetic capacity ðVcmaxÞ of

sunlit canopy leaves across all trees sizes was relatively predict-

able from short to longer timescales, with no significant decline

throughout the experiment [32], even after more than 10 years of

reduced soil moisture availability (figure 1a). The metabolic cost

of maintaining high Vcmax during drought stress thus appears—

on average—to have been compensated for (sensu [65]) by

enabling high net assimilation rates when water becomes avail-

able, for example early in the morning or following episodic

rain. However, in extremis, drought-acclimation of Vcmax does

ultimately occur in full light-exposed and long-term droughted

tree canopies, following high mortality and related struc-

tural change, with potential effects on gross productivity via

tree-scale differences in canopy illumination and performance.

The sharp initial decline in soil respiration, Rsoil (figure 1c)

[49], was consistent with wet-to-dry season moisture-response

functions for Rsoil in other tropical forests (e.g. [66]). However,

after four years of TFE this response pattern became disrupted,

with Rsoil fluxes in the droughted TFE forest moderated back

upwards to 95% of that in non-droughted Control forest

[50,51]. The long-term signal here may have reflected higher

live root respiration rates associated with co-incident increases

in specific root length and fine root production, despite likely

lower root density [57,67] following mortality and root

decomposition [30]. Overall, figure 1c suggests that Rsoil is

not predictable during long-term drought solely from short-

term responses because of switches in metabolism and

growth patterns.

(c) Tree mortality and net primary production
The initial 3-year resistance to mortality in this experiment

[28,31] contrasts with observations of more rapid increases

in mortality during single-year natural drought events

(e.g. [8,68,69]). This difference likely reflects the lack of high

vapour pressure deficit and air temperatures in the experiment

that otherwise accompany a natural severe drought. However,

at least for the Amazon, forest plot monitoring data for the

repeat natural droughts of 2005 and 2010 have shown that

differences in mortality and reductions in growth do not
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simply reflect immediate drought severity or prior mortality

incidence: they also vary with preceding climate, particularly

soil moisture availability [7]. Consistent with this, significant

increases in mortality in this experiment only occurred below

a threshold of a relative-available-soil-moisture of 50%,

irrespective of the time since the TFE drought treatment

began [28].

The plant physiological determinants of drought-related

tree mortality have been widely discussed and reviewed

elsewhere [17,24,28,32,70,71]. Acknowledging the difficulty

of complete understanding of the mortality process [63], an

increasing consensus has built towards advancing dynamic

vegetation models by connecting plant water potential

with the hydraulic vulnerability of xylem tissue [32,71]. This

approach makes assumptions of optimal behaviour (e.g. [35])

and has the advantage of simplifying model structure with

respect to soil moisture supply and stomatal conductance by
using the same physical processes to determine changes in

water loss, assimilate supply and overall growth and mortality,

over both short and long time scales.

The mortality patterns in the experiment changed between

short and longer timescales, but with further testing both may

prove to be explicable using these modelling approaches, by

combining new representation of changes in plant water poten-

tial during drought with better understanding of associated

mortality thresholds. The substantially different stand dynamics

observed in both experimental contexts [24,28] and during

different natural droughts, such as the 2005 and 2010 Amazo-

nian events [7], may thus ultimately be accounted for without

recourse to more complex changes in allocation and growth.

As reported for forests globally [72], the size class most

sensitive to drought was those trees greater than 40 cm in

stem diameter (figure 2b). Consistent with this, tree growth

rates declined at the start of the experiment in the largest
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but not the smallest trees [31], and following increased

mortality during 2005/2012, competitive release and altered

resource availability led to the recovery of growth rates in

the remaining larger trees, and to increased growth in the

smaller trees relative to that in non-droughted forest [32].

This plasticity in growth over time suggests that long-term

growth responses cannot be predicted simply from short-

term data, though we note that models accounting for

changes in resource availability (light, soil moisture) follow-

ing mortality may ultimately be capable of simulating the

observed resilience in growth.

As observed elsewhere in long-term tropical forest monitor-

ing studies [73], differences in allocation to reproduction, foliage

and fine woody litterfall varied over time [48]. The sharp early

decline in fruit- and flower-fall followed by a recovery described

clear resilience in reproductive output (figure 3). The stronger

correlation between leaf litterfall and stem growth following

long-term drought than in Control forest (figure 4) also pointed

to a key trade-off between allocation to growth sinks in the

canopy and stem. Here, the tighter relationship between

them under drought (figure 4b) likely emerged because of con-

strained overall availability of non-structural carbohydrate. The

responses observed in reproductive or leaf litterfall (figures 3

and 4) could not have been predicted from their short-term

responses (or simple declines in gross assimilation) and, similar

to the sap flux and growth data, they likely resulted from

long-term changes in resource availability following mortality.
5. Conclusion
We summarize our findings by mapping back to the frame-

work of examining how predictable long-term responses are

from short-term behaviour, and by considering how this can

inform future modelling of the responses by tropical forests

to individual (e.g. El Niño), repeated or long-term droughts.

(a) Can short-term responses to drought be used
to predict future impacts?

The predictability of long-term response modes from short-

term behaviour fell into categories of increasing complexity,

combined in figure 5. (i) Transpiration was maximized at all

timescales: in droughted forest it was approximately 70% of

that in non-droughted forest, but 100% of the rain-fed water

available to the droughted forest was always used by the

forest in transpiration. (ii) The Vcmax of sunlit leaves, which

directly influences gross photosynthesis, remained constant

from the short- to the long-term when averaged across all

trees, although recent intensive sampling suggests limited

downward acclimation of Vcmax in fully light-exposed and

droughted tree crowns, following preceding mortality.

(iii) Increased mortality incidence was not predictable from

short-term responses alone, but was strongly associated with

tree size, and may be predictable over multiple timescales

with emerging new model representations of plant and soil
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hydraulics. (iv) The long-term patterns in net primary pro-

duction and respiration were also not predictable from short-

term responses to drought. Instead they appeared dependent

on how the dynamics of resource availability (light, moisture)

following mortality affected trade-offs among allocation to

stems, reproduction, leaves and roots, or to metabolic demands

associated with stress and tissue repair (figure 5). Observations

of changes in allocation favouring stem growth have been

observed elsewhere in tropical forest during short-term natural

drought [44,45], so improved understanding of allocation

rules in response to climate stress may be needed over short

timescales as well as long.

(b) Consequences for modelling the response
to drought by tropical forests

There is current intensive focus on the incorporation of

the physical principles of soil and plant hydraulics, and

plant water potential, into new model frameworks (e.g.

[24,35,74]), and on the measurement of related plant traits,

particularly plant hydraulic vulnerability [32,75]. This will

advance our ability to account for drought-related patterns

in tree function and mortality over multiple timescales, but

we also suggest that improved modelling of soil water avail-

ability will prove to be a critical addition to this effort. Little

information is available on this: much more extensive

monitoring, measurement and modelling are needed [76–79].

We also highlight the importance of dynamic long-term

drought impacts on forest structure and its consequences for

resource availability to surviving trees following mortality.

Simulation of the effects of repeated ENSO-like climate

anomalies or long-term drying will need to account for poten-

tially complex, perhaps cumbersome, changes in computed

competition for light, water and nutrients. However, more
efficient ways forward are emerging. For example, the differ-

ences in growth and mortality observed in the 2005 and 2010

Amazon droughts [7] may be predictable through new optim-

ality-based simulations of soil and plant hydraulics [74].

Similarly, alterations to the allocation of assimilate among

growth or other metabolic sinks, and their impacts on carbon

residence times and net carbon balance (cf. [41]) may also be

addressed more effectively by using goal-seeking formulations

in models, such as optimization or probabilistic approaches,

rather than only by adding multiple new empirically-derived

process representations [28,62,80,81]. Introducing such newer

modelling approaches [24,61,82] into existing mechanistic

model structures should accelerate improvements in our

understanding and prediction of the far-reaching effects of

drought on tropical forests.
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