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Abstract: In recent years, the popularity of wearable devices has fostered the investigation of
automatic fall detection systems based on the analysis of the signals captured by transportable
inertial sensors. Due to the complexity and variety of human movements, the detection algorithms
that offer the best performance when discriminating falls from conventional Activities of Daily
Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard,
supervised machine learning binary classification methods have been massively employed by the
related literature. However, the learning phase of these algorithms requires mobility patterns caused
by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative
is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with
movement traces of a single type (ADLs). In this paper, a systematic study of the performance of
various typical OCCs (for diverse sets of input features and hyperparameters) is performed when
applied to nine public repositories of falls and ADLs. The results show the potentials of these
classifiers, which are capable of achieving performance metrics very similar to those of supervised
algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study
warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with
a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as
falls) if not considered in the data subsets used for training.

Keywords: fall detection system; inertial sensors; accelerometers; dataset; machine learning; one-
class classifiers

1. Introduction

According to the World Health Organization (WHO), a fall is defined as an involuntary
event that results in a person losing their balance and coming to lie unintentionally on the
ground or other lower level [1]. Despite the fact that the majority of falls are not fatal, it is
estimated that 646,000 fatal falls occur annually, which makes them the second worldwide
cause of death due to accidental injuries [1].

Fall-related health problems are particularly serious among older people as they are
strongly associated to loss of autonomy, impairment, and early death. In the world, about
28–35% of adults over 65 suffer one or more falls per year, while this percentage rises to
32–42% among those over 70 [2]. This situation poses a logistical and economic challenge
for national health systems, especially if we think that the share of population aged over 60
will double in 2050, reaching a figure of 2 billion people, compared to 900 million in 2015 [3].
This problem is aggravated as a significant proportion of older adults live alone, so that if
an accident occurs, a caregiver (a family member, medical or nursing staff, etc.) must be
alerted to provide help. In this context, the time that elapses between a fall and the moment
in which the person is assisted has been shown to determine the physical aftermaths of
the accident and even the probability of survival [4]. Consequently, the last decade has
witnessed an increasing interest in the development of affordable Fall Detection Systems
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(FDSs), which are able to permanently monitor patients and to trigger an automatic alarm
message to a remote agent as soon as the occurrence of a fall is presumed.

Existing FDSs can be categorized into two generic groups. Firstly, context-aware
systems are grounded on the deployment of cameras, microphones, and/or other envi-
ronmental sensors in the specific locations where the user must be monitored. On the
other hand, wearable-based systems utilize small transportable sensors that can be easily
integrated or attached to the users’ clothing or garments to measure different parameters
that describe their mobility.

When compared to context-aware solutions, the monitoring provided by wearable
architectures offers a more ubiquitous service as they are not restricted to the particular
area where the contextual sensors are installed. In addition, they are less privacy intrusive
than camera-based methods and more robust to the presence of external artifacts or the
alteration of the user’s setting. In addition, this type of FDS can benefit from the widespread
acceptability and decreasing costs of wearable devices (smartwatches, sport bands, etc.).

The fundamental purpose of automatic fall detectors is to achieve the most accurate
discernment between falls and other movements or Activities of Daily Living (ADLs),
by simultaneously minimizing the number of undetected falls and false alarms (ADLs
misjudged as falls). The efficiency of an FDS relies on the algorithm that makes the detection
decision after processing and analyzing the measurements that are constantly captured
by the wearable sensors (mainly, accelerometers, less frequently, gyroscopes, and in some
prototypes, magnetometers, barometers, or heart rate sensors).

Detection strategies can be roughly classified into two groups [5]: threshold-based and
machine learning methods. Threshold-based algorithms assume that a fall has occurred
when one or several parameters (derived from the sensor measurements) exceeds or drops
below a certain threshold limit. These algorithms are easy to implement and have a low
computational load, although they are too simplistic and rigid to correctly classify many
complex movements (especially those ADLs that involve an intense physical activity).
Contrariwise, algorithms based on machine learning models usually overperform the
thresholding schemes [6], as they have a greater potential to self-adapt to a wider typology
of ADLs and falls, by directly learning from a set of samples or movement traces and
without requiring the explicit and heuristic definition of a threshold value.

In most studies of the related literature, machine learning algorithms follow a fully
supervised approach, so they need to be trained with labeled examples of both ADLs
and falls. However, falls are rare events, and most studies on FDS are almost completely
determined by the lack of real-world fall examples. Owing to the evident difficulties of
capturing samples of actual falls experienced by the target public of these systems (older
adults), falls aimed at training and testing new proposals on FDSs have to be normally
generated in a testbed through the movements of young and healthy volunteers that
emulate falls on cushioned surfaces according to a systematic and predefined test plan.

The validity of this procedure is still under discussion. Some related studies [7,8] have
compared the dynamics of the falls experienced by older people and those ‘mimicked’ by
young subjects in an experimental environment. Authors concluded that although there
are similarities between the characteristics of both fall patterns, there also exist relevant
differences in the monitored magnitudes related to the reaction time and the mechanisms
of the compensatory movements to avoid falling or further damages. In this respect, Aziz
et al. showed in [9] that the effectiveness of some supervised learning algorithms may
dramatically decrease when they are evaluated in real scenarios.

To cope with this problem, one-class classifiers (OCCs) are a subtype of machine
learning architectures particularly adequate to develop binary pattern classifiers with
heavily unbalanced datasets [10]. OCCs bypass the need of obtaining laboratory samples
of the minority class (falls), as they are conceived to be exclusively trained with traces of
the most common class (ADLs). In this way, in the case of FDSs, once the training of the
system is accomplished, a fall is detected whenever a certain movement is classified as a
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‘anomaly’ (‘novelty’ or ‘outlier’). This occurs when its features substantially diverge from
the samples of the majority class used during the training phase.

In a real use scenario, FDSs will have most likely to be adjusted or ‘tuned’ to the
particular dynamics of the movements of the user to be monitored. In this vein, Medrano
et al. evinced in [11] the benefits of ‘personalizing’ the configuration of the FDS by training
the models with movements generated by the final user. Obviously, this process should
not oblige the patient to emulate or generate fall patterns to particularize the FDS. In this
regard, OCCs may greatly ease the implementation of this system personalization, as long
as any user could train from scratch a certain machine learning method just by wearing
the system during a certain training period in which the sensors could collect the traces
generated by the daily routines of the user and feed the detector.

The idea of utilizing OCCs as the decision core of an FDS is not new. Table 1 sum-
marizes the works that have assessed the performance of anomaly detectors when they
are programmed to detect falls with a wearable device. In some specific cases, the FDS
develops a ‘hybrid’ approach by combining an OCC and a thresholding method (such as
the proposal by Viet et al. in [12]) or an OCC and a fully supervised classifier (such as that
proposed by Lisowska et al. in [13]).

In all cases, the algorithms are primarily based on the analysis of the signals captured
by a triaxial accelerometer, which is a strategy that has been massively adopted by the
related literature on wearable FDSs. Only in six papers the information provided by
the accelerometer is complemented by the use of other inertial sensors (a gyroscope, a
magnetometer, or an orientation sensor), and in just two cases, a more complex sensor-
fusion policy is applied, so that the classifiers are also fed with signals captured by other
type of wearable sensing units (e.g., a heart rate monitor in the paper by Nho et al. [14]).

Table 1 indicates the best reported performing metrics (normally expressed in terms
of sensitivity or specificity) of the corresponding OCC in the review literature. When more
than one type of classifier is compared, the best performing algorithm in each study is
marked in bold in the third column of the table. The results show that in some works,
OCCs may achieve a noteworthy efficacy to discriminate ADLs from falls (with sensitivities
and specificities higher than 0.98 or 98%). Furthermore, in [15], Medrano et al. illustrate
that one-class classifiers may even exhibit a significantly better performance than their
supervised counterparts. However, as it can be also appreciated from the last column in the
table, all the works employ only one or at most two datasets to evaluate these algorithms.
In some studies, these datasets are not obtained from a public repository but directly
generated (and not released) by the authors. Due to the limited number of subjects and
types of ADLs and falls considered in these datasets, it is legitimate to question if these
results can be extrapolated to other repositories. Furthermore, the design criteria of these
benchmarking datasets do not follow any particular recommendation and strongly rely
on particular decisions of their creators. In a recent work [16], we have shown that even a
deep learning method may achieve very divergent results when it is applied to different
datasets. Thus, the good performance metrics obtained with a certain repository should be
confirmed by training and testing the classifier with other datasets.

Another key problem of OCCs that is normally neglected by the related literature
relates to the fact that these detectors may produce false alarms when tested with types
of ADLs that were not part of the training subset [17]. This situation would be not so
uncommon in a realistic scenario where the monitored user may execute unexpected
movements (not caused by falls) that can be consequently be catalogued as ‘anomalies’ by
the detector and trigger an undesired alerting message. Contrariwise, in the previous works
on OCC-based FDSs, the ADLs included in the data subsets used for testing incorporate the
same types of movements utilized for the configuration of the detector, which inherently
minimizes the possibility of experiencing these false alarms.
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Table 1. Works that have proposed and compared one-class classifiers to detect falls as anomalies.

Ref. and Authors Year Type of
Compared OCCs

Number of
Features

Employed
Sensors

Best Achieved
Performance

Employed Datasets
(Number of ADL/Falls)

Zhang et al.
[18,19] 2006 OC-SVM + KFD

+k-NN, OC-SVM 6 Acc Se = 0.9703
Sp = 0.9521

-Unpublished dataset
(676/418)

Yin et al. [20] 2 2008
OC-SVM +

KNLR, OC-SVM
+ MLLR, OC-SVM

n.i. Light, Temp.,
Mic., Acc., Mag.

AUC = 0.985
Se = 0.90
Sp = 0.93

-Unpublished dataset
(431/112 near falls)

Viet and Choi
[12] 2011 1-SVM 4 Acc, Ori, Se = 0.7699 -Unpublished dataset

(n.i./226)

Medrano et al.
[21] 2014

OC-KNN,
OC-SVM,

OC-KNN-sum,
Kmeans +
OC-KNN

51 Acc
AUC = 0.957

Se = 0.929
Sp = 0.890

-tFall [21] (9883/1026)

Khan et al.
[22,23]

2014
2017

XHMM, HMM,
OC-KNN,
OC-SVM

31 Acc, Gyr. Se = 0.893
Sp = 0.970

-DLR [24] (961/56)
-MobiFall [25] (342/288)

Lisowska et al.
[13] 2015 RNN, OC-SVM,

OC-KNN 21 Acc
Se = 0.858
Sp = 0.853

AUC = 0.915

-Unpublished dataset
(641/168)

Medrano et al.
[11] 2016 OC-KNN,

OC-SVM, LOF 153 Acc
AUC = 0.9809

Se = 0.9541
Sp = 0.9484

-tFall [21] (9883/1026)

Yang et al. [26] 1 2016 OC-SVM 38 Acc, Gyr. Se = 0.783
Accuracy = 0.852

-Unpublished dataset
(n.i./252 near falls)

Medrano et al.
[15] 2017 KDE 4 Acc Se = 0.986

Sp = 0.972 -tFall [21] (9883/1026)

Khan and Taati
[27] 2017

Ensemble of
AEs, OC-KNN,

OC-SVM
6 Acc, Gyr

√
Se·Sp = 0.959

-DLR [24] (961/56)
-Cogent Labs [28]

(1520/448)

Micucci et al. [29] 2017 OC-KNN,
OC-SVM 12, 51, 384 Acc.

AUC = 0.997
Se = 0.996
Sp = 0.993

-tFall [21] (9883/1026)
-HAR database [30]

(360/0)

Lisowska et al.
[31] 2018 RNN, OC-SVM,

OC-KNN 21 Acc AUC = 0.950
-Unpublished dataset

(641/168)
-tFall [21] (9883/1026)

Chen et al. [32] 2019
Ensemble of AEs

+ OCCCH,
OCCCH,
OC-SVM

3 windows of 500
samples Acc. Se = 0.9913,

Sp = 0.9625
-Unpublished dataset

(288/234)

Nho et al. [14] 2020 GMM 22 Acc, HR Se = 0.9309,
Sp = 0.8958

-Unpublished dataset
(273/126)

1 The system is actually designed to detect “near-miss falls” (not falls). 2 The system is actually designed to generically detect abnormal
activities (not only falls). n.i. Not indicated by the authors in the article. Acronyms for the OCCs: AE (Autoencoder), GMM( Gaussian
Mixture Model), HMM (Hidden Markov Model), KDE (Kernel Density Estimation), KFD (Kernel Fisher Discriminant), Kmeans (K-means
clustering), KNLR: Kernel Non-Linear Regression, LOF (Local Outlier Factor), MLLR (Maximum Likelihood Linear Regression), OC-KNN
(One-Class K-Nearest Neighbors), OC-KNN-sum (One-Class K-Nearest Neighbors with sum of the distances), OC-SVM (One-Class Support
Vector Machines), OCCCH (One-Class Classification based on the Convex Hull), RNN (Replicator Neural Network), XHMM (X-Factor’
Hidden Markov Model). Acronyms for the employed sensors: Acc. (Accelerometer), Gyr. (Gyroscope), HR (Heart Rate monitor), Mag.
(Magnetometer), Mic. (Microphone), Ori. (Orientation angle sensor: pitch and roll), Temp. (Temperature). Acronyms for the metrics: AUC
(Area Under the Curve), Se (Sensitivity), SP (Specificity).

In this paper, we thoroughly analyze these two issues. To this end, we systematically
analyze the behavior of five basic types of anomaly detectors (with diverse hyperparameter
configurations and input feature sets) when they are employed with nine different well-
known datasets captured on the same body positions (the waist). We also investigate if the
classification efficacy degrades when new of types of ADLs (not considered for training)
are used for testing.

The paper is organized as follows: after the introduction and analysis of the related
works presented in this section, Section 2 describes the different aspects of the methodology
followed to evaluate the classifiers. Section 3 displays and discussed the main results
for the considered study cases. Finally, Section 4 recapitulates the main conclusions of
the article.
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2. Methods
2.1. Election of the Datasets

To date, there have been released about 25 available datasets to benchmark detection
algorithms for transportable FDSs (see [33] for a comprehensive review on this topic).
These databases are formed by a set of numerical traces describing the signals captured
by inertial sensors placed on one or several locations of the body. To the best of our
knowledge, just one released dataset, provided by the FARSEEING project [34], publicly
offers a very limited and unrepresentative number of traces captured from actual falls
of older adults. In the other cases, the repositories are generated by recruiting a group
of volunteers that systematically execute or emulate a series of predetermined ADLs or
falls while transporting the corresponding sensor or sensors. For each movement, a trace
(labeled as ADL or fall) is created.

Several studies [35–39] have shown that FDSs located on the waist outperform those
placed on other body positions with a higher and independent mobility (e.g., a limb) as
long as the waist is adjacent to the center of gravity of the human body. Therefore, in
order to set up a common reference framework under optimal conditions, we limit our
analysis to those 15 repositories that offer inertial data measured at the waist (although
some of them also contain measurements captured on other body positions). For the study,
we also discard those datasets that do not provide a significant number of samples (less
than 400) or those that were collected with an accelerometer range of 2 g, which is too
small to properly characterize the abrupt acceleration peaks caused by falls. After applying
these criteria, we selected the 9 datasets (DLR, DOFDA, Erciyes, FallAllD, IMUFD, KFall,
SisFall, UMAFall, and UP-Fall) described in Table 2. This quantity is clearly superior to the
number of benchmarking repositories that are typically considered by the related literature
to assess the performance of fall detection algorithms (in fact, as confirmed in Table 1, most
proposals are validated against a single dataset). This need of evaluating the classifiers
with different repositories is critical if we consider the remarkable heterogeneity [33,40]
that exists among the available datasets in terms of the typology of the emulated ADLs
and falls, strategies to generate the movements, duration of the traces, environment for the
testbed, election of the volunteers, etc.

Table 2. Basic data of the employed datasets.

Dataset
Number of

Subjects
(Females/Males)

Number of
Types of

ADLs/Falls

Number
of Samples

(ADLs/Falls)
Duration of the

Samples (s)

Captured
Signals in Each
Sensing Point 1

Number and
Positions of the
Sensing Points

Sampling Rate
(Hz)

DLR [24] 19 (8/11) 15/1 1017 (961/56) [0.27–864.33] 3 (A, G, M) 1: Waist (belt) 100

DOFDA [41] 8 (2/6) 5/13 432 (120/312) 1.96–17.262 4 (A, G, O, M) Waist 33

Erciyes Univ.
[42] 17 (7/10) 16/20 3302 (1476/1826) [8.36–37.76] 1 (A)

6: Chest, Head,
Ankle, Thigh,
Wrist, Waist

25

FallAllD [43] 15 (7/8) 44/35 6605
(4883/1722)3 20 4 (A, G, M, B)

3: Waist, Wrist,
Chest (lanyard

around the neck)

238 (A, G)
80 (M)
10 (B)

IMUFD [6] 10 (n.i.) 8/7 600 (390/210) [15–20.01] 3 (A, G, M)

7: Chest, Head,
Left ankle, Left

thigh, Right
ankle, Right
thigh, Waist

128

KFall [44] 32 (0/32) 21/15 5075 (2729/2346) [2.03–40.86] A, G, O 1: Waist (Low
back) 100

SisFall [45] 38 (19/19) 19/15 4505 (2707/1798) [9.99–179.99] s 3 (A, A, G) Waist 200

UMAFall [46] 19 (8/11) 12/3 746 (538/208) 15 s (all samples) 3 (A, G, M)
5: Ankle, Chest,

Thigh, Waist,
Wrist

100 (Thigh)
20 (Rest)

UP-Fall [47] 17 (8/9) 6/5 559 (304/255) [9.409–59.979] 2 (A, G)
5: Ankle, Neck,
Thigh (pocket),

Waist, Wrist
Around
18 Hz

1 A: Accelerometer, G: Gyroscope, M: Magnetometer, O: Orientation sensor.
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2.2. Compared One-Class Classifying Algorithms

As aforementioned, one-class classifiers constitute a particularization of binary super-
vised classification systems, in which the detection algorithms are trained only with data
of one class. After the classifier is trained on these one-class traces, data corresponding to a
category different from that used during training can be detected as anomalies. Therefore,
once the model of an OCC is developed, input patterns can be identified as anomalies when
a certain parameter derived from the input signals (e.g., a distance) exceeds a predefined
decision threshold.

In the case of FDSs, the concept of an anomaly fits well with that of a fall, which can
be envisaged as an unexpected movement that presents atypical characteristics with regard
to those of the common or majority class (ADLs). Thus, in our evaluation, the classifiers
are trained exclusively with part of the ADL samples included in the datasets while they
are tested with both the falls and the rest of the ADLs (those not employed during the
training stage).

In order to thoroughly evaluate the feasibility of using an OCC as the core of FDSs,
we analyze the performance of five well-known one-class classifiers [10]: an autoencoder,
a Gaussian Mixture Model (GMM), a Parzen Probabilistic Neural Network (PPNN), a
One-Class K-Nearest Neighbor (OC-KNN), and One-Class Support Vector Machine (OC-
SVM). All the classifiers were implemented and executed with Matlab scripts that used
the Statistics and Machine Learning Toolbox [48]. Table 3 summarizes the values and
possible considered alternatives to hyper-parameterize these classifiers. Through a grid
search, we evaluated the performance of the algorithms for the different combinations of
these hyperparameters.

Table 3. Values and alternatives of the hyperparameters utilized for the evaluated models of the classifiers.

One-Class Classifier Hyperparameter Value/Alternatives

Autoencoder

Number of hidden neurons 6, 10, 12, 15

Encoder/decoder transfer function
Logistic Sigmoid

f (z) = 1
1+e−z

Number of epochs 1000

Loss function Mean squared error plus L2&sparsity
regularization

Sparsity regularization coefficient 1
L2 weight regularization coefficient 0.001

Gaussian Mixture Model (GMM) Type of covariance matrix Diagonal
Number of components 3, 5 and 7

Parzen Probabilistic Neural Networks
(PPNN) Window function f (x) = ex−1

One-Class K-Nearest Neighbors
(OC-KNN)

Distance function Euclidean, Minkowski, Chebychev, Cosine
Number of neighbors 5, 10, 50

One-Class Support Vector Machine
(OC-SVM) Kernel functions Linear, cubic, quadratic, medium gaussian

As the decision threshold to detect the anomaly for each OCC, we employ the variable
described in Table 4.

Table 4. Decision thresholds employed to detect anomalies for the five considered OCCs.

OCC Description of the threshold

Autoencoder MSE (Mean Square Error) between input and output

GMM Negative log-likelihood of the Gaussian mixture model given the data input

PPNN Score indicating the likelihood that a label comes from the training class

OC-KNN Distance between the observation and the k closest neighbor

OC-SVM Score indicating the likelihood that a label comes from the training class
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2.3. Feature Selection

In order to characterize the mobility samples and feed the machine learning classi-
fiers, we compute a set of features derived from the raw signals collected by the inertial
sensors. As all the repositories include the data captured by an accelerometer, which is the
most employed sensor in the literature on wearable FDSs, the features are derived from
the triaxial acceleration measurements. Falls provoke sudden peaks of the acceleration
magnitude when the body hits the ground. This Signal Magnitude Vector (SMVi), for the
i-th measurement, is computed as:

SMVi =
√

A2
xi
+ A2

yi
+ A2

zi
(1)

where Axi , Ayi , and Azi indicate the values of triaxial components of the acceleration for
each axis. For every movement trace (ADL or fall), the feature extraction exclusively
focuses on a time interval of ±1 s around the sample where the maximum value of SMVi
is identified, while the rest of the measurements in the sequence are not considered. The
election of the duration of this observation window of 2 s (centered around the acceleration
peak) is justified by the fact that an interval between 1 and 2 s is a good trade-off between
recognition speed and accuracy to recognize most human activities [49]. In any case,
the duration of the critical (impact) phase of a fall does not typically last longer than
0.5 s [50,51]. Thus, all the features will be derived from the consecutive acceleration
components collected in the interval: [io − NW , io + NW ] where io is the index of the sample
in which the maximum acceleration module is located:

SMVio = max(SMVi) ∀i ∈ [1, N − NW + 1]) (2)

where N denotes the number of measurements of in the trace (for each axis), while NW
describes the number of samples captured during the observation window. NW can be
straightforwardly calculated as:

NW = fs · tw (3)

where fs is the sampling rate of the trace and tw is the total duration of the window (2 s).
As a proper selection of the input features is a crucial factor in the design of any

machine learning method, we consider different alternative candidate feature sets.
Firstly, we employ a set of twelve statistical candidate features that are physically

interpretable as they entail a certain characterization of human dynamics. These features
have been utilized by other works in the related literature on fall detection and activity
recognition systems (refer, for example, to the comprehensive studies presented by Vallabh
in [52] or by Xi in [53]). The symbol, labels (or labeling identifiers) and description of
these twelve features are presented in Table 5 (a more detailed formal description of these
parameters is provided in [33]).

In order to select the most convenient combination of input features from these 12
candidate statistics, we performed a preliminary analysis of the effectiveness of these
statistics when they are applied to the aforementioned datasets to discriminate falls and
ADLs with the classifiers. For all the studies, all the features were z-score normalized before
training and testing. After implementing all the possible permutations of the statistics
to feed the detectors, obtained results (not presented here for the sake of simplicity)
revealed that the two combinations that yielded the best performance metric (sensitivity
and specificity) in the classifiers were those using the seven features labeled as B, C, D, F, G,
I, and K in Table 4 (‘BCDFGIK’ feature set) as well as the set that employed the 12 candidate
features (‘ABCDEFGHIJKL’ feature set).
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Table 5. Values and alternatives of statistics analyzed to select the input feature set of the classifiers.

ID Symbol Description

A µSMV The mean Signal Magnitude Vector (SMV)

B Aωdi f f (max) Magnitude of the maximum variation of the acceleration components

C σSMV The standard deviation of SMV

D µθ The mean rotation angle

E µSMV(di f f )
The mean absolute difference between two

consecutive samples of the acceleration module

F µAp Mean of the acceleration components that are parallel to the floor plane

G SMVMax The peak or maximum of the SMV to describe the violence of the impact against the floor

H SMVMin The “valley” or minimum of the SMV to characterize the phase of free-fall

I γSMV The skewness of SMV, which describes the symmetry of the distribution of the acceleration

J SMA The Signal Magnitude Area

K E Sum of the energy estimated in the three axes during the observation interval

L µR Mean of the autocorrelation function of the acceleration magnitude captured during the observation interval

As the election of these input feature sets can still seem arbitrary, we also consider
another set of features obtained from the hctsa (Highly Comparative Time-Series Analysis)
Matlab software package [54]. This software is capable of extracting thousands of het-
erogeneous features from a time-series dataset to produce an optimized low-dimensional
representation of the data.

In our case, a set (HCTSA feature set) of 12 features has been selected according to the
following procedure:

• The SisFall [31] repository is selected as the baseline reference as it is considered one
of the most complete in terms of types and quantity of movements and number and
typology of subjects.

• The candidate features of the samples are obtained by using HCTSA.
• The performance resulting from the classification of the data is calculated by using

each characteristic as input of a Support Vector Machine classifier with linear kernel
and a k-fold analysis (with k = 10).

• The tool analyzed the correlation between the features that have led to the best
results. Then, the application was programmed to divide these features into 12
different clusters, grouping those that are correlated into the same cluster. From each
cluster, hctsa selected the most representative feature (the one closest to the center of
the cluster).

2.4. Performance Metrics and Model Evaluation

For each combination of the hyperparameters, input feature set, and dataset, we
trained an instance of the five contemplated OCCs with a certain number of ADLs and
tested it with both ADLs and falls of the same repository. To assess the capability of the
one-class classifiers to discriminate both categories, we employed two metrics universally
employed in the evaluation of binary classifiers: the sensitivity (Se) or recall, which is
defined as the ratio of falls in the test subset that are properly recognized, and specificity
(Sp), which is defined as the proportion of test ADLs that are not misidentified as falls.
Unlike other metrics (such as the accuracy or F1 score), sensitivity and specificity are not
affected if the data classes are unbalanced in the datasets. Once the model is trained,
the classifier is tested with 2500 possible values of the detection threshold (between a
minimum and maximum that respectively guarantee the maximization of the sensitivity
and specificity). Through the estimation of Se and Sp for each value of the discrimination
threshold, we compute the receiver operating characteristic curve (ROC curve), which
represents the evolution of Se (true positive rate) against 1-Sp (false positive rate). From the
curve, we graphically calculate the AUC (Area Under the Curve) as a metric commonly
used to characterize the overall performance of the binary classifiers. Additionally, as
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another global performance metric of the system, which describes the trade-off between an
adequate recognition rate of falls (high sensitivity) and the absence of false alarms (high
specificity), we also utilize the geometric mean of Se and Sp (

√
Se·Sp) (together with the

values of Se and Sp) in the point of the ROC where the maximum of this statistic is found.
The election of this optimal cut-point in the ROC to select the corresponding decision
threshold has been also proposed in works such as [55].

In order to minimize the impact of the election of the data used for training and testing
the models, we evaluated the classifiers by means of a k-fold cross-validation [56,57]. For
that purpose, the ADL traces of all datasets were split in five partitions (k = 5). Thus, for
each combination of OCC, hyperparameters, input feature set, and dataset, the classifier is
independently trained and tested five times. For each iteration, one of the five different
partitions is reserved for the testing phase, while the rest of the ADLs and all the falls in the
corresponding database are used to test the model. The performance metrics obtained with
the test datasets for the five iterations (AUC, Se, and Sp for the threshold value that yields
the highest value of

√
Se·Sp) are averaged to characterize the performance of the classifier.

3. Results and Discussion
3.1. Study for the ‘Fair’ Case

As previously commented and indicated in Table 2, the datasets were generated by
considering different predetermined types of ADLs and falls, which were executed by
the experimental subjects. In our first analysis, we investigate the performance of the
OCCs when the different typologies of ADLs are evenly (‘fairly’) distributed among the
five subsets for five-fold cross-validation. Thus, we guarantee that all the types of ADL
movements are represented in the subsets with which the anomaly detectors are trained.

The performance metrics obtained for the five algorithms and the nine datasets are
presented in Table 6. Due to the high number of combinations that were evaluated, for each
dataset and each type of OCC, the table only shows the combination of hyperparameters
and input feature set (also indicated in the table) with which the highest value of the
geometric mean of sensitivity and specificity (

√
Se·Sp) was achieved. For each dataset,

the row corresponding to the classifier with the best global metric is highlighted in bold.
Aiming at giving an insight of the confidence interval of the measurements, together with
the mean value of the global metric

√
Se·Sp, the table also includes in the last column

(preceded by the sign ±) the standard deviation of this parameter obtained for the five
tests of the corresponding k-fold validation of the classifier. To ease the visualization
of the comparison of the algorithms, the particular results of the AUC and

√
Se·Sp are

summarized in Tables 7 and 8, respectively. The highest values are also emphasized in bold.
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Table 6. Performance metrics (AUC, Se, Sp, and
√

Se·Sp) for the best combination of hyperparameters of the classifiers when they are applied to the datasets under study.

Dataset Features OCC Kernel/Distance

Neighbors/
Hidden

Neurons/
Components

AUC Se Sp
√

Se·Sp
(µ ± σ)

DLR

BCDFGIK Autoencoder Logistic sigmoid 10 0.8976 0.9333 0.8748 0.9007 ± 0.0739
HCTSA GMM Diagonal 7 0.9483 1.0000 0.8784 0.9371 ± 0.0204
HCTSA OC-KNN Cosine 50 0.9460 0.9333 0.9298 0.9286 ± 0.0760

ABCDEFGHIJKL PPNN - - 0.5564 0.6667 0.5826 0.6165 ± 0.1283
HCTSA OC-SVM Medium Gaussian - 0.9068 0.9333 0.8481 0.8864 ± 0.0696

DOFDA

BCDFGIK Autoencoder Logistic sigmoid 12 0.9704 0.9638 0.9833 0.9733 ± 0.0201
BCDFGIK GMM Diagonal 5 0.9762 0.9835 0.9833 0.9833 ± 0.0198
BCDFGIK OC-KNN Euclidean 5 0.9727 0.9604 0.9833 0.9716 ± 0.0247
BCDFGIK PPNN - - 0.9934 0.9506 1.0000 0.9749 ± 0.0122
HCTSA OC-SVM Linear - 0.9775 0.9803 1.0000 0.9901 ± 0.0930

Erciyes

ABCDEFGHIJKL Autoencoder Logistic sigmoid 15 0.9795 0.9544 0.9436 0.9488 ± 0.0091
BCDFGIK GMM Diagonal 3 0.9857 0.9648 0.9436 0.9541 ± 0.0106
BCDFGIK OC-KNN Cosine 5 0.9951 0.9846 0.9782 0.9814 ± 0.0028

ABCDEFGHIJKL PPNN - - 0.9898 0.9616 0.9640 0.9627 ± 0.0061
ABCDEFGHIJKL OC-SVM Cubic - 0.9867 0.9654 0.9837 0.9745 ± 0.0042

FallAllD

BCDFGIK Autoencoder Logistic sigmoid 6 0.9070 0.8753 0.8159 0.8449 ± 0.0161
BCDFGIK GMM Diagonal 7 0.9359 0.8581 0.8649 0.8613 ± 0.0149
BCDFGIK OC-KNN Cosine 10 0.9649 0.9290 0.9062 0.9175 ± 0.0162

ABCDEFGHIJKL PPNN - - 0.8281 0.7699 0.7897 0.7793 ± 0.0196
BCDFGIK OC-SVM Linear - 0.9552 0.8903 0.9164 0.9029 ± 0.0227

IMUFD

ABCDEFGHIJKL Autoencoder Logistic sigmoid 15 0.9111 0.8238 0.8610 0.8419 ± 0.0269
BCDFGIK GMM Diagonal 3 0.9491 0.8991 0.9159 0.9069 ± 0.0294
BCDFGIK OC-KNN Cosine 5 0.9710 0.9712 0.9212 0.9458 ± 0.0184
BCDFGIK PPNN - - 0.9269 0.8227 0.9028 0.8608 ± 0.0294
BCDFGIK OC-SVM Linear - 0.9745 0.9668 0.9135 0.9393 ± 0.0109
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Table 6. Cont.

Dataset Features OCC Kernel/Distance
Neighbors/

Hidden Neurons/
Components

AUC Se Sp
√

Se·Sp
(µ ± σ)

KFall

ABCDEFGHIJKL Autoencoder Logistic sigmoid 12 0.9931 0.9727 0.9699 0.9713 ± 0.0059
BCDFGIK GMM Diagonal 7 0.9875 0.9697 0.9506 0.9601 ± 0.0063
BCDFGIK OC-KNN Minkowski 5 0.9976 0.9893 0.9895 0.9894 ± 0.0026

HCTSA PPNN - - 0.9906 0.9607 0.9450 0.9528 ± 0.0077
ABCDEFGHIJKL OC-SVM Linear - 0.9940 0.9705 0.9672 0.9688 ± 0.0098

SisFall

BCDFGIK Autoencoder Logistic sigmoid 6 0.9611 0.9304 0.8948 0.9124 ± 0.0054
BCDFGIK GMM Diagonal 7 0.9483 0.9221 0.8418 0.8808 ± 0.0135
BCDFGIK OC-KNN Cosine 5 0.9895 0.9521 0.9634 0.9578 ± 0.0061
HCTSA PPNN - - 0.9898 0.9638 0.9575 0.9606 ± 0.0045
HCTSA OC-SVM Linear - 0.9932 0.9583 0.9567 0.9575 ± 0.0073

UMAFall

BCDFGIK Autoencoder Logistic sigmoid 15 0.9802 0.9946 0.9416 0.9677 ± 0.0123
BCDFGIK GMM Diagonal 5 0.9769 0.9629 0.9086 0.9353 ± 0.0164
BCDFGIK OC-KNN Cosine 10 0.9881 0.9895 0.9670 0.9781 ± 0.0109

HCTSA PPNN - - 0.9710 0.9095 0.9593 0.9337 ± 0.0119
BCDFGIK OC-SVM Cubic - 0.9924 0.9895 0.9670 0.9781 ± 0.0144

UP-Fall

BCDFGIK Autoencoder Logistic sigmoid 6 0.9674 1.0000 0.9249 0.9616 ± 0.0152
BCDFGIK GMM Diagonal 3 0.9680 0.9755 0.9052 0.9394 ± 0.0300
BCDFGIK OC-KNN Cosine 10 0.9888 0.9918 0.9685 0.9800 ± 0.0070

ABCDEFGHIJKL PPNN - - 0.9709 0.9837 0.9605 0.9720 ± 0.0248
BCDFGIK OC-SVM Cubic - 0.9912 0.9918 0.9842 0.9880 ± 0.0110
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Table 7. Obtained AUC (Area Under the Curve) of the ROC for the best combination of hyperparameters of the classifiers.

Dataset

Classifier DLR DOFDA Erciyes FallAllD IMUFD KFall SisFall UMAFall UP-Fall

Autoencoder 0.8976 0.9704 0.9795 0.9070 0.9111 0.9931 0.9611 0.9802 0.9674

GMM 0.9483 0.9762 0.9857 0.9359 0.9491 0.9875 0.9483 0.9769 0.9680

OC-KNN 0.9460 0.9727 0.9951 0.9649 0.9710 0.9976 0.9895 0.9881 0.9888

PPNN 0.5564 0.9934 0.9898 0.8281 0.9269 0.9906 0.9898 0.9710 0.9709

OC-SVM 0.9068 0.9775 0.9867 0.9552 0.9745 0.9940 0.9932 0.9924 0.9912

Table 8. Maximum obtained geometric mean of sensitivity and specificity (
√

Se·Sp ) for the best combination of hyperpa-
rameters of the classifiers.

Dataset

Classifier DLR DOFDA Erciyes FallAllD IMUFD KFall SisFall UMAFall UP-Fall

Autoencoder 0.9007 0.9733 0.9488 0.8449 0.8449 0.9713 0.9124 0.9677 0.9616

GMM 0.9371 0.9833 0.9541 0.8613 0.9069 0.9601 0.8808 0.9353 0.9394

OC-KNN 0.9286 0.9716 0.9814 0.9175 0.9458 0.9894 0.9578 0.9781 0.9800

PPNN 0.6165 0.9749 0.9627 0.7793 0.8608 0.9528 0.9606 0.9337 0.9720

OC-SVM 0.8864 0.9901 0.9745 0.9029 0.9393 0.9688 0.9575 0.9781 0.9880

From the results, we can draw the following conclusions:

• The best results are achieved by the OC-KNN classifier, which outperforms the rest
of the detection methods for five out of the nine analyzed datasets (in terms of the
geometric mean of sensitivity and specificity), while it presents the second or third
best results for the other three datasets.

• The one-class SVM detector produces the best results for three datasets, while it
offers the second-best behavior for five repositories. In any case, if we take into
account the confidence interval that can be derived from the measurements, we
can conclude that the differences in the behavior of OC-KNN and OC-SVM are not
statistically significant.

• In most cases, the best performance is attained with the simplest input feature set
(with the seven features labeled as BCDFGIK and described in Table 5): This suggests
that if the features are conveniently selected, a parsimonious OCC architecture can be
sufficient to produce efficient detection decisions.

• GMM, autoencoder and, specially, PPNN classifiers offer a more variable and erratic
behavior as the quality of the classification strongly depends on the employed datasets.
In several databases, the best achieved geometric mean of sensitivity and specificity is
under 0.90.

• For all the datasets, the OC-KNN classifier yields at least a specificity and a sensitivity
of 0.9. In most cases, these metrics are both higher than 0.95. These results are in line
with most of the supervised (double-class) methods of machine learning that can be
found in the related literature (see, for example, the surveys presented in [58–63]).
This implies that if the decision threshold is properly chosen, an OCC can behave as a
two-class classifier without requiring training the detector with falls. In a realistic use
scenario, the final user of the detector e.g., an older adult) could be monitored during
his/her daily routines to generate a dataset of ADLs. This dataset could be used to
train and personalize an FDS based on an OCC.

3.2. Study of the Benefits of Ensemble Learning

Ensemble methods offer a simple and efficient paradigm to boost the prediction
capability of single machine learning methods basing on the combined decision of multiple
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models [64]. In this subsection, we assess if the aggregate knowledge reached by the
models evaluated in the previous analysis can improve the individual performance of the
classifiers. In particular, we re-calculate the detection decision when a simplistic majority
voting of three classifiers is applied (a similar performance is achieved if a higher number
of models is considered). In this case, for each dataset, we use as base learners the three
combinations of hyperparameters, input feature sets, and OCCs with which the three
highest global performance metrics (geometric mean of Se and Sp) were obtained. Thus,
during the testing phase, a trace is identified as a fall if a majority of the decision classifiers
(two or three) classify the movement as a fall.

The obtained results are presented in Table 9. For comparison purposes, the table also
indicates the best results (extracted from Table 6) corresponding to the best discrimination
ratio achieved by a single OCC. In the table, the metrics of the ensemble classifier are
marked in bold when they improve those generated by the single learner. Conversely,
the results are highlighted in italics when the majority voting underperforms the best
single model.

Table 9. Comparison of the performance metrics of the majority voting ensemble and those of the best single OCC.

Dataset Algorithm Se Sp
√

Se·Sp

DLR
GMM (Diagonal. 7 components) 1.0000 0.8784 0.9371
Majority Voting Ensemble 0.9333 0.9146 0.9215

DOFDA
OC-SVM (Linear kernel) 0.9803 1.0000 0.9901
Majority Voting Ensemble 0.9803 1.0000 0.9901

Erciyes OC-KNN (Cosine distance. 5 neighbors) 0.9846 0.9782 0.9814
Majority Voting Ensemble 0.9852 0.9776 0.9814

FallAllD
OC-KNN (Cosine distance. 10 neighbors) 0.9290 0.9062 0.9175
Majority Voting Ensemble 0.9269 0.9223 0.9245

IMUFD
OC-KNN (Cosine distance. 5 neighbors) 0.9712 0.9212 0.9458
Majority Voting Ensemble 0.9763 0.9342 0.9550

KFall
OC-KNN (Minkowski distance. 5 neighbors) 0.9893 0.9895 0.9894
Majority Voting Ensemble 0.9987 0.9985 0.9986

SisFall
OC-KNN (Cosine distance. 5 neighbors) 0.9638 0.9575 0.9606
Majority Voting Ensemble 0.9638 0.9627 0.9632

UMAFall
OC-KNN (Cosine distance. 10 neighbors) 0.9895 0.9670 0.9781
Majority Voting Ensemble 0.9895 0.9771 0.9832

UP-Fall
OC-SVM (Cubic kernel) 0.9918 0.9842 0.9880
Majority Voting Ensemble 0.9959 0.9841 0.9899

As it can be observed, the use of the ensemble improves the global performance metric
in six out of the nine analyzed datasets (in several cases, a value of

√
Se·Sp close to 0.99

is attained), while with just one repository (DLR), the application of the voting technique
reduces the effectiveness of the binary classification process.

3.3. Impact of the Typology of ADLs Employed in the Training Phase

As mentioned above, OCCs avoid the need of obtaining (or generating) traces de-
scribing real or emulated falls that are required to train supervised learning algorithms.
In contrast, the use of one-class classifiers can present difficulties related to a lower speci-
ficity of the system due to the appearance of a greater number of false alarms or false
positives, which is caused by ADLs not contemplated in the training dataset and identified
as anomalies.

To determine the extent of this problem, we repeat the previous study of Section 3.1
when a certain typology of ADLs is removed from the training set and included in the
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testing subset. For this purpose, as already suggested in our previous studies in [33,40],
the ADL movements of all the repositories have been split into three categories, which are
displayed in Table 10, depending on the physical effort that they required to perform.

Table 10. Categorization criteria to divide the ADL movements into different types.

ADL Category Description Examples

Basic movements Simple movements of low intensity
Getting up of a bed or chair, sitting down,
lying, turning over while lying down,
standing, clapping hands, etc.

Standard movements
Routines of daily life that require
intermediate physical effort or a certain
degree of mobility

Walking at a normal pace, climbing
up/down stairs, squatting, picking up an
object from the floor, etc.

Sporting movements
Activities that require a higher physical
effort and brusque and/or repetitive
movements

Running, jogging, hopping, walking fast,
etc.

For each dataset (except for the DOFDA repository, which does not include sufficient
traces of two categories), we generated three subsets of ADLs containing the traces of the
corresponding categories. The best combination of hyperparameters and input feature
set of each type of OCC obtained in Section 3.1 is trained and tested three times. In each
experiment, each model is exclusively trained with the subsets of two categories and
then tested with the falls and ADLs of the remaining category using the optimal decision
threshold computed for the ‘fair’ case.

The results for all the analyzed datasets and the best performing OCC of each type are
shown in Tables 11–13 for the cases in which the training sets do not include basic, standard,
and sporting activities, respectively. The last column of each table (‘Loss’) indicates the
difference between the global performance metric obtained with this segregation of the
training and test subsets based on the categorization of the ADLs and the performance
metric achieved with the ‘fair’ case (Table 6) in which traces of all the categories of ADLs
are incorporated into the training subset. Consequently, a negative value of this parameter
denotes a deterioration of the recognition capacity of the classifier.

As it could be expected, results show that the presence of new types of ADLs in the
testing sets (not considered during the training phase) causes a strong degradation of the
capability of the classifiers to discriminate falls from ADLs. This loss of effectiveness is
particularly remarkable in those repositories (such as FallAllD) that encompass a greater
number of types of ADL.

In this regard, the poorest discrimination rate is achieved when the system is tested
with sporting movements. In some datasets, the best results for this situation achieve
specificities below 80% (which imply that more than 20% of sporting actions are considered
as falls and would trigger a false alarm). The brusque mobility patterns induced by this
category of movements obviously provoke that the classifiers (trained with much less
agitated activities) misinterpret them as anomalies.

Paradoxically, the results also indicate that very basic and less energetic activities also
result in false positives, as they can be also identified as ‘novelties’ if traces corresponding
to low motion movements are not included in the training subset. Nevertheless, these false
alarms originated by ‘sedentary’ actions could be most probably avoided by a simple thresh-
olding technique so that a movement trace is inputted to the OCC only if the magnitude of
the acceleration exceeds a certain value and a fall can be reasonably suspected.

Finally, the movements included in the standard category seem to be the typology
of activities with the lowest impact on the effectiveness of the training. This can be ex-
plained by the fact that these activities represent an intermediate point of physical strength
between basic and sporting movements. Thus, training with movements with a lower and
greater intensity (basic activities and sports, respectively) gives enough information to the
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classifiers to avoid being considered as anomalies. Yet, a relevant decay of the performance
of certain OCCs is also perceived when this category is excluded from the training phase.

Table 11. Results of the classifiers when they are tested with falls and basic activities and trained with the rest of ADL categories.

Dataset OCC Se Sp
√

Se·Sp Loss

DLR

Autoencoder 0.8125 0.4299 0.5910 −0.3097
GMM 0.8125 0.3293 0.5172 −0.4199

OC-KNN 0.8125 0.7591 0.7854 −0.1432
PPNN 0.7500 0.0122 0.0959 −0.5206

OC-SVM 0.4375 0.0427 0.1367 −0.7497

Erciyes

Autoencoder 0.9885 0.8457 0.9143 −0.0345
GMM 0.9104 0.9213 0.9159 −0.0382

OC-KNN 0.9632 0.9074 0.9349 −0.0465
PPNN 0.9764 0.8164 0.8928 −0.0699

OC-SVM 0.9863 0.8765 0.9298 −0.0447

FallAllD

Autoencoder 0.9555 0.7978 0.8639 +0.0190
GMM 0.9140 0.8352 0.8737 +0.0124

OC-KNN 0.9269 0.8747 0.9004 −0.0171
PPNN 0.6688 0.7758 0.7203 −0.0568

OC-SVM 0.9290 0.6813 0.7956 −0.1073

IMUFD

Autoencoder 0.9761 0.7387 0.8492 +0.0073
GMM 0.9522 0.5495 0.7234 −0.1835

OC-KNN 0.9569 0.8378 0.8954 −0.0504
PPNN 0.8852 0.8108 0.8472 −0.0136

OC-SVM 1.0000 0.7027 0.8383 −0.1010

KFall

Autoencoder 0.9944 0.8690 0.9296 −0.0417
GMM 0.9851 0.8558 0.9181 −0.0420

OC-KNN 0.9624 0.9760 0.9692 −0.0202
PPNN 0.9018 0.9928 0.9462 +0.0005

OC-SVM 0.9953 0.9183 0.9560 −0.0128

SisFall

Autoencoder 0.9076 0.5626 0.7146 −0.1978
GMM 0.9950 0.3705 0.6072 −0.2736

OC-KNN 0.9839 0.5073 0.7065 −0.2513
PPNN 0.8520 0.0825 0.2650 −0.6956

OC-SVM 0.9911 0.1574 0.3949 −0.5626

UMAFall

Autoencoder 0.8670 0.8493 0.8581 −0.1096
GMM 0.9309 0.7226 0.8201 −0.1152

OC-KNN 0.9894 0.7397 0.8555 −0.1226
PPNN 0.9894 0.2226 0.4693 −0.4644

OC-SVM 0.9947 0.6130 0.7809 −0.1972

UP-Fall

Autoencoder 0.9510 0.9881 0.9694 +0.0078
GMM 0.9633 0.9881 0.9756 +0.0362

OC-KNN 0.9796 1.0000 0.9897 +0.0097
PPNN 0.9714 0.9762 0.9738 +0.0130

OC-SVM 0.9918 1.0000 0.9959 +0.0079
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Table 12. Results of the classifiers when they are tested with falls and standard movements and trained with the rest of
ADL categories.

Dataset OCC Se Sp
√

Se·Sp Loss

DLR

Autoencoder 0.8125 0.9008 0.8555 −0.0452
GMM 0.9375 0.8855 0.9111 −0.0260

OC-KNN 0.8125 0.8168 0.8146 −0.1140
PPNN 0.6875 0.0458 0.1775 −0.4390

OC-SVM 0.7500 0.9313 0.8357 −0.0507

Erciyes

Autoencoder 0.9665 0.9817 0.9741 +0.0253
GMM 0.9764 0.9854 0.9809 +0.0268

OC-KNN 0.9780 0.9689 0.9735 −0.0079
PPNN 0.9720 0.9689 0.9704 +0.0077

OC-SVM 0.9868 0.9634 0.9751 +0.0006

FallAllD

Autoencoder 0.8258 0.8808 0.8528 +0.0079
GMM 0.8602 0.8808 0.8704 +0.0091

OC-KNN 0.8903 0.9621 0.9255 +0.0080
PPNN 0.6774 0.7832 0.7284 −0.0487

OC-SVM 0.8129 0.6667 0.7362 −0.1667

IMUFD

Autoencoder 0.8134 0.7833 0.7982 −0.0437
GMM 0.9330 0.9667 0.9497 +0.0428

OC-KNN 0.9378 1.0000 0.9684 +0.0226
PPNN 0.7416 1.0000 0.8612 +0.0004

OC-SVM 0.8565 1.0000 0.9255 −0.0138

KFall

Autoencoder 0.9983 0.9408 0.9691 −0.0022
GMM 0.9893 0.9723 0.9808 +0.0207

OC-KNN 0.9859 0.9781 0.9820 −0.0074
PPNN 0.9061 0.9494 0.9275 −0.0182

OC-SVM 0.9910 0.8177 0.9002 −0.0686

SisFall

Autoencoder 0.8620 0.6754 0.7630 −0.1494
GMM 0.9182 0.5331 0.6996 −0.1812

OC-KNN 0.9482 0.7756 0.8576 −0.1002
PPNN 0.9727 0.7715 0.8663 −0.0943

OC-SVM 0.9488 0.8317 0.8883 −0.0692

UMAFall

Autoencoder 0.9947 0.8936 0.9428 −0.0249
GMM 0.9894 0.9362 0.9624 +0.0271

OC-KNN 0.9787 0.9574 0.9680 −0.0101
PPNN 0.8723 1.0000 0.9340 +0.0003

OC-SVM 0.9574 1.0000 0.9785 +0.0004

UP-Fall

Autoencoder 0.9714 0.9675 0.9695 +0.0079
GMM 1.0000 0.9431 0.9711 +0.0317

OC-KNN 1.0000 0.9512 0.9753 −0.0047
PPNN 1.0000 0.6423 0.8014 −0.1594

OC-SVM 1.0000 0.6829 0.8264 −0.1616
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Table 13. Results of the classifiers when they are tested with falls and sporting activities and trained with the rest of ADL
categories (results for the IMUFD dataset are not included, as this repository does not include sporting movements).

Dataset OCC Se Sp
√

Se·Sp Loss

DLR

Autoencoder 0.9375 0.0294 0.1661 −0.7346
GMM 0.9375 0.0294 0.1661 −0.7710

OC-KNN 1.0000 0.0735 0.2712 −0.6574
PPNN 0.7500 0.8529 0.7998 0.1833

OC-SVM 0.3125 0.9706 0.5507 −0.3357

Erciyes

Autoencoder 0.5231 0.6848 0.5985 −0.3503
GMM 0.9423 0.2609 0.4958 −0.4583

OC-KNN 0.9758 0.9348 0.9551 −0.0263
PPNN 0.9500 0.9891 0.9694 0.0067

OC-SVM 0.9571 0.9457 0.9514 −0.0231

FallAllD

Autoencoder 0.6796 0.4176 0.5327 −0.3122
GMM 0.7978 0.3235 0.5081 −0.3532

OC-KNN 0.9247 0.6294 0.7629 −0.1546
PPNN 0.8280 0.5235 0.6584 −0.1187

OC-SVM 0.8731 0.6765 0.7685 −0.1344

KFall

Autoencoder 0.9377 0.4694 0.6635 −0.3078
GMM 0.5137 0.6332 0.5703 −0.3898

OC-KNN 0.9684 0.7686 0.8627 −0.1267
PPNN 0.9667 0.7162 0.8320 −0.1137

OC-SVM 0.9744 0.7358 0.8467 −0.1221

SisFall

Autoencoder 0.7607 0.7254 0.7428 −0.1696
GMM 0.8564 0.3264 0.5287 −0.3521

OC-KNN 0.9171 0.5181 0.6893 −0.2685
PPNN 0.9176 0.9793 0.9480 −0.0126

OC-SVM 0.9338 0.9378 0.9358 −0.0217

UMAFall

Autoencoder 0.9521 0.0000 0.0000 −0.9677
GMM 0.9096 0.0000 0.0000 −0.9353

OC-KNN 0.8989 0.5273 0.6885 −0.2896
PPNN 0.8989 0.6182 0.7455 −0.1882

OC-SVM 0.7287 0.8545 0.7891 −0.1890

UP-Fall

Autoencoder 0.8667 0.0000 0.0000 −0.9616
GMM 0.7792 0.0000 0.0000 −0.9394

OC-KNN 0.9292 0.9565 0.9427 −0.0373
PPNN 0.9625 0.8913 0.9262 −0.0346

OC-SVM 0.8898 0.9565 0.9226 −0.0654

4. Conclusions

This work has assessed the effectiveness of utilizing one-class classifiers as the decision
core of fall detection systems based on wearable inertial sensors. Unlike fully supervised
methods, OCCs benefit from the fact that they can be trained exclusively with samples of a
single class (conventional Activities of Daily Living), which avoids the need of obtaining
traces captured during falls to train the classifiers.

In particular, we have analyzed the performance of five well-known OCCs under
different input feature sets and a wide selection of hyperparameters. In contrast with most
studies in the literature, which base their analysis on the use of a single dataset, we have
extended the study to nine public repositories.

The achieved results (with values of the geometric mean of sensitivity and specificity
higher than 95%) have shown the capability of the OCC to discriminate falls from ADLs
with a high accuracy if the election of the decision threshold is optimized. This performance
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is comparable to that obtained with supervised systems in the literature. For almost all tests
and datasets, the one-class KNN classifier stood out as the best (or second best) detection
algorithm, which is a conclusion that is coherent with other previous analysis in the related
works. The study has also revealed that the use of simplistic ensemble learning methods
(such as voting) may improve the hit rate of the detector if the decisions of several OCCs
are simultaneously considered.

In any case, the analyses have illustrated the extreme vulnerability of these classifiers
to the typology of the ADLs used for the training phase. Actions that involve rapid move-
ments (such as sports) and even very basic activities (which do not require any physical
effort) may be straightforwardly identified as anomalies if they are not considered in the
patterns used for training. This problem, which could be alleviated with the combination
of OCCs and other simple methods that avoid identifying certain typical ADLs as falls,
forces rethinking the way in which one-class detectors are adjusted and evaluated. The
results clearly show the importance of having a sufficiently varied set of samples for train-
ing. Likewise, in the test phase, and as stress tests of the system, the evaluation should
ponder the use of ADLs (not used for training) that entail agitated movements that may
affect the decision of the classifier. Future studies should also focus on methodologies that
automatically optimize the election of the decision threshold.
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