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INTRODUCTION

Pancreatic and biliary diseases encompass a wide
range of conditions. The pancreatic conditions include
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Abstract

Pancreatic and biliary diseases encompass a range of conditions requir-
ing accurate diagnosis for appropriate treatment strategies. This diagnosis
relies heavily on imaging techniques like endoscopic ultrasonography and
endoscopic retrograde cholangiopancreatography. Artificial intelligence (Al),
including machine learning and deep learning, is becoming integral in med-
ical imaging and diagnostics, such as the detection of colorectal polyps.
Al shows great potential in diagnosing pancreatobiliary diseases. Unlike
machine learning, which requires feature extraction and selection, deep learn-
ing can utilize images directly as input. Accurate evaluation of Al performance
is a complex task due to varied terminologies, evaluation methods, and devel-
opment stages. Essential aspects of Al evaluation involve defining the Al’s
purpose, choosing appropriate gold standards, deciding on the validation
phase, and selecting reliable validation methods. Al, particularly deep learn-
ing, is increasingly employed in endoscopic ultrasonography and endoscopic
retrograde cholangiopancreatography diagnostics, achieving high accuracy
levels in detecting and classifying various pancreatobiliary diseases. The Al
often performs better than doctors, even in tasks like differentiating benign
from malignant pancreatic tumors, cysts, and subepithelial lesions, identifying
gallbladder lesions, assessing endoscopic retrograde cholangiopancreatog-
raphy difficulty, and evaluating the biliary strictures. The potential for Al in
diagnosing pancreatobiliary diseases, especially where other modalities have
limitations, is considerable. However, a crucial constraint is the need for exten-
sive, high-quality annotated data for Al training. Future advances in Al, such
as large language models, promise further applications in the medical field.
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cystic lesions such as intraductal papillary mucinous
neoplasm (IPMN) and mucinous cystic neoplasm; neo-
plastic lesions such as pancreatic ductal adenocar-
cinoma and pancreatic neuroendocrine tumor; and
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inflammatory lesions such as chronic pancreatitis and
autoimmune pancreatitis (AIP)."* Similarly, biliary dis-
eases include neoplastic lesions, such as cholangiocar-
cinoma, and inflammatory conditions, such as primary
sclerosing cholangitis and immunoglobulin 4-related
sclerosing cholangitis. Accurate diagnosis before treat-
ment is essential, as treatment strategies differ signifi-
cantly for each disease. Various imaging modalities such
as computed tomography, magnetic resonance imaging,
abdominal ultrasonography, endoscopic ultrasonogra-
phy (EUS), and endoscopic retrograde cholangiopan-
creatography (ERCP) are used to diagnose diseases
in the hepatopancreatobiliary region. High-resolution
images of the pancreas and biliary tract can be obtained
using EUS, an important modality for treating pan-
creatobiliary diseases.® Procedures such as contrast-
enhanced EUS (CE-EUS), EUS-guided fine needle
aspiration/biopsy (EUS-FNA/B), and EUS-elastography
enhance the diagnostic performance of EUS5"" How-
ever, EUS alone cannot diagnose all pancreatobiliary
diseases because of its low specificity, even when using
EUS-related procedures (with 80%—95% accuracy).'?
ERCP is also used for the diagnosis of pancreatic and
biliary tract diseases and enables simultaneous inter-
ventions such as stone removal and bile duct stenting.
However, it might result in severe adverse events such
as post-ERCP pancreatitis.'®

Artificial intelligence (Al) is a mathematical classifi-
cation or regression technique, while “deep learning”
is an Al algorithm and an advanced machine learning
method that uses neural networks.' During the past
decade, Al has made dramatic progress and has been
applied in the medical field, including for the diagno-
sis of pancreatobiliary diseases using numerous types
of modalities.!’12.15-19 However, most of the associ-
ated reports have not been systematically categorized.
This review describes two columns: 1) a simple check-
list for evaluating Al performance and 2) the current
status of Al for EUS and ERCP, especially related to
pancreatobiliary diseases. However, this article is nei-
ther a systematic review nor a meta-analysis, as the
published database was not systemically researched for
publication as a meta-analysis.

MACHINE LEARNING AND DEEP
LEARNING

Several Al architectures exist, including machine learn-
ing (ML) and deep learning (DL). Although DL is a subset
of ML, there is a clear difference between the two in
terms of whether feature extraction (such as texture
analysis and histogram analysis) and feature selection
(such as filter method and wrapper method) are per-
formed during the preprocessing stage. DL does not
require feature extraction and selection because it can
directly use images as input values.'*20

Various architectures have been employed to develop
ML, including support vector machines, decision trees,
random forests, factorization machines, logistic regres-
sion analyses, and neural networks (NN).2"22 Gradient
boosting machines are an evolution of random forests.
Convolutional NNs or transformer architectures are uti-
lized. Deep learning is generally utilized when images
are used as input values. In comparison, radiomics
generally refers to the process of performing feature
extraction and selection on images, which are then input
into ML rather than DL .23

The primary roles of Al in the medical field include
imaging diagnosis, so-called computer-aided diagnosis,
and lesion detection, so-called computer-aided detec-
tion systems. The computer-aided detection system can
be further classified into object detection and image
segmentation.

EVALUATION METHOD OF Al
PERFORMANCE

There are numerous articles on medical Al, but their find-
ings are different. In addition, there are many specific
terms about Al and some evaluation methods, met-
rics, and development phases, unlike general clinical
medical research. Therefore, these factors may make
it difficult to evaluate Al performance appropriately.
Although guidelines such as standards for Reporting
Diagnostic accuracy studies and transparent report-
ing of a multivariable prediction model for individual
prognosis or diagnosis are important references, it is
crucial to consider some checkpoints (design, input
value, data volume, model, and metrics) for evaluating
Al performance, as these guidelines can be somewhat
complex 2425

Design

First, we need to confirm the type of Al developed
for classification, detection, or other purposes. The
gold standard for the labels of each image should be
checked. A pathological diagnosis or commonly used
diagnostic criteria are desirable as the gold standard;
however, in benign diseases where the pathological
diagnosis is difficult, a combination of pathological find-
ings and clinical observations (no malignant findings on
biopsy and no change with follow-up) is acceptable. It
is important to confirm whether the labels are for binary
or multiclass classification and to check the definition
of each label. For binary classification, it is important
to confirm the definition of the control group. Next, we
need to confirm the validation phase (internal or exter-
nal). The recommended approach for external validation
is to randomly divide the collected data into training
and validation sets and collect a test set from another
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FIGURE 1 Data splitting method during artificial intelligence (Al) development and validation. (a) External validation: Split the development

data into training data and validation data. External validation data was collected from the cohort independent of the development data (e.g.,
data from other institutions or data collected after Al development). (b) Split-sample validation. the collected data were randomly divided into
training, validation, and test sets. (c) Temporary validation. All data are divided into development and test data by period. Development data is
randomly divided into training and validation data. (d) Internal validation (hold-out method). All data is randomly divided into training and
validation data. (e) Internal validation (k-fold cross-validation). k-fold cross-validation divides the dataset into k groups. One group is used for
validation, while the others are used for training the model. This process is repeated k times, and the results are averaged. (f) Internal validation
(leave-one-out validation). A model is created by dividing one case of a cohort into a validation group and the others into a training group, and
after training validation, the same procedure is repeated so that all data are in the validation group, and the validation result of all cases is the

final result.

facility after developing the model (Figure 1a). If it is
difficult to collect a separate test set, another option is
to perform split-sample validation by randomly dividing
the collected data into three sets: training, validation,
and test (Figure 1b). However, this approach does not
strictly qualify as external validation but rather as inter-
nal validation. Therefore, employing a method called
temporal validation is preferable, in which the test set
is distinguished from the training and validation sets
by setting a specific time period (Figure 1c).242° Sub-
sequently, the validation methods (cross-validation or
holdout) should be confirmed during the internal valida-
tion phase (Figure 1d). Several types of cross-validation
methods exist, including leave-one-out and K-fold cross-
validation. K-fold cross-validation is a method in which
the entire dataset is divided into smaller chunks or folds
called K groups. One group is used as the validation set,
and the remaining groups are used as the training set to
build the model. This process is repeated K times, with
each group serving as the validation set. The results are
obtained by averaging the validation results from all the
iterations (Figure 1e). In leave-one-out, each data point
in the dataset is considered as the validation set once,
whereas the remaining data points are used for training.

This means that if there are ‘n’ data points, the model is
trained and validated ‘n’ times?*2° (Figure 1f).

Input value and models

The type of input values (image, clinical features, or a
combination of these) should be confirmed. Next, it is
necessary to determine whether the method is based on
DL or ML. In the case of ML, it is important to consider
the feature extraction methods, such as histograms or
texture analysis.242°

Data volume

The inclusion criteria for the target cases and the
method used for data splitting should be verified. DL
often requires more training data than ML (DL > 1000,
ML > 100).>2° To prevent data leakage (a phenomenon
where information from the training group seeps into the
validation/test groups, making it seem more accurate),
all data from the same cases should be in the same split
groups when the data are divided.
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Metrics

Subsequently, the evaluation metrics of the model
should be assessed. For classification tasks (such as
disease diagnosis), the accuracy, sensitivity, specificity,
and area under the curve from receiver operating
characteristic (ROC) analysis can be used. In this
case, describing the results using a confusion matrix
is desirable. Detection performance can be evaluated
for detection tasks using metrics such as intersection
over union (loU) or Dice score. Generally, success-
ful detection is defined as loU>0.52° The loU and
confidence scores are used to classify true positives
(correctly detected), false positives (misdetected), and
false negatives (detection failed). Unlike in classification
problems, true negatives (non-lesion part not detected)
cannot be theoretically calculated because there are
countless negative areas. Therefore, detection evalua-
tion metrics often include sensitivity (recall) or positive
predictive value (precision), area under the curve of
the precision-recall-curve, which is the average preci-
sion, and the mean average precision across classes.
Theoretically, specificity, negative predictive value, and
accuracy are not used (although calculations are some-
times performed by considering images without lesions
as negative samples).>2? Metrics such as the mean loU
across classes are used for the segmentation tasks.
Essentially, the metrics of the external validation group
are the primary endpoints of the report. In the case of
internal validation, the results of the validation group in
the holdout method and the results of all cases in the
cross-validation become the primary endpoints.

Al FOR EUS IMAGES

While referring to existing articles on Al in the field of
biliary and pancreatic medicine, the PubMed, Embase,
and Cochrane databases were systematically searched
for articles published from inception to March 31,
2023, by one author (Takamichi Kuwahara).20-27-29
The search terms used were as follows: (artificial
intelligence OR deep learning OR machine learning
OR radiomics) AND (endoscopic ultrasonography OR
endoscopic ultrasound OR EUS OR ERCP OR cholan-
gioscopy). The findings of these articles indicated that
Al for EUS has been developed for numerous purposes,
such as classifying and detecting pancreatic tumors,
pancreatic cysts, and submucosal tumors.

Detection of pancreatic tumors

One article on the Al detection of pancreatic tumors
from EUS images was reported by Tonozuka et al.
(Table 1).39 They developed an Al to detect pancreatic
tumors from EUS images using a fully convolutional net-
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FIGURE 2 Artificial intelligence image for differential diagnosis
of pancreatic masses. Endoscopic ultrasonography image (pseudo
papillary neoplasms) is used for the diagnosis of carcinoma by
artificial intelligence. The probability of one endoscopic
ultrasonography image is expressed in the upper left, and Al
diagnoses this lesion as non-carcinoma.

work based on a convolutional NN with EUS images
from 93 cases of pancreatic disease. When their accu-
racy was evaluated using 47 test data, they reported an
area under the ROC curve of 0.94.

Classification of pancreatic tumors

Twelve articles have been published on Al for classifying
pancreatic tumors from EUS images. (Table 1)'2:31-41
Saftiou et al. extracted features by performing a his-
togram analysis using EUS-elastography images of 258
pancreatic cancer or chronic pancreatitis cases and
created an Al using NN. They conducted 10-fold cross-
validation to evaluate its accuracy and reported an
accuracy of 0.843.37:38 Kuwahara et al. created an Al
for diagnosis using EfficientNetV2-L, one of the clas-
sification architectures of DL, with EUS images from
772 cases of multiple pancreatic diseases such as
pancreatic cancer, AIP, neuroendocrine tumors (NET),
solid-pseudopapillary neoplasm, and chronic pancreati-
tis. They evaluated its accuracy using 161 test data
and reported an accuracy of 0.91 (Figure 2).'? Marya
et al. created an Al using ResNet50v2, one of the clas-
sification architectures of DL, with EUS images from
460 cases of pancreatic diseases, such as pancreatic
cancer, AIP, and chronic pancreatitis. They evaluated its
accuracy using 123 test data and reported a sensitivity
of 0.9 and specificity of 0.85 (AIP vs. others).>

Naito et al. conducted a study in which they anno-
tated pathological images obtained from EUS-FNA
specimens of 372 cases of pancreatic cancer. They
used EfficientNet, another classification architecture of
DL, for a differential diagnosis of pancreatic cancer.
They evaluated the accuracy of the model using 120
external validation data and reported an accuracy of
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TABLE 1 Main characteristics of included studies about endoscopic ultrasonography-artificial intelligence (EUS-AI) for pancreatic tumors.
Authors Design Input Model Data Metrics
Pancreatic tumors

Tonozuka®® Detection (PDAC) Internal 3-split EUS images DL 93/47 AUROC 0.94

Zang®! Classification Internal LOO EUS images ML 216 Accuracy 0.979
(PDAC/normal) SVM

Das®? Classification Internal EUS features ML 56 AUROC 0.93
(PDAC/normal) SVM

Norton33 Classification Only train data EUS features ML 21 Accuracy 0.89
(PDAC/CP) SVM

Zhu® Classification Internal EUS features ML 398 Accuracy 0.942
(PDAC/CP) hold-out SVM

Saftiou®® Classification Internal 3-fold CE-EUS ML 167 Sensitivity 0.944
(PDAC/CP) CcVv NN

Ozkan3® Classification Internal EUS features ML 332/100 Accuracy 0.875
(PDAC/normal) hold-out NN

Saftiou’” Classification Internal 10-fold EUS-EG ML 69 Accuracy 0.897
(PDAC/CP) cVv NN

Saftiou3® Classification Internal 10-fold EUS-EG ML 258 Accuracy 0.843
(PDAC/CP) CV NN

Kuwahara'? Classification Temporary EUS images DL 772/161 Accuracy 0.91
(Carcinoma/
non-carcinoma)

Maraya®® Classification Internal 3-split EUS images DL 460/123 Sensitivity 0.90
(PDAC/AIP)

Naito*? Classification External EUS-FNB DL 372/120 Accuracy 0.941
(PDAC/normal) specimen

Ishikawa*' EUS-FNB Internal 8-fold EUS-FNB DL 159 Accuracy 0.844
specimen CVv specimen
quantity

Abbreviations: Al, artificial intelligence; AlP, autoimmune pancreatitis; AUROC, area under the receiver operating characteristic curve; CE-EUS, contrast enhanced-EUS;
CP chronic pancreatitis; CV, cross-validation; DL, deep learning; EUS, endoscopic ultrasonography; EUS-EG, EUS-elastography; EUS-FNB, EUS—guided fine needle
biopsy; LOO, leave-one-out; ML, machine learning; NN, neural networks; PDAC, pancreatic ductal carcinoma; SVM, support vector machines.

0.941.40 Ishikawa et al. created an Al model to evaluate
the quality of EUS-FNA specimens using macroscopic
images of 159 cases of pancreatic cancer. They used
ResNet34, one of the classification architectures of
DL, and evaluated the accuracy of the model using 8-
fold cross-validation, reporting an accuracy of 0.844 for
pathological diagnosis.*'

Classification of pancreatic cysts

Five articles on Al detection of pancreatic tumors
from EUS images have been reported (Table 2)#245
Kuwahara et al. created an Al to differentiate the benign-
malignant diagnosis of IPMN using ResNet50, another
classification architecture of DL, with EUS images from
50 cases of IPMN*? They conducted 10-fold cross-
validation to evaluate its accuracy and reported an
accuracy of 0.94. The diagnostic ability of the Al was
higher than the preoperative diagnostic ability of the
doctors (accuracy, 0.58) and the EUS image findings
(accuracy, 0.52-0.68; Figure 3). Kurita et al. created

Final diagnosis: malignant IPMN

FIGURE 3 Artificial intelligence image for differential diagnosis
of pancreatic cyst. Endoscopic ultrasonography image (intraductal
papillary mucinous neoplasms, IPMN) is used for the diagnosis of
malignancy by artificial intelligence. The probability of one
endoscopic ultrasonography image is expressed in the upper left,
and artificial intelligence diagnoses this lesion as malignant.

an Al to differentiate the benign-malignant diagnosis
of pancreatic cysts using an original DL algorithm
with two hidden layers, analysis of cyst fluid, cyst fluid
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TABLE 2

Authors

Pancreatic cysts

Design

Kuwahara*? Classification (IPMN Internal 10-fold
benign/ CVv
malignant)

Kurita*? Classification Internal 5-fold

(pancreatic cysts CcVv
benign/malignant)

Classification (IPMN Internal 5-fold
benign/ CV
malignant)

Machicado**

Classification Internal 3-fold
(MCN/SCN) CVvV

Pancreatic parenchyma

Nguon??

Zang?® Detection (pancreatic External
parenchyma)
Gallbladder lesions
Jang*® Classification External

(neoplastic/
non-neoplastic)

Subepithelial lesions

Kim*” Classification

(GIST/non-GIST)

Internal holdout

Minoda*® Classification External
(GIST/non-GIST)

Oh*? Classification Internal holdout
(GIST/leiomyoma)

Seven?? Classification External
(GIST/leiomyoma)

Hirai®" Classification (GIST/ Internal 3-split
leiomyoma/
schwannoma/NET/
ectopic pancreas)

Tanaka®? Classification Internal LOO
(GIST/leiomyoma)

Yang®? Classification External

(GIST/leiomyoma)

Main characteristics of included studies about endoscopic ultrasonography-artificial intelligence for other diseases.

Input Model Data Metrics
EUS images DL 50 Accuracy 0.94
EUS-FNA (cyst DL 85 Accuracy 0.93
fluid) Clinical
features
CLE images DL & Accuracy 0.85
EUS images DL 109 Accuracy 0.83
EUS images DL 294/20 Sensitivity 0.98
EUS images DL 1039/83 Accuracy 0.76
EUS images DL 179/69 Accuracy 0.79
EUS images DL 173/60 Accuracy 0.86
EUS images DL 168/54 Accuracy 0.92
EUS images DL 55/15 Accuracy 0.66
EUS images DL 509/122 Accuracy 0.86
CE-EUS DL 53 Accuracy 0.91
EUS images DL 702/24 Accuracy 0.66

Abbreviations: Al, artificial intelligence; CLE, confocal laser endoscopy; CV, cross-validation; DL, deep learning; EUS, endoscopic ultrasonography; EUS-EG, EUS-
elastography; EUS-FNA, EUS—guided fine needle aspiration; GIST, gastrointestinal stromal tumors; IPMN, intraductal papillary mucinous neoplasms; LOO, leave-one-
out; MCN, mucinous cystic neoplasms; ML, machine learning; NET, neuroendocrine tumors; NN, neural networks; PDAC, pancreatic ductal carcinoma; SCN: serious

cyst neoplasms; SVM, support vector machines.

cytology, clinical information, and blood test results from
85 cases of pancreatic cysts*® They conducted 5-fold
cross-validation to evaluate its accuracy and reported
an accuracy of 0.93. The accuracy of the Al was sig-
nificantly higher than that of carcinoembryonic antigen
in cystic fluid and cytology. Machicado et al. created
an Al to differentiate the benign-malignant diagnosis of
IPMN using VGG16 and a faster-R-convolutional NN,
one of the classification and segmentation architectures
of DL, with EUS-guided needle-based confocal laser
endomicroscopy images from 35 cases of IPMN. They
conducted 5-fold cross-validation to evaluate its accu-
racy and reported an accuracy of 0.85. The diagnostic

ability of the Al was higher than the high-risk features
according to guidelines (accuracy, 0.68—0.74).4*

Detection of pancreas parenchyma

Zang et al. created an Al to detect pancreatic
parenchyma using UNet++, a segmentation architec-
ture of DL, with 294 EUS images as input values. When
they evaluated its accuracy using 20 external validation
data, they reported a sensitivity (recall) of 0.984 and a
positive predictive value (precision) of 0.824 (Table 2).In
the same report, they also created an Al to differentiate
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FIGURE 4 Artificial intelligence image for differential diagnosis
of subepithelial lesion. Endoscopic ultrasonography (EUS) image
(gastrointestinal stromal tumors, GIST) is used for the differential
diagnosis of subepithelial lesions by artificial intelligence. The
probability of one EUS image is expressed in the upper left and
artificial intelligence diagnoses this lesion as GIST.

the current observation position by dividing the typical
observation positions of EUS into six and reported an
accuracy of 0.862.3"

Classification of gallbladder lesions

Jang et al. created an Al for differentiating neoplastic
from non-neoplastic gallbladder polyps using ResNet50,
one of the classification architectures of DL, with EUS
images as input values for 1039 cases (Table 2). The
accuracy of this model was evaluated using 83 sets of
external validation data and was found to be 0.7626

Classification of subepithelial lesions

Seven articles on Al classification of subepithelial
lesions (SELs) from EUS images have been published
(Table 2)47-53 Minoda et al. created an Al to differen-
tiate gastrointestinal stromal tumors from leiomyomas
using Xception, another classification architecture of DL,
with EUS images of 173 cases of SELs. They eval-
uated its accuracy using 60 test data and reported
an accuracy of 0.86 (for lesions <20 mm) and 0.9
(for lesions >20 mm). The diagnostic ability of the Al
was higher than that of experts and human doctors
(accuracy, 0.53-0.73).% Hirai et al. created an Al to diag-
nose multiclass SELs (gastrointestinal stromal tumors,
leiomyoma, schwannoma, NET, and ectopic pancreas)
using EfficientNetV2-L, one of the classification archi-
tectures of DL, with EUS images from 509 cases of
SELs. They evaluated its accuracy using 122 test data
and reported an accuracy of 0.86 (Figure 4). The diag-
nostic ability of the Al was higher than that of both expert
and non-expert human doctors (accuracy, 0.58)*°

= wiLey Lo
Al FOR ERCP

The Al for ERCP was developed for numerous pur-
poses, such as evaluating the difficulty of ERCP using
endoscopic images of the duodenal papilla and clas-
sifying the benign-malignant diagnosis of biliary struc-
tures using clinical features or cholangioscopy images
(Table 3).

Evaluation of the difficulty of ERCP

Two articles on Al evaluation of the difficulty of ERCP
have been published (Table 3).54%° Huang et al. devel-
oped an Al system using CasNet, a segmentation
architecture of DL trained on 1381 cholangiogram
images. This Al could detect common bile duct stones.
The researchers assessed its accuracy using 228 test
data and reported a sensitivity (precision) of 0.67 and
a positive predictive value of 0.8. By leveraging this Al,
they established a difficulty-scoring system for stone
removal (categorized as difficult or not difficult). They
validated the performance of their system using 173
data. The machine lithotripsy rate, treatment time, and
stone removal failure rate were significantly higher
in cases the Al identified as “difficult” than in those
predicted to be “not difficult.®*

Classification of benign-malignant
diagnosis of biliary structures

Sugimoto et al. created an Al to diagnose the malig-
nancy of biliary strictures using lightGBM, a classifica-
tion architecture of ML, based on clinical and imaging
features, such as bile duct diameter, from 206 cases
with biliary strictures. They conducted a 5-fold cross-
validation to evaluate its accuracy and reported an
accuracy of 0.86. (Table 3).°6 Marya et al. created an Al
to differentiate the benign-malignant diagnosis of biliary
strictures using ResNet50v2, one of the classifica-
tion architectures of DL, using cholangioscopy images
from 122 cases of biliary strictures. The researchers
assessed its accuracy using 32 test data and reported
an accuracy of 0.9°7 (Table 3).

LIMITATIONS AND FUTURE PERSPECTIVE
ON Al FOR EUS AND ERCP

In this review, we evaluated Al for EUS and ERCP
and found that it has been developed for numerous
purposes. A number of useful reports have been sporad-
ically observed; however, few studies have performed an
accurate external validation, resulting in a limited num-
ber of reports with high levels of evidence. There are
currently no approved biliary or pancreatic Al systems in
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TABLE 3 Main characteristics of included studies about artificial intelligence (Al) for endoscopic retrograde
cholangiopancreatography-related procedures.
Authors Design Input Model Data Metrics
ERCP difficulty evaluation
Huang® Detection (CBD, External Cholangiogram DL 1381/228 Sensitivity 0.67
stone)
Kim5% Detection (ampulla) Internal 5-fold CV Endoscopic images DL 451 mloU 0.64

Biliary strictures

Sugimoto®® Classification Internal 5-fold CV
(benign/malignant)
Marya®’ Classsification External

(benign/malignant)

Clinical features

CLE images DL

ML GBM 206 Accuracy 0.86

122/32 Accuracy 0.90

Abbreviations: Al, artificial intelligence; CBD, common bile duct; CLE, confocal laser endoscopy; CV, cross-validation; DL, deep learning; ERCP, endoscopic retrograde
cholangiopancreatography; GBM, gradient boosting machines; mloU, mean intersection over units; ML, machine learning.

Japan. The Als for EUS and ERCP are not as advanced
as that for plain endoscopy. One of the major reasons for
the development of Al algorithms for EUS and ERCP is
the availability of high-quality annotated data. Training
Al models require large datasets encompassing diverse
cases; however, EUS and ERCP datasets may be more
limited than endoscopy datasets. To overcome this limi-
tation, developing a nationwide system that collects and
utilizes EUS and ERCP images is necessary.

Al for EUS and ERCP has been developed only
for diagnostic imaging and detection. In recent years,
large-scale language models such as ChatGPT have
emerged, and the latest models can use images and
audio as input as well as output. Therefore, their regu-
lar application in the medical field is anticipated in the
future.

CONCLUSION

The current status, limitations, and future perspectives
of Al for EUS and ERCP were reported. The Al has
the potential to be a breakthrough in the diagnosis of
pancreatobiliary diseases where other modalities have
diagnostic limitations.
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