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Abstract.—The accumulation of genome-scale molecular data sets for nonmodel taxa brings us ever closer to resolving
the tree of life of all living organisms. However, despite the depth of data available, a number of studies that each used
thousands of genes have reported conflicting results. The focus of phylogenomic projects must thus shift to more careful
experimental design. Even though we still have a limited understanding of what are the best predictors of the phylogenetic
informativeness of a gene, there is wide agreement that one key factor is its evolutionary rate; but there is no consensus
as to whether the rates derived as optimal in various analytical, empirical, and simulation approaches have any general
applicability. We here use simulations to infer optimal rates in a set of realistic phylogenetic scenarios with varying tree
sizes, numbers of terminals, and tree shapes. Furthermore, we study the relationship between the optimal rate and rate
variation among sites and among lineages. Finally, we examine how well the predictions made by a range of experimental
design methods correlate with the observed performance in our simulations.

We find that the optimal level of divergence is surprisingly robust to differences in taxon sampling and even to among-site
and among-lineage rate variation as often encountered in empirical data sets. This finding encourages the use of methods
that rely on a single optimal rate to predict a gene’s utility. Focusing on correct recovery either of the most basal node in
the phylogeny or of the entire topology, the optimal rate is about 0.45 substitutions from root to tip in average Yule trees
and about 0.2 in difficult trees with short basal and long-apical branches, but all rates leading to divergence levels between
about 0.1 and 0.5 perform reasonably well.

Testing the performance of six methods that can be used to predict a gene’s utility against our simulation results, we
find that the probability of resolution, signal-noise analysis, and Fisher information are good predictors of phylogenetic
informativeness, but they require specification of at least part of a model tree. Likelihood quartet mapping also shows very
good performance but only requires sequence alignments and is thus applicable without making assumptions about the
phylogeny. Despite them being the most commonly used methods for experimental design, geometric quartet mapping
and the integration of phylogenetic informativeness curves perform rather poorly in our comparison. Instead of derived
predictors of phylogenetic informativeness, we suggest that the number of sites in a gene that evolve at near-optimal rates
(as inferred here) could be used directly to prioritize genes for phylogenetic inference. In combination with measures
of model fit, especially with respect to compositional biases and among-site and among-lineage rate variation, such an
approach has the potential to greatly improve marker choice and should be tested on empirical data. [Experimental design;
phylogenomics.]

Experimental design in phylogenetics had a rather
slow start, mostly because marker choice was for a
long time limited by practical considerations such
as sequencing costs and the availability of primers
for polymerase chain reaction and Sanger sequencing
(Simon et al. 1994; Hillis et al. 1996; Goldman 1998; Prum
et al. 2015). In the beginning of the phylogenomic era,
choosing among loci was deemed unnecessary given
the fast decrease in sequencing costs and corresponding
increase in the amount of sequence data that could
be produced within a project’s budget. However, the
original belief that the tree of life could be resolved
by sheer volume of data was brought into doubt by
contradicting phylogenies resulting from different data
sources or analysis approaches, even when thousands
of genes were included (Rokas et al. 2003; Phillips et al.
2004; Philippe et al. 2009, 2011)—“Big Data” alone is
not sufficient to make up for inadequate experimental
design or unrealistic analysis. Most empirical studies
continue to rely on a handful of molecular markers,
and even though laboratory costs for producing large
numbers of loci are no longer prohibitive, there are still

significant computational restrictions if we are to use
realistic models of evolution and profit from the most
recent developments in analysis methodology (Song
et al. 2012; Baele and Lemey 2013; Dell’Ampio et al. 2014).
Choosing the right markers for phylogenetic analysis is
thus just as important as ever; furthermore, genome-
scale data and thus thousands of candidate loci are
currently established even for nonmodel taxa through
transcriptome and genome projects (Genome 10K
Community of Scientists 2009; Misof et al. 2014; Haberer
et al. 2016), which offers the necessary basis for doing so
efficiently (Regier et al. 2008, 2013; Betancur-R. et al. 2014;
Doyle et al. 2015).

The best criteria for choosing loci to address
a particular phylogenetic question are still under
debate, but the most commonly cited attribute is the
evolutionary rate of a gene, or, in other words, the
level of divergence it shows for a specific pair or set
of taxa (Yang 1998; Betancur-R. et al. 2014; Doyle et al.
2015). If a gene (or more to the point, most of its
sites) evolves too slowly with respect to a particular
split in the tree, it will show too few differences
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to contain enough information to correctly infer the
respective relationships. If it evolves too fast, the
substitutions will become saturated: different mutations
at the same site cannot be distinguished and the gene
loses its discriminatory power. Exactly how slow or
fast is optimal for resolving a specific phylogenetic
problem remains unclear, and the answer might depend
strongly on how that problem is framed. Analytical
attempts to identify optimal rates are scarce. Goldman
(1998) developed an experimental design framework
based on the Fisher information matrix and, among
other questions, used it to infer the optimal rate for
estimating the length of a particular branch in a model
phylogeny, as well as splitting times in clock trees;
Felsenstein (2004) used standard large-sample theory
to identify the length of a single branch which can
be estimated with the lowest coefficient of variation.
Both these approaches focused on the rate that achieves
maximum precision for branch length estimates, but the
relationship between the inference of branch lengths
and of the tree topology remains unclear. In terms
of topology inference, different nodes in a tree might
be best resolved by genes with different rates due
to their varying ages, the lengths of the surrounding
branches, and probably also the shape of the subtree
they are subtending. Townsend (2007) derived the
optimal rate for correctly reconstructing the topology
of a symmetric four-taxon tree by examining the
probability of observing unreversed synapomorphies
when the length of the internal branch in the tree
approaches zero. The same scenario, but factoring in
the length of the branch in question, was used by
Susko and Roger (2012).

It remains unclear how relevant the results from
such asymptotic studies are with respect to the correct
recovery of empirical tree topologies, which is the
main question of interest in experimental design
in phylogenomics. Empirical studies that compared
loci from phylogenomic data sets by their rate and
phylogenetic performance found contradicting results,
but this might partially be explained by the fact that
they only examined relative rates among their loci and
usually did not to report absolute rates in relation to
the divergence times they were looking at. Arranging
62 nuclear protein-coding genes by their substitution
rates at second codon positions, Regier et al. (2008) found
that relatively slower genes showed higher congruence
among their respective gene trees than faster genes and
that excluding increasing numbers of the faster genes
improved node support. Similar results were obtained
in other studies which excluded the relatively faster
genes or positions (Philippe et al. 2000; Nozaki et al.
2007). Although, in contrast, Salichos and Rokas (2013)
found higher congruence among relatively faster loci,
this result was later reported as an artefact caused by
shorter average sequence lengths in the slower genes
in their data set (Betancur-R. et al. 2014). Examining
the performance of the three criteria evolutionary rate,
clock-likeness, and fit to the evolutionary model in
improving phylogenetic signal in two phylogenomic

data sets, Doyle et al. (2015) found that filtering by
rate was largely outperformed by the other two criteria
and that it did not improve concordance among loci
nor fit to a reference topology. Given that each study
used a different set of genes and examined different
taxonomic groups, it is possible that they simply looked
at different parts of the rate spectrum, from genes too fast
to resolve relatively deeps splits to genes too slow to have
accumulated enough information about relatively recent
divergences.

Establishing a generally optimal rate for topology
inference only makes sense if this rate is sufficiently
robust across a reasonable range of phylogenetic settings.
One important determinant of the optimal rate is
probably the shape of the tree or, more specifically,
the relative length of the more basal versus the more
apical branches (Rohlf et al. 1990). “Bushy” trees with
short basal and long-apical branches are more difficult
to resolve because the signal about the sequence of basal
splits tends to be erased on the longer apical branches;
they probably require lower rates than “stemmy” trees
with long branches near the root, but the extent of this
effect is unclear. In addition, the number of terminals
might have a profound impact on the optimal rate.
One might argue that the increase in total tree length
that comes with the addition of terminals leads to
a lowered probability of unreversed synapomorphies
providing unequivocal evidence for more basal splits
in the tree, and the optimal rate should thus decrease
with increasing numbers of terminals (Klopfstein et al.
2010). On the other hand, adding taxa to a phylogenetic
problem can expose multiple substitutions along long
branches and might thus facilitate the use of faster
evolving sites; larger trees should thus have an increased
optimal rate compared with trees of the same depth
but with a more sparse taxon sampling (Townsend and
Leuenberger 2011).

Yang (1998) used simulations to establish optimal rates
across a range of tree shapes and tree sizes, examining
several four-taxon trees and a set of Yule trees with
higher numbers of taxa. He found a strong dependency
of the optimal rate on tree shape and tree size and
an asymmetric bell-curve depicting performance over
different evolutionary rates. The performance of both
parsimony and maximum likelihood (ML) methods was
found to increase rather steeply at first as increasing rates
led to more sites starting to vary and become informative.
It then peaked at a range of rates dependent on the tree
examined, and dropped rather slowly at higher rates: the
worst effects only arose with highly saturated sequences.
Yang focused on unrooted trees and measured the
rate of evolution by the total tree length, but did not
specifically control for tree height; his results concerning
different tree shapes and numbers of terminals are thus
not easily comparable among each other and to other
phylogenetic settings, as tree length increases both with
the evolutionary rate of a gene, with the number of taxa
in the tree, and with a tree shape with long-terminal
branches. Despite this gap in our understanding
of optimal evolutionary rates, several methods have
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been suggested which aim to predict phylogenetic
informativeness (PI). Goldman’s (1998) approach using
Fisher information can also be applied to predict the
information content for genes with different rates, at
least when assuming that topology recovery and branch-
length estimation are sufficiently related (San Mauro
et al. 2012) and when focusing on a specific phylogenetic
context. Susko and Roger (Susko 2011; Susko and Roger
2012) developed an asymptotic framework that can be
used to obtain approximations of the probabilities of
correct resolution of a split of interest (“probability
of resolution” hereafter) and applied it to questions
of taxon sampling and sequence lengths, but it can
also be used to examine resolution probabilities under
different evolutionary rates. It requires specification of
the split in question and the length of the branch and is
thus also rather problem specific. Townsend (2007) used
an asymptotic quartet case to derive informativeness
profiles of different markers over time based on their
site-specific rates. His method only requires input of
a vector of site rates; it makes the implicit assumption
that the optimal rate derived for the specific quartet
case is universal enough to provide a good measure
across phylogenetic settings. A later extension of the
method (Townsend et al. 2012) estimates both the
probability of signal for the true relationships and
noise supporting the false relationships and requires
similar information to Susko and Roger’s method. An
entirely different approach is taken by quartet mapping
(Strimmer and von Haeseler 1997) that directly assesses
the information about randomly selected quartets of
taxa present in a sequence alignment, no matter
whether the trees supported by these quartets are
compatible with one another or not. Quartet mapping
comes in two varieties: geometric quartet mapping,
which counts the number of site patterns in favor of
one of the three possible topologies of an unrooted
tree of four taxa (Nieselt-Struwe and von Haeseler
2001), and likelihood mapping, which calculates
the likelihood score under each possible topology
(Strimmer and von Haeseler 1997).

In a simulation approach similar to the one employed
by Yang (1998), we here aim to first establish the
best rate for phylogenetic inference under a variety
of realistic phylogenetic scenarios, teasing apart the
effects of tree shape and number of terminals on one
hand and evolutionary rate on the other. We also
address two ways in which rates can vary, first among
the nucleotide positions of a gene (among-site rate
variation, ASRV) and second among the branches of
the tree (among-lineage rate variation, ALRV). We find
that the best rate is surprisingly robust to different
settings, which implies that methods which aim to make
general predictions about phylogenetic performance
based on the evolutionary rate of a gene have a high
potential. Finally, we evaluate six such experimental
design methods by contrasting their predictions with
the observed performance of different rates in our
simulations and discuss the implications for marker
choice for phylogenetic inference.

MATERIALS AND METHODS

We used a combination of bash scripts, R scripts
(R Core Team 2014), and the program PhyML
(Guindon and Gascuel 2003) to first simulate trees
and sequences, then analyze the data under ML, and
finally summarize the success of tree inference. We
then contrasted our simulation results with predictions
obtained by six methods in experimental design.
All scripts are available from the Dryad repository
(http://dx.doi.org/10.5061/dryad.s342d). Calculations
were conducted on the Unix clusters of the EMBL-
European Bioinformatics Institute (EMBL-EBI) and
on UBELIX (http://www.id.unibe.ch/hpc), the HPC
cluster at the University of Bern.

Simulation Trees
Instead of using highly specific phylogenetic settings

like the quartet trees used in previous studies (Yang 1998;
Townsend 2007; Fischer and Steel 2009; Susko and Roger
2012), we here focus on trees obtained under a model of
cladogenesis which might more closely resemble trees
from typical phylogenetic studies, including a varying
number of terminals. To that end, we simulated pure-
birth trees (Yule trees) with the birth rate set so that
it maximizes the probability of observing the target
number of taxa (i.e., the birth rate was set to the logarithm
of the number of taxa divided by two), and the sampling
fraction set to one. We made use of the sim.bd.taxa.age
function in the “TreeSim” package in R (Stadler 2011),
which produces rooted and ultrametric trees with a
fixed time because the most recent common ancestor
(MRCA). Trees were simulated with 4–200 taxa (Table 1).
In contrast to Yang (1998), who focused on total tree
length, by keeping the time because the MRCA (tree
depth) fixed, we are able to directly compare optimal
rates across trees of different shapes and with different
numbers of terminals. Evolutionary rates are given as the
divergence that a gene shows from the root to any of the
tips (assuming that the tree is ultrametric); denoting the
age of the root of the tree by T, a rate is thus referred
to as the number of substitutions with respect to the
time unit T. A rate of 1.0/T would thus translate into a
pairwise distance of 2.0 substitutions between two taxa
which go back to the MRCA of the group (Fig. 1a). For
most analyses, we focused on trees with 10 or 100 taxa.
One thousand trees were simulated for each combination
of settings unless stated otherwise.

Yule trees are comparatively easy to resolve because
of their relatively even distribution of branch lengths.
To produce more difficult trees and investigate the
impact of tree shape, we used Ornstein–Uhlenbeck
(OU) transformations (Blomberg et al. 2003) with the
parameter d of the process, often interpreted as the
strength of selection, set to 10−0.5, 10−0.25, 1 (which
preserves the original branch lengths), 100.25 and 100.5.
These values produce a wide range of trees from highly
“bushy” with short internal and long-external branches
to very “stemmy” trees with relatively short external
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TABLE 1. Summary of simulation settings

Parameter Details Values Sample size

Tree size Number of taxa 4, 5, 6, 7, 10, 20, 50, 100, 200 1000 trees; data sets per tree: 100
(for 4, 5, 6, 10 taxa) and 10 (for
>10 taxa)

Tree shape Relative length of more basal
branches versus branches closer to
the tips, simulated by
Ornstein–Uhlenbeck
transformation with parameter d

d=10−0.5,10−0.25, 1, 100.25, 100.5 1000 trees, 100 (10-taxon trees) and
10 data sets (100-taxon trees) per
tree

#bp Number of sites 20, 100, 200, 500, 1000, 10,000 1000 trees, 1 data set per tree
� (ASRV) Parameter of the gamma distribution

of among-site rate variation,
discretized in four categories

0.1, 0.3, 0.5, 0.7, 1, 10, 10,000 1000 trees of 10 taxa and 100 trees of
100 taxa, 1 data set per tree

Clock variance (ALRV) Variance of a lognormal distribution
with mean 1.0 from which rate
multipliers were drawn for each
branch of the tree

0.0, 0.001, 0.01, 0.05, 0.1, 1.0, 10 1000 trees of 10 taxa and 100 trees of
100 taxa, 1 data set per tree

a) b)

0.6 1.0 1.8

tree steminess d

0.3 3.2

10 taxa

100 taxa

0.00.51.0

arbitrary time unit T

„bushy“ tree „average“ (Yule) tree „stemmy“ tree

FIGURE 1. Simulation trees. (a) An example tree with 10 taxa as derived under the Yule process with fixed tree depth (here, 1.0) and
target number of terminals. We report evolutionary rates with respect to the arbitrary time unit given as the distance between root and tips in
rooted, ultrametric trees, with a rate of 0.5/T representing 0.5 expected substitutions per site between root and tip, or 1.0 expected substitutions
per site between two taxa whose common ancestor is at the root. (b) Tree shapes in trees with (top) 10 or (bottom) 100 taxa as varied via the
Ornstein–Uhlenbeck transformation of branch length with parameter d (steminess).

branches (Fig. 1b). The � statistic of Pybus and Harvey
(2000) was calculated as a measure of tree shape using
the “ape” package in R (Paradis et al. 2004), and we found
that our transformations resulted in trees with average
� values of −2.7, −1.8, −0.1, 1.8, and 3.1 for the different
OU-transformations for 10-taxon trees, and −9.8, −6.8,
−0.1, 11.8, and 16.1 for trees of 100 taxa.

Most empirical data sets deviate from the assumption
of a strict molecular clock, showing varying levels of
rate variation among the branches of the tree. Such
ALRV can lead to systematic biases in phylogenetic
inference due to effects such as long-branch attraction
(LBA; Felsenstein 1978). In order to simulate ALRV, we
randomly drew rate multipliers for each branch from a
lognormal distribution with a mean of 1.0 and a range
of variances (Table 1). A reasonable range of ALRV
was taken from a comparison of more than 700 loci

which were examined for their clocklikeness in a recent
transcriptome study in ichneumonid hymenopterans
(Seraina Klopfstein, unpublished data).

Sequence Simulation
We simulated nucleotide sequences on the simulated

trees using the simSeq function in the “phangorn”
package in R (Schliep 2011). A range of evolutionary rates
was examined from 0.025 to 10 expected substitutions
from root to any tip. In the most basic setup, we simulated
sequences under the Jukes–Cantor model with a single
substitution rate for all sites. Sequence length was chosen
in most cases to be 500 bp and also varied from 20 bp to
10, 000 bp in an attempt to evaluate its impact (Table 1). To
model ASRV, we used a discretized gamma distribution
with four rate categories, for values of � of 0.1, mimicking
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strong ASRV, up to 10,000 which means virtually no
ASRV (Yang 1994).

To obtain a more precise estimate of the optimal
rate for trees with different numbers of terminals and
different shapes, we simulated 100 (for trees with 4, 5, 6,
or 10 taxa) or 10 (for trees of 20 taxa and more) sequence
alignments for each tree-rate combination (Table 1).
As we only observed small differences in the variance
of the resulting best-rate estimates, we only produced
a single alignment from each tree for the remaining
analyses.

Measuring the Success of Phylogenetic Inference
Each simulated sequence alignment was analyzed

under ML in PhyML (Guindon and Gascuel 2003),
using the correct substitution model, no ASRV and
the nearest-neighbor-interchange tree-rearrangement
algorithm. For the data sets simulated under ASRV, the
� parameter of the gamma distribution was estimated
using four categories, as in the simulations.

The success of the ML method was measured in two
ways. First, the correct recovery of the most basal split
in each tree was examined; this measure is of particular
interest in cases where the deepest splits in a phylogeny
are of most importance. As PhyML infers unrooted trees
from the sequence alignments, we restricted this analysis
to those trees in which the first split produces two groups
each of minimum size 2, as a split between a single
taxon and the rest is always recovered. Especially in
trees with small numbers of taxa, this excluded a rather
large proportion of simulations. We thus also performed
the analysis for the next split after the root in those
cases, but found no differences to the simpler rejection-
sampling approach besides an increase in variance in
the optimal rates (results not shown). As using the
second split as well can strongly influence the age of the
split in question, we then focused on simulation trees
with a basal split that can be analyzed for recovered
monophyly.

Second, as an overall measure of phylogenetic
accuracy, we examined the proportion of correctly
recovered splits. This proportion was calculated from the
Penny and Hendy (1985) topological distance (which is
based on the well-known Robinson–Foulds distance) as
implemented in ape (Paradis et al. 2004).

We used 15 discrete rates (between 0.025/T and
10.0/T) in our simulations, so our estimate for the
optimal rate is only an approximation; we thus refer to
it as the “best” instead of the “optimal” rate. Based on
the above-mentioned criteria of topological accuracy, we
choose either the one rate outperforming the others, or
the mean of multiple rates in cases where several rates
achieved the same success score. Note that in the cases of
very easy or very difficult trees, there were often several
rates that performed equally well or badly, and we would
in these cases expect the result to tend towards the
mean of the examined rates (which is 1.5/T). However,
in all cases, the best rate was clearly below this value.

Violin plots (see Fig. 2) were created using the “vioplot”
package in R (Hintze and Nelson 1998).

Performance of Methods for Experimental Design
We contrasted the performance of ML on the

simulated data sets of different evolutionary rates with
the predictions by six different methods for experimental
design in phylogenetics: Fisher information (Goldman
1998), probability of resolution (Susko and Roger 2012),
integration of PI profiles (Townsend 2007), signal-noise
analysis (Townsend et al. 2012), and two variants of
quartet mapping (Strimmer and von Haeseler 1997;
Nieselt-Struwe and von Haeseler 2001). For this analysis,
we considered three disparate tree shapes (d values
of 10−0.5, 1, and 100.5, i.e., a very bushy, an average,
and a very stemmy tree). As some methods are
computationally rather costly, especially the calculation
of Fisher information, we focused on trees with 10 taxa.

Fisher information (Goldman 1998) was calculated
using the software “EDIBLE” (Massingham and
Goldman 2000) available on github (https://github.
com/timmassingham/EDIBLE). We applied the D-
criterion (Geuten et al. 2007), as it best reflects overall
informativeness on branch lengths of the phylogeny.
The calculation of the Fisher information matrix
requires specification of the phylogenetic scenario.
The trees complete with relative branch lengths used
for simulating the data sets were provided to the
method; we thus only addressed cases in which a
good guess about the tree topology and relative branch
lengths can be made beforehand. We compared this
measure of informativeness to both success measures
specified before, that is, recovery of the most basal
split and proportion of correctly recovered splits
per tree.

The probability of resolution (PR) (Susko 2011; Susko
and Roger 2012) was calculated using the program
“pr4design” provided by the authors. This method is
specific for one split of interest in the tree, and we
specified as such the most basal split and provided
the program with the true length of the corresponding
branch under the respective evolutionary rate, the true
substitution model, and the sequence length. We could
not come up with a straightforward way of using the
PR measure in the context of the recovery of all splits in
the tree; we thus also used the most basal split in this
latter context, assuming that the recovery of most splits
crucially depends on getting that first divergence right.

Calculation of PI profiles (Townsend 2007) only
requires a vector of evolutionary rates at each site,
with respect to a time unit of choice. The true rates
used in the simulations were provided and the PI
scores were calculated using a custom R script. PI
profiles allow measuring information over different time
periods. When comparing to the success of resolving the
most basal split of the phylogeny, we used the PI score
estimated for the root of the tree; when comparing to the
overall phylogenetic accuracy, we took the integral under
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FIGURE 2. Taxon sampling and the best rates for inferring the most basal split in a tree (a, b) or for recovering most of the splits in the topology
(c, d). Sequences of length 500 bp were simulated on Yule trees of depth 1.0, under the Jukes–Cantor model and without among-site rate variation.
Violin plots (a and c) depict the median, first and third quartiles, whiskers (which as in a box plot denote the highest and lowest values within
1.5 times the distance between first and third quartile), and density distributions of the best rates. The solid and dotted grey horizontal lines are
intended as guides for the eye; they are at a rate of 0.5 (solid line) and 0.25 and 0.75 (dotted lines). Performance curves (b and d) are shown for
15 different rates (i.e., 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 5.0, and 10.0 expected substitutions between root and tip), with
symbols omitted at low rates to improve readability.

the PI curve between the root and the mid-depth of the
tree; given that PI profiles do not account for the negative
effects of homoplasy (Klopfstein et al. 2010), we decided
to use this more conservative approach which puts the
emphasis on the deeper nodes instead of calculating the
integral over the entire time period.

To calculate Townsend et al.’s (2012) signal to
noise measure, we obtained the length of the basal
branch as for PR. It was provided to the method
along with the rates used in the simulations, the state
space (four in our case as we simulated nucleotide
sequences under Jukes–Cantor—highly uneven base
frequencies would mean a reduction in effective state
space) and the sequence length. A combination of
bash scripts and a Perl script provided by the authors
(http://phydesign.townsend.yale.edu/instructions.html)
was employed to obtain an estimate for the potential
excess support for the true relationship (for definitions

of the terms, see Townsend et al. 2012). This approach
has also been chosen in previous applications of the
method (e.g., Prum et al. 2015).

Quartet mapping requires no a priori information
about evolutionary rates or tree shapes but instead is
based on the sequence alignments. We wrote R scripts
to calculate geometric and likelihood quartet mapping
from the simulated alignments, defining site patterns
for the former according to Nieselt-Struwe and von
Haeseler (2001) and making use of the “pml” and
“optim.pml” function of phangorn for the latter. We
followed Misof et al. (2013) in considering a quartet
as being resolved if the star topology was rejected
(i.e., if at least one of the three values of the quartet-
simplex was below 1/6). There are 210 different four-
taxon combinations in a tree of size 10. To estimate how
many quartets are needed in order to obtain a good
approximation of the tree-likeness measure, we sampled
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10 random trees for each tree shape. For each of these
30 trees, we calculated 1,000 quartets from each of the
15 different rate alignments, and obtained the number
of quartets necessary to get within a 2.5% range of
the final tree-likeness (Supplementary File S1 available
on Dryad at http://dx.doi.org/10.5061/dryad.s342d).
We ended up sampling 100 quartets for the 10-taxon
trees (a preliminary analysis of trees of 100 taxa gave
values of 200 quartets necessary to get within the
same range).

RESULTS

Best Rates and Taxon Sampling
The best rate for phylogenetic inference is very stable

across a wide range of number of terminals, especially
if we measure success by the recovery of the most basal
split in the tree (Fig. 2a, b). For Yule trees with a sampling
fraction of 1.0 and an average shape (d=1), genes that
show a level of divergence of around 0.45/T perform
best, with a very small increase in the mean from 0.43/T
for four taxa to 0.46/Tfor 200 taxa. Examining the success
at each rate (Fig. 2b) shows that a range of rates performs
almost equally well, with every rate between 0.025/T
and 1.0/T expected substitutions per site having a chance
higher than 95% to correctly resolve the most basal
split, regardless of the number of taxa. A strong drop in
performance is however observed between a rate of 1.0/T
and 2.0/T. This drop is steeper for larger trees, with
fewer than half of the most basal splits being recovered
correctly at rates of 2.0/T and higher in trees with 50 or
more taxa. When considering the proportion of correctly
recovered splits in the tree (Fig. 2c, d), we find an increase
in the best rate from about 0.25/T to 0.58/T (for trees of
5–200 taxa). The drop in performance at rates of 2.0/T
and higher is now a bit steeper for smaller trees (Fig. 2d).
In contrast to the recovery of the most basal split, we
here also observe a lower performance of very low rates.
Recoveries of at least 90% of all splits are observed for
rates between 0.1/T and 0.9/T.

Best Rates and Tree Shape
The relative lengths of the early branches in

comparison to the later ones in the tree have a large
impact on the performance of phylogenetic inference,
even though the best rate remains within the range
observed for average Yule trees (Fig. 3). Trees with very
short basal and long-apical branches (“bushy” trees) are
more difficult to resolve and require lower evolutionary
rates for correct recovery of the most basal split (with
a mean rate of 0.28/T and 0.19/Tfor trees with 10 and
100 taxa, respectively; Fig. 3a, b, e, f). For the bushiest
tree with 100 terminals, successful recovery of the most
basal split was extremely low due to very short basal
branches, reaching a maximum of 6.7% for the best rate
of 0.2/T. The best rate increases for highly stemmy trees
with long basal and short apical branches (to 0.50/T and

0.49/T, respectively). The drop between rate 1.0/Tand
2.0/T is present both for trees with 10 and with 100
taxa, and is steeper for the more difficult trees. When
considering the proportion of correctly recovered splits,
the picture remains the same for trees with 10 taxa
and for bushy to average trees of 100 taxa; however, in
the case of very stemmy trees with 100 taxa, the very
short apical branches require high rates to be resolved
(Fig. 3g, h).

Best Rates and the Number of Sites
The correct recovery of difficult phylogenetic

problems depends on the sequence length as expected,
with a steady increase in the probability of resolving the
most basal and the other splits from 20–10, 000 bp at rates
below 5.0/T (Fig. 4). However, although the range of
rates that perform well increases somewhat when more
sites are sampled, the best rate remains constant with
increasing amounts of information (Supplementary File
S2 available on Dryad). Even more strikingly, there is
virtually no improvement when sites are added if they
evolve at very high rates (from 5.0/T) in more difficult
settings, such as the bushy tree of 10 taxa and in the
average Yule tree of 100 taxa (Fig. 4b, c; even when the
number of basepairs was increased to 10,000).

Best Rates with Among-Site and Among-Lineage Rate
Variation

The variation in the evolutionary rate among sites in
an alignment has a large impact on general performance
and best rates (Fig. 5). Values of � of 10 or 10, 000
(which reflects virtually no ASRV; also compare Fig. 3)
result in the now familiar picture of good performance
of rates of about 0.1/T to 0.9/T and a steep drop
between a rate of 1.0/T and 2.0/T; however, a value
of � around 1.0 represents a turning point below which
higher rates perform almost equally well, even though
the best (average) rate only increases from 0.41/T at
�=10, 000 to 0.62/T for �=0.1 in the case of the difficult
tree of 10 taxa. At the most extreme among-site rate
variation, we furthermore observe irregular behavior
with an initial drop in performance at very low rate,
then an increase again for rates 2.0/T–5.0/T, and a final
slow decrease. The shape of these curves to a large extent
matches the number of sites evolving at favorable rates
(0.1/T to 0.5/T), as shown in Figure 5g.

Variation in evolutionary rates among the branches of
the tree also has only a very minor effect on the best
rate (Fig. 6). This effect was most pronounced for the
large tree of 100 taxa where extensive ALRV (variance
of 10.0) led to a slight decrease in the best rate. Both for
average and bushy trees of 10 taxa, the impact of ALRV
on the best rate was negligible, even though the overall
success at correctly reconstructing the trees decreased
with increasing ALRV.
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FIGURE 3. Tree shape and the best rates for inferring the most basal split in a tree (a, b, e, and f) or for recovering most of the splits in
the topology (c, d, g, and h). Two tree sizes were included, with 10 (a–d) or 100 taxa (e–h). Relative branch lengths were manipulated using
Ornstein–Uhlenbeck transformations on Yule trees using values for parameter d of 10−0.5, 10−0.25, 1, 100.25, and 100.5 to create very bushy, average,
and very stemmy trees; typical examples of the resulting tree shapes are shown in (a) and (c). Note that only 15 different rates were tested; some
of the violin plots thus show discontinuous density distributions (stemmy trees in c and g) where different replicates had high but different
optimal rates. Symbols were omitted at low rates in plots b, d, f, and h to improve readability.
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FIGURE 4. Success curves for different evolutionary rates under a range of data set sizes. The top row (a–c) shows the probability of correctly
recovering the most basal split in an average tree of 10 taxa (a), a bushy tree of 10 taxa (b), and an average tree with 100 taxa (c); the bottom row
(d–f) repeats the same sequence for the proportion of correctly recovered splits. Symbols were omitted at low rates to improve readability.

Comparing Experimental Design Methods
We contrasted the observed performance of simulated

data sets which evolved at different evolutionary rates
with predictions made by six methods for experimental
design in phylogenetics (Fig. 7). We consider a method
as more successful the more closely its predictions
follow the curve of actual performance, measured in
terms of the correct recovery of either the most basal
split (Fig. 7a–c) or of all splits in the tree (Fig. 7d–
f). The maxima and minima of the score obtained
by each method was adjusted to the maximum and
minimum performance for comparability, and the sum
of the differences to the actual performance was used
to create a ranking of the methods (Table 2; see also
Discussion, below). Considering the recovery of the most
basal split (Fig. 7a–c), PR performed best, followed by
likelihood quartet mapping, signal-noise analysis, and
Fisher information. The first two worked especially well
for more difficult trees, whereas the latter had especially
good predictive power in the case of the stemmy tree. At
the other end of the scale, geometric quartet mapping
overrates the contribution of slower versus faster sites,
whereas an opposite bias is observed for PI profiles.
When comparing the different methods to the overall
recovery rate of the correct topology (Fig. 7d–f, Table 2),

PR and likelihood quartet mapping outperform all
the others, whereas Fisher information now obtains
better scores than the signal-noise analysis. Once more,
PI profiles and geometric quartet mapping perform
least well.

DISCUSSION

The Best Rate for Phylogenetic Analysis
We find that the best rate for phylogenetic inference

is surprisingly stable across a range of tree sizes and
shapes. The optimal rate for recovering the most basal
split in Yule trees with 4–200 taxa is around 0.45
substitutions per site between root and tip (tree age
T), with the range of 0.1/T to 0.9/T showing good
performance. Focusing on more difficult tree shapes
with short basal and long-apical branches, the optimal
rate drops to about 0.2/T, and the range of good
performance is between about 0.05/T and 0.4/T. These
values are similar to previous results from analytical
or simulation approaches to determine optimal rates
for phylogenetic inference. Felsenstein (2004), equation
13.34) found that a branch of length 0.719 substitutions
per site can be estimated with the lowest coefficient of
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FIGURE 5. ASRV and the best rates for inferring the most basal split in a tree. Average 10-taxon trees (a and b), average 100-taxon trees
(c and d), and bushy 10-taxon trees (e and f) were analyzed (g and h); examples of such trees are given as inlaid figures. Note that only 15 different
rates were tested, which is why some of the violin plots show discontinuous density distributions (e). The heat map (g) shows how many of
the four categories with which the gamma distribution was approximated contained sites that evolve at a near-optimal rate (0.1–0.5 expected
substitutions between root and a tip of the tree), for values of � from 0.1–10,000 and for root-tip distances 0.025–10. Symbols were omitted at low
rates in panes b, d, and f to improve readability.



2017 KLOPFSTEIN ET AL.—BEST EVOLUTIONARY RATE FOR PHYLOGENETIC ANALYSIS 779
0

1
2

3
4

5
0

1
2

3
4

5

be
st

 ra
te

 fo
r r

ec
ov

er
in

g 
ba

sa
l s

pl
it

co
rr

ec
t r

ec
ov

er
y 

of
 fi

rs
t s

pl
it

a) b)

c) d)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rate

0 2 4 6 8 10
rate

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

be
st

 ra
te

 fo
r r

ec
ov

er
in

g 
ba

sa
l s

pl
it

co
rr

ec
t r

ec
ov

er
y 

of
 fi

rs
t s

pl
it

e) f)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.001 0.01 0.05 0.1 10

clock variance (ALRV)

1.0

0
1

2
3

4
5

clock variance 0.0
clock variance 0.001
clock variance 0.01
clock variance 0.05
clock variance 0.1
clock variance 1
clock variance 10

be
st

 ra
te

 fo
r r

ec
ov

er
in

g 
ba

sa
l s

pl
it

0.0 0.001 0.01 0.05 0.1 10

clock variance (ALRV)

1.0

co
rr

ec
t r

ec
ov

er
y 

of
 fi

rs
t s

pl
it

rate
0.0 0.001 0.01 0.05 0.1 10

clock variance (ALRV)

1.0

1e−11 0.01 0.05 0.1 1 10

clock variance 0.0
clock variance 0.001
clock variance 0.01
clock variance 0.05
clock variance 0.1
clock variance 1
clock variance 10

clock variance 0.0
clock variance 0.001
clock variance 0.01
clock variance 0.05
clock variance 0.1
clock variance 1
clock variance 10
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FIGURE 7. Comparison between the performance of data sets of 500 bp evolving at different evolutionary rates in simulations (bar plots) and
the predicted informativeness based on six methods for experimental design. The left column (a, c, and e) shows the probability of correctly
recovering the most basal split in a bushy (a), average (c), and stemmy tree (e) of 10 taxa; the right column (b, d, and f) repeats the same sequence
for the proportion of correctly recovered splits.
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TABLE 2. Ranking of experimental design methods

Criterion/method Bushy tree Medium tree Stemy tree Total
�diffsa Rank � diffs Rank � diffs Rank Rank

Recovery of most basal split
Likelihood quartet mapping 0.726 1 1.474 3 1.027 4 3
Probability of resolution 1.335 2 0.734 1 0.993 3 1
Signal-noise analysis 1.840 3 2.210 4 0.753 1 3
Fisher information 2.303 4 1.147 2 0.860 2 3
PI profile quantification 2.898 5 4.593 6 2.332 6 5
Geometric quartet mapping 4.922 6 3.890 5 1.094 5 6

Proportion of correctly recovered splits
Likelihood quartet mapping 1.198 2 1.096 3 0.476 2 2
Probability of resolution 0.904 1 0.603 1 0.421 1 1
Signal-noise analysis 2.339 4 1.676 4 0.509 3 4
Fisher information 1.788 3 0.997 2 0.514 4 3
PI profiles 3.573 5 3.363 6 0.844 6 5
Geometric quartet mapping 5.374 6 3.168 5 0.649 5 6

a� diffs: sum of (absolute) differences between prediction and observed performance in simulation.

variation under a Jukes–Cantor model; this corresponds
to a rate of about 0.36/T in the rooted case. Using Fisher
information, Goldman (1998) estimated the optimal rate
for inferring the branch lengths of a model phylogeny
including the great apes and two species of monkeys.
The optimal rate was inferred in relation to a particular
gene, the ��-pseudogene; under midpoint rooting and
using the branch lengths provided for that gene, his
result would correspond roughly to a rate of 0.6/T.
Townsend (2007) showed that a rate of 0.25/T maximizes
the joint probabilities of a single substitution along the
internal branch of a symmetric four-taxon tree and no
subsequent substitution if the length of the internal
branch approaches zero. Finally, Yang (1998) found an
optimal tree length of about 0.5 to 1.0 in a variety of four-
taxon trees, which corresponds to a rate of about 0.15/T
to 0.3/T under midpoint rooting, depending on the tree
shape. He observed a steady increase in the optimal
tree length when he added taxa, but as he worked
with unrooted trees, he did not specifically control for
tree height. Our results indicate that this increase was
probably only due to the added taxa and not because of
an increase in the optimal rate. The only context in which
higher rates should be preferred are large, very stemmy
trees and thus numerous short branches towards the
tips, and only if the measure of success is the overall
phylogenetic accuracy and not the recovery of the most
basal splits.

The observed robustness of optimal rates towards
varying numbers of taxa is reassuring for experimental
design methods focusing on evolutionary rates, but
note that our analysis assumed taxon addition in a
random fashion with respect to average Yule trees.
Typical approaches to taxon sampling in phylogenetic
studies, however, often aim at maximizing taxonomic or
phylogenetic diversity (Höhna 2011). Our results on tree
shapes obtained for 10 and 100 taxa (Fig. 3) suggest that
such a sampling scheme, compared with the random
addition of taxa, will lead to a shift of the best rate

towards lower values, especially for larger numbers of
taxa (compare Fig. 3a, e at a tree steminess below 1.0).
As a consequence, tree shape and taxon sampling need
to be considered together when comparing optimal rates
under different taxon sampling regimes.

As expected, sampling more sites increases the overall
performance of ML in inferring the correct tree at lower
rates, but leaves the optimal rate virtually unchanged.
Interestingly, for inferring the most basal split in more
difficult trees (e.g., a bushy 10-taxon tree or an average
tree with 100 taxa, Fig. 4b, c), adding sites does not
improve the performance of high-rate data sets at all,
with no difference in the success for 100 bp versus 10,000
bp at rates of 5.0/T or more. Sampling even a very large
number of completely saturated sites is thus not going
to improve phylogenetic inference, which might help
explain the observed failure of certain genomic data sets
to resolve difficult phylogenetic questions.

Rate variation among sites has only a minor effect
on the optimal rates, but changes the performance
curves rather drastically, at least at high-average rates.
Performance does not drop as steeply as for data
sets without ASRV, which is most probably due to
the presence of a sufficient number of sites in the
data set which evolve at near-optimal rates and thus
contain enough information about the deeper splits (as
evidenced in Fig. 6g). In general, genes with a high
amount of ASRV should thus be preferred, especially at
higher levels of divergence. This finding is in agreement
with observations in numerous empirical studies that
found a good performance of genes with sites that evolve
at a wide range of different rates; typically, these are
genes that show relaxed selection at the amino-acid level
(e.g., matK in Müller et al. 2006; Hilu et al. 2014) (CAD in
Klopfstein et al. 2013). Such genes also have the potential
to resolve nodes over a broader range of divergences.
However, this will only hold true if the approach used
to model ASRV is appropriate, such as in a simulation
setting where the true model is known. If an inferior
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model is used, it is likely that the method will struggle
to correctly identify the more slowly-evolving sites and
extract their information (Yang 1996).

Rate variation among lineages has long been reported
to cause serious challenges to phylogenetic inference
methods, mostly through LBA and similar effects
(Felsenstein 1978; Swofford et al. 2001). Although
we in general observe a decrease in performance
with increasing ALRV, the best rate remains virtually
unchanged. This might come as a surprise, given
that LBA is expected to be more severe at high rates
where the differences in branch lengths are more
pronounced. However, another effect might counteract
LBA: exceedingly short branches as they occur under
strong ALRV can only be resolved if sufficient evolution
takes place on them, which favors higher rates. We also
note that the causes of effects attributed to LBA are still
not clear (Parks and Goldman 2014).

From Simulations to Empirical Data
Simulation studies inevitably make many simplifying

assumptions, and the extent to which their results
can be transferred to empirical studies requires careful
consideration. We aimed to cover a wide range of settings
inspired by empirical examples, but specific cases might
fall outside of that range. Furthermore, our focus was
on evolutionary rates as a determinant of performance,
whereas other properties of a gene might be equally
or even more important. In order for readers to see
the limitations of what we have done, and to indicate
avenues for future improvements, we here highlight
some aspects in which our simulation study may not
match empirical analyses.

The tree shapes we used in the simulations reflect
a wide range of phylogenetic settings (Mooers and
Heard 1997; Nee 2006). Besides mimicking a scenario
where selection leads to faster evolution in the early
phase and a slowdown once a trait is close to an
adaptive peak (Lande 1976), bushy trees can also result
from adaptive radiations with an initially increased
diversification rate until most available niches are filled
(Purvis et al. 2011), or from the sampling scheme typical
to most phylogenetic studies which aim to include
representatives from higher taxonomic levels (Höhna
2011). Stemmy trees can for instance indicate periods
of increased extinction or result from sampling schemes
that mix intra- with interspecific sampling, as in alpha-
taxonomic studies or in metagenomics (Pons et al. 2006).
It is self-evident that for a specific phylogenetic setting,
more accurate optimal rates could be obtained using
simulations similar to ours; but given the wide range
of scenarios covered here and the high constancy of
the optimal rate across that range, such an approach is
unlikely to yield very different results.

Our simulation settings for ASRV were more limited,
as we simply adopted a discretized gamma distribution
with four rate categories. This approach is also the
most commonly used one when modelling ASRV for

phylogenetic inference (Yang 1996), but it is frequently
combined with data partitioning (Huelsenbeck et al.
1996; Brown and Lemmon 2007). As an example, protein-
coding genes are often partitioned into codon positions,
as these evolve under strongly differing selective
regimes; their ASRV profiles often show multiple peaks,
a situation which cannot be approximated by a gamma
distribution. Our simulations nevertheless provide
useful insights: we demonstrate that performance
correlates less with the average rate of a data set
with strong ASRV, but rather with the number of sites
that evolve at near-optimal rates. This result is likely
applicable to all different kinds of ASRV patterns.

When measuring the performance of different data
sets, we focused on two measures, first the recovery of the
most basal split and second the number of nodes in the
tree that were correctly resolved. These are aspects that
many phylogenetic studies are interested in, but in cases
where most nodes are comparatively easy to resolve (e.g.,
due to long subtending branches) one might want to
focus on a specific node when designing the experiment.
In such cases, we recommend transforming evolutionary
rates with respect to the depth of the node in question.
Other studies might be more interested in the accuracy
of branch-length estimations, for instance in the context
of molecular dating; this aspect is not covered here,
and the relationship between informativeness about the
topology on one hand and about branch lengths on the
other remains unclear (Geuten et al. 2007; San Mauro
et al. 2012).

In this study, we inferred the phylogenies under
the correct evolutionary models, thus not examining
model misspecification, which is potentially the most
severe limitation of our simulation study. Model
misspecification can pertain to any aspect of the
model, such as the substitution model (e.g., through
nonstationarity and nucleotide composition biases,
Jermiin et al. 2004; Jayaswal et al. 2014; Klopfstein
et al. 2015), the ASRV model including the partitioning
scheme (Yang 1996; Brown and Lemmon 2007), or even
the assumption that all included markers share a single
evolutionary history (Edwards 2009). The optimal rates
estimated here might thus only apply if an appropriate
evolutionary model is chosen. More work needs to be
done on how different kinds of model-misspecification
interact with evolutionary rates, but we predict that in
many cases, the negative effects of inadequate modelling
will be more severe at higher rates.

Predicting PI
We have provided a comparison between six methods

that aim to predict PI on one hand and the observed
performance in our simulations on the other. To measure
the degree of fit between the two, we used distances
to the actual performance after normalization; one
could imagine different criteria, for example, whether
the ranking of the different rates is close to the true
performance. However, a method which shows a nearly
linear correspondence between predicted and actual



2017 KLOPFSTEIN ET AL.—BEST EVOLUTIONARY RATE FOR PHYLOGENETIC ANALYSIS 783

performance will arguably be the most powerful one.
The tested methods differ strongly in their assumptions,
implementation, requirements in terms of input, and
performance. The two methods that outperformed
the others under most phylogenetic scenarios and
especially in the case of difficult trees are Susko and
Roger’s PR (2012) and likelihood quartet mapping
(Strimmer and von Haeseler 1997). Neither has been
used in phylogenomics before. The two methods rely on
different input: the former on the length of the branch in
question, its position in the tree and the evolutionary
rates, and the latter on the sequence alignment.
Likelihood quartet mapping is thus especially suited in
cases where insufficient a priori knowledge about the tree
is available, but sequences have already been collected.
Preliminary analyses showed that 100 quartets for small
(10 taxa) and about 200 for large (100 taxa) should be
sufficient to obtain a good estimate of the tree-likeness of
the data set (Supplementary File S1available on Dryad),
which makes this method computationally feasible even
for large numbers of genes.

The two next-best methods are the signal-and-noise
analysis (Townsend et al. 2012) which is very similar in
its requirements to PR, and Fisher information (Goldman
1998). The signal-noise analysis has been used recently
for experimental design in phylogenomic studies at
shallow and deep levels of divergence (Mendoza
et al. 2015; Prum et al. 2015) and given our results
certainly is a promising approach. Although statistically
very sound, Fisher information is computationally
prohibitive for trees of more than about 10 taxa and
requires specification of a full model tree. It remains
to be examined how close this model tree needs to be
to the true tree in order for the method to be effective.
This is also the case for the estimates of the length of the
branch in question for the resolution probability and the
signal-noise analysis.

Ironically, the two last-ranked methods in our
comparison are the ones that have been used most often
in to predict PI, that is, geometric quartet mapping and
PI profiles. The former has been implemented in the
matrix reduction software MARE (Misof et al. 2013)
and has been applied in several projects (Meusemann
et al. 2010; Dell’Ampio et al. 2014; Misof et al. 2014).
In our analyses, it in all cases attributed the highest
informativeness to the slowest sites. One might argue
that such a bias is conservative as faster sites will tend
to be more strongly influenced by systematic errors like
model misspecification, but it is likely that a method
with such a strong bias eliminates too much phylogenetic
signal; we showed here that using likelihoods instead
of site patterns in quartet mapping is a much better
alternative. The integration of PI curves offers a very
convenient approach due to the ease of computation
and availability of a web application (López-Giráldez
and Townsend 2011) and has been used in numerous
contexts (e.g., Townsend et al. 2008). However, the
bias towards underrating slow and overrating fast sites
which has been reported previously (Klopfstein et al.
2010) was confirmed here. The two quantitative ways

in which PI profiles were interpreted in this study, that
is, integration of the curves or comparison of absolute
scores at the root, thus cannot be recommended. An
alternative interpretation has been suggested for PI
profiles which examines the shape of the PI curves in a
qualitative way (Townsend and Leuenberger 2011; Prum
et al. 2015); we have not examined this approach here.

To estimate the predictive power of the six methods,
we examined the fit of the prediction curves obtained
from each method after scaling them to the range of our
success measures; using the ranking of the different rates
instead gave a very similar picture (results not shown).
But note that our analyses tested the performance of the
six methods under the assumption that these data sets
were analyzed with the appropriate model. This best-
case scenario ignores the impact of model misfit and
thus only provides an assessment of the upper limit of
performance that these methods can achieve. The actual
performance will certainly be lower and might be misled
by systematic errors in a similar way as the phylogenetic
inference algorithms themselves, and our predictions on
informativeness by any method should be interpreted
accordingly.

Implications for Experimental Design in Phylogenetics and
Phylogenomics

Our dual approach of establishing optimal rates
under a variety of settings and testing methods to
predict PI allows us to make recommendations for
experimental design in phylogenetics, regardless if
it is undertaken before conducting the laboratory
experiment, for instance for Sanger sequencing or for
approaches using target enrichment, or afterwards in the
bioinformatics pipeline. Choosing genes (or positions
within genes) based on their evolutionary rates is a
commonly used method (Philippe et al. 2000; Nozaki
et al. 2007; Regier et al. 2008; Chen et al. 2015), even
though there is some discussion about its effectiveness
(Salichos and Rokas 2013; Doyle et al. 2015). Our
results have important implications for such data-choice
approaches in phylogenomics. First, the asymmetric
bell-shaped success curve already detected by Yang
(1998) necessitates the filtering to be two-sided; both
genes that are too slow evolving and those with too
high-evolutionary rates show reduced performance.
Furthermore, as a range of rates have very similar levels
of performance, absolute rates in expected substitutions
between root and tip should be calculated, instead of
sorting genes by rate, and genes preferred that have
many sides within this near-optimal range. The results
presented in this study can provide guidelines. Given
that ASRV is often high especially in protein-coding
genes and a number of sites might be under purifying
selection and thus do not vary at all, it seems reasonable
to estimate site-specific rates and filtering the genes
according to the number of sites evolving at favorable
rates, instead of relying on average rate estimates across
all sites of a gene.
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Using the evolutionary rate as a guide in phyloge-
nomic experimental design might already improve
efficiency, but there are noteworthy alternatives,
especially likelihood quartet mapping (Strimmer and
von Haeseler 1997) and PR (Susko 2011; Susko and Roger
2012). The latter is especially suited in cases where a
rather precise idea already exists about the phylogeny,
whereas the former only requires a sequence alignment.
These methods have to our knowledge not been applied
for experimental design in phylogenomics; the future
will show how well they perform on real data sets instead
of simulated data. In any case, other aspects that might
influence a marker’s PI should also be included, most of
all aspects of model-fit (Doyle et al. 2015). The relative
merits of rate-based filtering remain to be established in
empirical data and likely differ between data sets.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.s342d.

FUNDING

This work was supported by the Swiss National
Science Foundation [PZ00P3_154791 to S.K.] and by
EMBL (to S.K., T.M., and N.G.). T.M.’s contribution to this
work was concluded prior to joining Oxford Nanopore
Technologies.

ACKNOWLEDGMENTS

We would like to thank associate editor Jeffery
Townsend and three anonymous reviewers for construc-
tive criticism which helped to greatly improve the
manuscript.

REFERENCES

Baele G., Lemey P. 2013. Bayesian evolutionary model testing
in the phylogenomics era: matching model complexity with
computational efficiency. Bioinformatics 29:1970–1979.

Betancur-R. R., Naylor G.J.P., Orti G. 2014. Conserved genes, sampling
error, and phylogenomic inference. Syst. Biol., 63:257–262.

Blomberg S.P., Garland T.J., Ives A.R. 2003. Testing for phylogenetic
signal in comparative data: behavioral traits are more labile.
Evolution 57:717–745.

Brown J.M., Lemmon A.R. 2007. The importance of data partitioning
and the utility of Bayes factors in Bayesian phylogenetics. Syst. Biol.
56:643–655.

Chen M.-Y., Liang D., Zhang P. 2015. Selecting question-specific genes
to reduce incongruence in phylogenomics: a case study of jawed
vertebrate backbone phylogeny. Syst. Biol. 64:1104–1120.

Dell’Ampio, E., Meusemann K., Szucsich N.U., Peters R.S., Meyer B.,
Borner J., Petersen M., Aberer A.J., Stamatakis A., Walzl M.G., Minh
B.Q., von Haeseler A., Ebersberger I., Pass G., Misof B. 2014. Decisive
data sets in phylogenomics: lessons from studies on the phylogenetic
relationships of primarily wingless insects. Mol. Biol. Evol.
31:239–249.

Doyle V.P., Young R.E., Naylor G.J.P., Brown J.M. 2015. Can we identify
genes with increased phylogenetic reliability? Syst. Biol. 64:824–837.

Edwards S.V. 2009. Is a new and general theory of molecular
systematics emerging? Evolution 63:1–19.

Felsenstein J. 1978. Cases in which parsimony or compatibility methods
will be positively misleading. Syst. Zool. 27:401–410.

Felsenstein J. 2004. Inferring phylogenies. Sunderland, MA: Sinauer
Associates.

Fischer M., Steel M.A. 2009. Sequence length bounds for resolving a
deep phylogenetic divergence. J. Theor. Biol. 256:247–252.

Genome 10K Community of Scientists 2009. Genome 10K: a proposal
to obtain whole-genome sequence for 10 000 vertebrate species. J.
Hered. 100:659–674.

Geuten K., Massingham T., Darius P., Smets E., Goldman N. 2007.
Experimental design criteria in phylogenetics: where to add taxa.
Syst. Biol. 56:609–622.

Goldman N. 1998. Phylogenetic information and experimental design
in molecular systematics. Proc. R. Soc. Lond. B Biol. Sci. 265:1779–
1786.

Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood. Syst. Biol.
52:696–704.

Haberer G., Mayer K.F.X., Spannagl M. 2016. The big five of the monocot
genomes. Curr. Opin. Plant. Biol. 30:33–40.

Hillis D.M., Mable B.K., Larson A., Davis S.K., Zimmer E.A. 1996.
Nucleic acids IV: sequencing and cloning. In: Hillis D.M., Moritz
C., Mable B.K., editors. Molecular systematics. Sunderland, MA:
Sinauer. p. 321–381.

Hilu K.W., Black C.M., Oza D. 2014. Impact of gene molecular
evolution on phylogenetic reconstruction: a case study in the rosids
(superorder Rosanae, Angiosperms). PLoS One 9:e99725.

Hintze J.L., Nelson R.D. 1998. Violin plots: a box plot-density trace
synergism. Am. Stat. 52:181–184.

Höhna S. 2011. Inferring speciation and extinction rates under different
sampling schemes. Mol. Biol. Evol. 28:2577–2589.

Huelsenbeck J.P., Bull J.J., Cunningham C.W. 1996. Combining data in
phylogenetic analysis. Trends Ecol. Evol. 11:152–158.

Jayaswal V., Wong T.K.F., Ronbinson J., Poladian L., Jermiin L.S. 2014.
Mixture models of nucleotide sequence evolution that account for
heterogeneity in the substitution process across sites and across
lineages. Syst. Biol. 63:726–742.

Jermiin L., Ho S.Y.W., Ababneh F., Robinson J., Larkum A.W.D.
2004. The biasing effect of compositional heterogeneity on
phylogenetic estimates may be underestimated. Syst. Biol. 53:
638–643.

Klopfstein S., Kropf C., Quicke D.L.J. 2010. An evaluation of
phylogenetic informativeness profiles and the molecular phylogeny
of Diplazontinae (Hymenoptera, Ichneumonidae). Syst. Biol.
59:226–241.

Klopfstein S., Vilhelmsen L., Heraty J.M., Sharkey M.J., Ronquist F.
2013. The hymenopteran tree of life: evidence from protein-coding
genes and objectively aligned ribosomal data. PLoS One 8:e69344.

Klopfstein S., Vilhelmsen L., Ronquist F. 2015. A nonstationary Markov
model detects directional evolution in hymenopteran morphology.
Syst. Biol. 64:1089–1103.

Lande R. 1976. Natural selection an random genetic drift in phenotypic
evolution. Evolution 30:314–334.

López-Giráldez F., Townsend J.P. 2011. PhyDesign: an online
application for profiling phylogenetic informativeness. BMC Evol.
Biol. 11:152.

Massingham T., Goldman N. 2000. EDIBLE: experimental design
and information calculations in phylogenetics. Bioinformatics
16:2000.

Mendoza C.G., Naumann J., Samain M.-S., Goetghebeur P., De Smet Y.,
Wanke S. 2015. A genome-scale mining strategy for recovering novel
rapidly-evolving nuclear single-copy genes for addressing shallow-
scale phylogenetics in Hydrangea. BMC Evol. Biol. 15:132.

Meusemann, K., von Reumont B.M., Simon S., Roeding F., Strauss S.,
Kück P., Ebersberger I., Walzl M., Pass G., Breuers S., Achter V., von
Haeseler A., Burmester T., Hadrys H., Waegele J.W., Misof B. 2010.
A phylogenomic approach to resolve the arthropod tree of life. Mol.
Biol. Evol. 27:2451–2464.

Misof B., Liu S.L., Meusemann K., Peters R.S., Donath A., Mayer C.,
Frandsen P.B., Ware J., Flouri T., Beutel R.G., Niehuis O., Petersen
M., Izquierdo-Carrasco F., Wappler T., Rust J., Aberer A.J., Aspock



2017 KLOPFSTEIN ET AL.—BEST EVOLUTIONARY RATE FOR PHYLOGENETIC ANALYSIS 785

U., Aspock H., Bartel D., Blanke A., Berger S., Bohm A., Buckley
T.R., Calcott B., Chen J.Q., Friedrich F., Fukui M., Fujita M., Greve
C., Grobe P., Gu S.C., Huang Y., Jermiin L.S., Kawahara A.Y.,
Krogmann L., Kubiak M., Lanfear R., Letsch H., Li Y.Y., Li Z.Y.,
Li J.G., Lu H.R., Machida R., Mashimo Y., Kapli P., McKenna D.D.,
Meng G.L., Nakagaki Y., Navarrete-Heredia J.L., Ott M., Ou Y.X.,
Pass G., Podsiadlowski L., Pohl H., von Reumont B.M., Schutte K.,
Sekiya K., Shimizu S., Slipinski A., Stamatakis A., Song W.H., Su X.,
Szucsich N.U., Tan M.H., Tan X.M., Tang M., Tang J.B., Timelthaler
G., Tomizuka S., Trautwein M., Tong X.L., Uchifune T., Walzl M.G.,
Wiegmann B.M., Wilbrandt J., Wipfler B., Wong T.K.F., Wu Q., Wu
G.X., Xie Y.L., Yang S.Z., Yang Q., Yeates D.K., Yoshizawa K., Zhang
Q., Zhang R., Zhang W.W., Zhang Y.H., Zhao J., Zhou C.R., Zhou
L.L., Ziesmann T., Zou S.J., Li Y.R., Xu X., Zhang Y., Yang H.M.,
Wang J., Wang J., Kjer K.M., Zhou X. 2014. Phylogenomics resolves
the timing and pattern of insect evolution. Science 346:763–767

Misof B., Meyer B., Von Reumont B.M., Kück P., Misof K., Meusemann
K. 2013. Selecting informative subsets of sparse supermatrices
increases the chance to find correct trees. BMC Bioinformatics,
14:348.

Mooers A.O., Heard S.B. 1997. Inferring evolutionary process from
phylogenetic tree shape. Q. Rev. Biol. 72:31–54.

Müller K.F., Borsch T., Hilu K.W. 2006. Phylogenetic utility of rapidly
evolving DNA at high taxonomical levels: Contrasting matK, trnT-F,
and rbcL in basal angiosperms. Mol. Phylogenet. Evol. 41:99–117.

Nee S. 2006. Birth-death models in macroevolution. Annu. Rev. Ecol.
Evol. Syst. 37:1–17.

Nieselt-Struwe K., von Haeseler A. 2001. Quartet-mapping, a
generalization of the likelihood-mapping procedure. Mol. Biol.
Evol. 18:1204–1219.

Nozaki H., Iseki M., Hasegawa M., Misawa K., Nakada T., Sasaki N.,
Watanabe M. 2007. Phylogeny of primary photosynthetic eukaryotes
as deduced from slowly evolving nuclear genes. Mol. Biol. Evol.
24:1592–1595.

Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics
and evolution in R language. Bioinformatics 20:289–290.

Parks S.L., Goldman N. 2014. Maximum likelihood inference of small
trees in the presence of long branches. Syst. Biol. 63:798–811.

Penny D., Hendy M.D. 1985. The use of tree comparision metrics. Syst.
Zool. 34:75–82.

Philippe H., Brinkmann H., Lavrov D.V., Littlewood D.T.J., Manuel
M., Wörheide G., Baurain D. 2011. Resolving difficult phylogenetic
questions: why more sequences are not enough. PLoS Biol
9:e1000602.

Philippe H., Derelle R., Lopez P., Pick K., Borchiellini C., Boury-
Esnault N., Vacelet J., Renard E., Houliston E., Quéinnec E.,
Da Silva C., Wincker P., Le Guyader H., Leys S., Jackson D.J.,
Schreiber F., Erpenbeck D., Morgenstern B., Wörheide G., Manuel
M. 2009. Phylogenomics revives traditional views on deep animal
relationships. Curr. Biol. 19:706-712

Philippe H., Lopez P., Brinkmann H., Budin K., Germot A., Laurent
J., Moreira D., Müller M., Le Guyader H. 2000. Early-branching
or fast-evolving eukaryotes? An answer based on slowly evolving
positions. Proc. R. Soc. Lond. B Biol. Sci. 267:1213–1221.

Phillips M.J., Delsuc F., Penny D. 2004. Genome-scale phylogeny and
the detection of systematic biases. Mol. Biol. Evol. 21:1455–1458.

Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P.,
Hazell S., Kamoun S., Sumlin W.D., Vogler A.P. 2006. Sequence-
based species delimitation for the DNA taxonomy of undescribed
insects. Syst. Biol. 55:595–609.

Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Moriarty
Lemmon E., Lemmon A.R. 2015. A comprehensive phylogeny
of birds (Aves) using targeted next-generation DNA sequencing.
Nature 526:569–573.

Purvis A., Fritz S.A., Rodriguez J.J., Harvey P.H., Grenyer R. 2011.
The shape of mammalian phylogeny: patterns, processes and scales.
Philos. Trans. R. .Soc. Lond. B Biol. Sci. 366:2462–2477.

Pybus O.G., Harvey P.H. 2000. Testing macro-evolutionary models
using incomplete molecular phylogenies. Proc. R. Soc. Lond. B Biol.
Sci. 267:2267–2272.

R Core Team. 2014. R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical
Computing.

Regier J.C., Shultz J.W., Ganley A.R.D., Hussey A., Shi D., Ball B.,
Zwick A., Stajich J.E., Cummings M.P., Martin J.W., Cunningham
C.W. 2008. Resolving arthropod phylogeny: exploring phylogenetic
signal within 41 kb of protein-coding nuclear gene sequence. Syst.
Biol. 57:920–938.

Rohlf J., Chang W.S., Sokal R.R., Kim J. 1990. Accuracy of estimated
phylogenies: effects of tree topology and evolutionary model.
Evolution 44:1671–1684.

Rokas A., Williams B.L., King N., Carroll S.B. 2003. Genome-scale
approaches to resolving incongruence in molecular phylogenies.
Nature 425:798–804.

Salichos L., Rokas A. 2013. Inferring ancient divergences requires genes
with strong phylogenetic signals. Nature 497:327–331.

San Mauro D., Gower D.J., Cotton J.A., Zardoya R., Wilkinson
M., Massingham T. 2012. Experimental design in phylogenetics:
testing predictions from expected information. Syst. Biol. 61:
661–674.

Schliep K.P. 2011. Phangorn: phylogenetic analysis in R. Bioinformatics
27:592–593.

Simon C., Frati F., Beckenbach A.T., Crespi B.J., Liu H., Flook P. 1994.
Evolution, weighting, and phylogenetic utility of mitochondrial
gene sequences and a compilation of conserved polymerase chain
reaction primers. Ann. Entomol. Soc. Am. 87:651–701.

Song S., Liu L., Edwards S.V., Wu S. 2012. Resolving conflict
in the eutherian mammal phylogeny using phylogenomics and
the multispecies coalescent model. Proc. Natl. Acad. Sci. U.S.A.
109:14942–14947.

Stadler T. 2011. Simulating trees on a fixed number of extant species.
Syst. Biol. 60:676–684.

Strimmer K., von Haeseler A. 1997. Likelihood-mapping: a simple
method to visualize phylogenetic content of a sequence alignment.
Proc. Natl. Acad. Sci. U.S.A. 94:6815–6819.

Susko E. 2011. Large sample approximations of probabilities of correct
evolutionary tree estimation and biases of maximum likelihood
estimation. Stat. Appl. Genet. Mol. Biol. 10:Article 10.

Susko E., Roger A.J. 2012. The probability of correctly resolving a split as
an experimental design criterion in phylogenetics. Syst. Biol. 61:811–
821.

Swofford D.L., Waddell P.J., Huelsenbeck J.P., Foster P.G., Lewis P.O.,
Rogers J.S. 2001. Bias in phylogenetic estimation and its relevance to
the choice between parsimony and likelihood methods. Syst. Biol.
50:525–539.

Townsend J.P. 2007. Profiling phylogenetic informativeness. Syst. Biol.
56:222–231.

Townsend J.P., Leuenberger C. 2011. Taxon sampling and the optimal
rates of evolution for phylogenetic inference. Syst. Biol. 60:
358–365.

Townsend J.P., López-Giráldez F., Friedman R. 2008. The
phylogenetic informativeness of nucleotide and amino acid
sequences for reconstructing the vertebrate tree. J. Mol. Evol.
67:437–447.

Townsend J.P., Su Z., Tekle Y.I. 2012. Phylogenetic signal and noise:
predicting the power of a dataset to resolve phylogeny. Syst. Biol.
61:835–849.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods.
J. Mol. Evol. 39:306–314.

Yang Z. 1996. Among-site rate variation and its impact on phylogenetic
analyses. Trends Ecol. Evol. 11:367–372.

Yang Z. 1998. On the best evolutionary rate for phylogenetic analysis.
Syst. Biol. 47:125–133.


	More on the Best Evolutionary Rate for Phylogenetic Analysis

