
1Scientific RepoRts | 6:36476 | DOI: 10.1038/srep36476

www.nature.com/scientificreports

Rechargeable calcium phosphate 
orthodontic cement with sustained 
ion release and re-release
Ling Zhang1,2, Michael D. Weir2, Laurence C. Chow3, Mark A. Reynolds2 & Hockin H. K. Xu2,4,5

White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic 
treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for 
remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic 
cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated 
bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl 
methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of 
amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens 
were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and 
re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability 
than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the 
bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement 
indicated favorable release and re-release patterns. The recharged orthodontic cement could release 
CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic 
cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be 
repeatedly recharged to maintain long-term high levels of CaP ion releases.

The demineralization of tooth enamel adjacent to orthodontic brackets leads to white spot lesions (WSL), a seri-
ous and common complication for orthodontic treatments1–4. It has been reported that WSL could take only 1 
month to develop4 and the incidence of WSL in patients with fixed orthodontic treatments ranged from 73% to 
95%2,5. The incidence of WSL formation could be attributed to the irregular surfaces of brackets, bands, wires and 
other attachments that provide areas for bacterial and plaque accumulation6. Indeed, the existence of these small 
and complex pieces of equipment makes tooth brushing and cleaning difficult7. Furthermore, they limited the 
natural self-cleansing actions by saliva, oral musculature and tongue7,8. These conditions promoted the accumu-
lation of plaque and the colonization of cariogenic bacteria7–9, which could produce organic acids to form WSL.

Strategies were investigated to manage WSL by preventing enamel demineralization or promoting rem-
ineralization10–12. Fluoride was used to prevent caries and remineralize tooth structures. Topical fluoride or 
fluoride-releasing cements showed positive effects on preventing demineralization of enamel surrounding the 
orthodontic brackets10,11. However, fluoride treatments of the enamel prior the placement of orthodontic brack-
ets will result in the enamel being more resistant to the phosphoric acid etching. This could decrease the bond 
strength and lead to pre-mature bond failure12. The home use of topical fluoride is frequently not adequate due 
to low patient compliance13. Another promising approach is based on calcium phosphate (CaP) remineraliza-
tion14–17. Calcium (Ca) and phosphate (P) ions released from CaP biomaterials can produce a Ca and P ion 
reservoir in dental plaque and onto the tooth surfaces, which can maintain supersaturating levels of Ca and P 
ions, thus help prevent demineralization and facilitate remineralization. Amorphous calcium phosphate (ACP), 
casein phosphopeptide amorphous calcium phosphate (CPP-ACP) and fluoride containing-CPP-ACP were 
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incorporated into methacrylate composites, gums, pastes and other dental products and achieved promising 
effects on caries prevention and enamel remineralization14–17.

Recently, particles of amorphous calcium phosphate (ACP) were incorporated into dental restorative materi-
als and showed superior effects on both caries inhibition and tooth lesion remineralization18–20. ACP-containing 
bonding agents and composites produced high levels of Ca and P ion release21,22. The potential of ACP as an acid 
neutralizing agent by way of increased Ca and P ion release at pH of 4 levels, when caries is most prone to develop 
could be essential23. The incorporation of up to 40% of ACP into a dentin adhesive did not negatively affect the 
dentin bond strength21,22,24.

Previous CaP-containing resins released Ca and P for weeks to a few months, resulting in diminished Ca and 
P25–27. While fluoride-releasing materials were shown to be rechargeable, no rechargeable CaP resins had been 
reported. The average orthodontic treatment time ranges 14–33 months28; therefore, Ca and P ion releases lasting 
much longer than weeks are needed. Recently, novel rechargeable ACP-containing dental resins were developed 
for the first time, using monomers of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol 
A dimethacrylate (EBPADMA) in combination with fillers of ACP. The new CaP composite and bonding agent 
demonstrated excellent Ca and P ion rechargeability, yielding sustained long-term Ca and P ion releases for the 
first time29–31. In the present study, the novel CaP recharge method was applied to the development of a recharge-
able CaP-containing dental cement and in particular, for orthodontic applications to inhibit enamel deminerali-
zation and WSL formation.

Therefore, the objectives of this study were to develop a rechargeable CaP-containing dental cement and inves-
tigate the effects of ACP incorporation on orthodontic bracket-enamel bond strength, water sorption, as well as 
Ca and P ion recharge and re-release. The following hypotheses were tested: (1) The new rechargeable CaP ortho-
dontic cement would yield a bracket-enamel bond strength similar to commercial orthodontic cements without 
CaP ion release and recharge; (2) the enamel bond strength and the Ca and P ion recharge and re-release efficacy 
would depend on the cement resin composition; and (3) the new CaP orthodontic cement would exhibit contin-
uous ion release, and the ion release would not decrease with increasing number of recharge and re-release cycles.

Materials and Methods
Preparation of ACP. ACP [Ca3(PO4)2] were synthesized via a Spry-drying technique as previously 
described18,19. Briefly, calcium carbonate and dicalcium phosphate were dissolved into an acetic acid solution. 
The concentrations of Ca and P ions were 8 mmol/L and 5.333 mmol/L, respectively, yielding a Ca/P molar ratio 
of 1.5. The solution was sprayed into a heated chamber, allowing the evaporation of water and the volatile acid. 
The dried ACP were collected via an electrostatic precipitator, yielding ACP with a mean particle size of approx-
imately 116 nm19.

Formulation of experimental orthodontic cements. Two experimental orthodontic cement com-
positions were formulated. The first consisted of pyromellitic glycerol dimethacrylate (PMGDM) (Hampford, 
Stratford, CT) and ethoxylated bisphenol A dimethacrylate (EBPADMA) (Sigma-Aldrich, St, Louis, MO) at a 
mass ratio of 1:1. Camphorquinone (CQ) (Irgacure819, Ciba Chemicals, Japan) at 0.2% by mass was added for 
photo-polymerization. Benzoyl peroxide (BPO) at 0.8% by mass (Irgacure819, Ciba Chemicals, Japan) was added 
to enable a chemical cure. PMGDM is an acidic adhesive monomer32,33, which can chelate with calcium ions from 
the recharge solution to achieve recharge capability30,31. The PMGDM-EBPADMA group is referred to as PE.

To formulate the second resin, 10% of 2-hydroxyethyl methacrylate (HEMA) (Esstech, Essington, PA) and 5% 
of bisphenol A glycidyl dimethacrylate (BisGMA) (Esstech) were added to the PMGDM-EBPADMA mixture. 
HEMA and BisGMA are widely used dental monomers. HEMA is an excellent adhesion-promoting monomer 
due to its hydrophilicity33. The mass fractions were selected because previous studies showed that the addition 
of 10% HEMA and 5% BisGMA into the PMGDM-EBPADMA resin increased the bond strength to dentin30. 
This second group is denoted PEHB. ACP fillers were added into both resins at mass fractions of 0% and 40%, 
following previous studies19,20. ACP filler levels > 40% were not used due to a decrease in bracket-enamel bond 
strength in preliminary study.

Two commercial materials served as comparative controls in orthodontic bracket-enamel bond strength 
testing. Transbond XT (3M Unitek, Monrovia, CA) has been used as an orthodontic cement. The Transbond 
XT was used in accordance with the manufacturer’s instructions for use. According to the manufacturer, it 
consisted of silane-treated quartz (70–80% by weight), bisphenol A diglycidyl ether dimethacrylate (10–20%), 
bisphenol-A-bis (2-hydroxyethyl) dimethacrylate (5–10%), silane-treated silica (< 2%) and diphenyliodonium 
hexafluorophosphate (< 0.2%). Transbond is referred to as TB control. Vitremer (3M ESPE, St Paul, MN, USA) 
is a restorative material and the indications do not include orthodontic bracket cementation. In this study the 
material was used as a commercial comparative control. Vitremer was used with the primer and a mixture of 
powder:liquid mass ratio of 2.5:1. Vitremer consisted of fluoroaluminosilicate glass and a light-sensitive, aqueous 
polyalkenoic acid. Vitremer is referred as VT control. Therefore, four experimental orthodontic cements and two 
commercial control cements were tested for bracket-enamel bond strength:

(1) PMGDM-EBPADMA (referred to as PE);
(2) PE+ 40% ACP (referred to as PE+ 40ACP);
(3) PMGDM-EBPADMA-HEMA-BisGMA (referred to as PEHB);
(4) PEHB+ 40% ACP (referred to as PEHB+ 40ACP);
(5) TB control;
(6) VT control.
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Orthodontic bracket shear bond testing and the adhesive remnant index (ARI). One hundred 
and twenty extracted human third molars were collected after informed consent was obtained from the patients. 
The protocol employed was approved by University of Maryland Baltimore Institutional Review Board. All the 
experiments were carried out in accordance with the approved guidelines and regulations. The teeth were stored 
in 0.01% thymol solution at 4 °C and used within 1 month after extraction. The orthodontic bracket shear bond 
strengths were tested as previously described34. Each tooth was embedded vertically in a self-curing acrylic resin 
(Lang Dental Manufacturing, Wheeling, IL) taking into account the buccal axis of the clinical crown, so that the 
labial surfaces would be parallel to the force during the shear bond test. The coronal portion was submitted to 
prophylaxis with oil-free pumice and rubber cups at a low speed for 10 seconds (s). The buccal surface was etched 
with 35% phosphoric acid (Scotchbond, 3M ESPE, St. Paul, MN) for 30 s, then washed and dried. Each cement 
was applied to the base of the bracket, which was placed on the center of the tooth surface with a firm pressure. 
Excessive cement around the bracket was removed. The cement was polymerized from all four sides (mesial, dis-
tal, occlusal, and gingival) of the bracket for 10 s each, for a total of 40 s, using a halogen light-curing unit (Optilux 
VCL 401, Demetron Kerr, Danbury, CT) with a standard mode. The output intensity was monitored to be the 
same. The light unit was equipped with a standard light guide and the tip of the guide was kept at approximately 
1 mm from the bracket. The specimens were stored in distilled water at 37 °C for 24 hours. All the brackets were 
cemented by an experienced clinician who was blinded to which kind of cement was used during bracket place-
ment. Then the specimens in each group were divided into two subgroups. One subgroup was subjected to shear 
bond strength testing after the samples were stored in water for 24 hours (referred to as 1 day in water, n =  10). 
The other subgroup (n =  10) was immersed in a demineralization solution of pH 4 for 1 month. The deminer-
alizing solution consisted of 3.0 mmol/L CaCl2, 1.8 mmol/L K2HPO4, 0.1 mol/L lactic acid, and 1% carboxyme-
thylcellulose, with pH 4 adjusted with the addition of KOH27. This mimicked the demineralizing biofilm acids 
that the orthodontic cement-enamel bonded areas would experience in vivo which could potentially degrade the 
bond strength27. For the 1 month aging, each bonded tooth was inversely placed in a closed tube with the bonded 
interface being completely immersed in 0.5 mL of demineralization solution. The solution was changed daily so 
that a fresh pH 4 solution was used every day. The pH 4 was used because in the oral environment, acidogenic 
bacteria ferment carbohydrates and produce organic acids which can decrease the local plaque pH to 4.5 or 435,36. 
The purpose of aging in the demineralizing solution was to produce a cariogenic challenge on the bonded inter-
face in order to evaluate the bond durability under acid challenges37. To measure the shear bond strength, a chisel 
on a Universal Testing Machine (MTS, Eden Prairie, MN) was positioned to the upper part of the bracket base 
and parallel to the bonded interface. An occlusogingival load was applied at a cross-head speed of 0.5 mm/min 
until the bracket detached. Orthodontic bracket shear bond strength =  load at failure/bracket surface area38,39.

After brackets were detached, each tooth surface was observed under a stereomicroscope (Leica Zoom 2000, 
Leica Microsystems GmbH, Wetzlar, Germany) to examine the failure mode. The Adhesive Remnant Index (ARI) 
was based on the remaining cement material on enamel, using the following criteria34: 0 =  no cement remained 
on enamel; 1 =  less than half of the cement remained on enamel; 2 =  more than half of the cement remained on 
enamel; 3 =  all the cement remained on enamel.

Water sorption assessment. The six groups of materials were used for water sorption assessment. Each 
cement paste was placed into a plastic mold with 12 mm diameter and 1.5 mm thickness. The specimen was 
light-cured (Triad 2000, Dentsply, York, PA) for 1 min on each open side of the mold, and then incubated at 37 °C 
for 24 h. To measure water sorption, the cement disks were first dried with desiccant (WA Hammond Drierite, 
Xenia, OH) in a container under vacuum to a constant mass, until the mass change was less than 0.1 mg. The disks 
were then tested for water sorption (Wsp) following ISO 4949:200940. The diameter and thickness of each disk 
were measured individually to calculate the volume (V). Then the disks were immersed in distilled water at 37 °C 
for 7 d. Then the disk was taken out of the water, its surface was wiped with absorbent paper and the weight was 
immediately measured using an analytical balance to yield MWT. The disk was then placed in the desiccator under 
vacuum for 7 d until reaching constant weight, yielding MDRY. Wsp was calculated for each specimen by using the 
following equation39: Wsp =  (MWT −  MDRY)/V, expressed in mg/mm3.

Initial Ca and P ion release measurement. A NaCl solution (133 mmol/L) was buffered to pH 4 with 
50 mmol/L lactic acid to measure the ion release, simulating a cariogenic low pH condition18,22. Groups 1–4 were 
used for Ca and P ions release. Groups 1 and 3 contained no Ca and P ions and therefore served as the negative 
controls to groups 2 and 4, respectively. Groups 5 and 6 were not tested because they did not contain CaP and 
therefore had no Ca and P ion release. Three specimens of approximately 2 ×  2 ×  12 mm were immersed in 50 mL 
of solution to yield a specimen volume/solution of 2.9 mm3/mL, following previous studies18,20,22. This was similar 
to a specimen volume per solution of about 3.0 mm3/mL in a previous study26. The concentrations of Ca and P 
released from the specimens were measured at 1, 3, 5, 7, 14, 21, 28, 35, and 42 d, using methods previously descri
bed18,20,22,41,42. At each time, aliquots of 0.5 mL were removed and replaced by fresh NaCl solution. The pH of the 
immersion solutions was monitored and adjusted to pH 4 with 50 mmol/L lactic acid using a combination pH 
electrode (Orion, Cambridge, MA)23. The aliquots were analyzed for Ca and P concentrations via a spectrophoto-
metric method (DMS-80 UV-visible, Varian, Palo Alto, CA) using known standards and calibration curves18,20,22. 
This ion release from the cement specimens was termed the “initial release”, to differentiate from the subsequent 
recharge and re-release.

Recharge of cement specimens and Ca and P ion re-release. First, the cement specimens were stored 
in the pH 4 solution for 42 days to exhaust the ion release30,31. The specimens were then placed in another fresh 
pH 4 solution for an additional 30 days to make sure that the ion release was indeed exhausted. These specimens 
were then subjected to a Ca and P ion release measurement for 7 days to confirm that there was no further release. 
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The exhausted specimens were then used for Ca and P ion recharge. The calcium recharge solution consisted of 
100 mmol/L of CaCl2 and 50 mmol/L of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer30,31. 
The phosphate ion recharge solution consisted of 60 mmol/L of KHPO4 and 50 mmol/L of HEPES buffer. The 
two solutions were adjusted to pH 7 using 1 mol/L of KOH30,31. Three specimens of approximately 2 ×  2 ×  12 mm 
were immersed into 5 mL of a recharge solution and gently shaken using a mixing machine (Analog Vortex 
Mixer, Fisher Scientific, Waltham, MA) for 3 minutes. This was done because there is usually fluid movement 
and shaking when using a mouthwash. Then the specimens were rinsed with running distilled water for 1 min to 
remove any loosely attached deposits on specimen surfaces, hence only the ions recharged into the interior of the 
cement were measured in the subsequent re-release test. The specimens received two doses of recharge, one at 
about 9:00 am, and the other at about 5:00 pm, which simulated a mouth-rinse in the morning and in the evening. 
After recharging, the specimens were immersed in 50 mL of pH 4 solution for 7 days to measure the Ca and P ion 
re-release, using the ion concentration measurement described in the initial Ca and P release measurement. After 
7 days of re-release, the specimens were recharged again as described above and tested for re-release as cycle 2. 
This was repeated for 3 cycles in the present study to examine if the rechargeability and re-release would decrease 
with increasing the number of cycles.

In order to investigate how long the specimens could further release Ca and P ions after three cycles of 
recharge/re-release, the specimens after the 3rd recharge (without further recharge) were immersed in 50 mL 
of fresh pH 4 solution for additional 42 d. The concentrations of Ca and P ions re-released from these spec-
imens were measured at 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 35 and 42 d as described in the initial Ca and P release 
measurement18,22.

Statistical analysis. Kolmogorov–Smirn test and Levene test were performed to confirm the normality 
and equal variance of the data. The results of bracket bond strength, water sorption, Ca and P ion release and 
re-release were analyzed via the analyses of variance (ANOVA). Post hoc multiple comparisons were performed 
using Tukey’s honestly significant difference test. ARI results were evaluated using the Chi-Square test. Statistical 
significance was preset at p < 0.05. The SPSS 14.0 software package (SPSS, Chicago, IL, USA) was used.

Results
The bracket-enamel shear bond strengths are plotted in Fig. 1 (mean ±  sd; n =  10). Both cement type and immer-
sion time showed significant effects on the bond strength (p <  0.001). After 1 day in water, PEHB, PEHB+ 40ACP 
and TB had similarly high shear bond strengths (12.75 ±  1.00, 12.12 ±  2.60, 13.63 ±  2.18 MPa respectively) 
(p =  0.728). PE had significantly lower bond strength (p <  0.001). The incorporation of 40% ACP into PEHB 
had no significant effect on the bond strength, compared to that of PEHB (p =  1). The 1-month immersion in 
pH 4 solution decreased the shear bond strength of all tested cements (p <  0.001). After 1 month of aging in the 
demineralization solution, PEHB+ 40ACP (8.56 ±  1.56 MPa) had a slightly higher shear bond strength than TB 
(7.15 ±  1.26 MPa) (p =  0.14), but a significantly higher bond strength than PEHB (5.40 ±  0.83 MPa) and VT 
control (5.80 ±  0.67 MPa) (p <  0.001). Although there was a reduction in the shear bond strength of the 1 month 
aged specimens for the PEHB+ 40ACP group, there was no significant difference with the specimen group after 
1 day in water.

The bracket-enamel shear bond ARI results are listed in Table 1. There were significant effects of cement type 
and aging time (pcement =  0.03; Ptime =  0.001). After 1 day in water, more cements remained on the enamel surfaces 
in PEHB group than PE (p =  0.018). There was no significant difference in ARI between PEHB, PEHB+ 40ACP, 
TB control and VT control (p =  0.881). After 1 month immersion in demineralization solution at pH 4, the ARI 

Figure 1. Orthodontic bracket shear bond strength (mean ± sd; n = 10). Green bars represent the specimens 
tested after 1 day in water. Red bars represent the specimens tested after immersion in demineralization solution 
of pH 4 for 1 month. Bars with dissimilar letters indicate values that are significantly different from each other 
(p <  0.05).
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scores significantly decreased (all p <  0.05). The ARI scores in PEHB+ 40ACP and TB control were significantly 
higher than those in other groups (all p <  0.05).

The WSP results of the cements are plotted in Fig. 2 (mean ±  sd; n =  3). VT control had the highest WSP while 
TB had the lowest (p <  0.001). The incorporation of 40% ACP into PEHB did not significantly increase the WSP in 
relation to PEHB. (p =  0.727). PEHB and PEHB+ 40ACP both had intermediate WSP values that were in between 
the two commercial materials.

The initial Ca and P ion releases from the cements are plotted in Fig. 3 (mean ±  sd; n =  6). PE +  40ACP and 
PEHB+ 40ACP had high levels of ion release. Ion concentrations increased with time (all p <  0.05). Both Ca and P 
ion releases from PEHB+ 40ACP were significantly greater than those from PE +  40ACP (for calcium, p <  0.001; 
for phosphate, p <  0.001), indicating that the ion release was significantly affected by the resin compositions.

The Ca and P ion recharge and re-release results are plotted in Fig. 4 (mean ±  sd, n =  3). Three recharge/
re-release cycles were included, with each recharge being tested for re-release for 7 days. Cements with 0% ACP 
(PE and PEHB) showed little Ca and P ion re-release after being immersed in the recharge solution. In con-
trast, PE+ 40ACP and PEHB+ 40ACP (which were exhausted in ion release prior to the recharge) showed high 
levels of Ca and P ion re-release after each recharge. The ion concentrations increased rapidly from 1 to 7 days. 
Furthermore, there was no decrease in ion re-release from the first recharge/re-release cycle to the third cycle. For 
each cycle, the ion release reached a similarly high level. These results demonstrate the potential for a long-term 
ion recharge/re-release capability. In addition, PEHB+ 40ACP showed significantly greater recharge/re-release 
of ion concentrations than PE+ 40ACP (Cycle 1, calcium, p <  0.001; phosphate, p =  0.047. Cycle 2, calcium, 
p =  0.004; phosphate, p <  0.001. Cycle 3, calcium, p =  0.012; phosphate, p <  0.001).

Cements Aging treatments

ARI Scores

SS0 1 2 3

PE 1 day in water 7 3 0 0 a

PE+ 40ACP 1 day in water 8 2 0 0 a

PEHB 1 day in water 2 3 5 0 c

PEHB+ 40ACP 1 day in water 2 4 4 0 c

TB control 1 day in water 2 4 4 0 c

VT control 1 day in water 2 5 3 0 c

PE 1 month in pH 4 solution 9 1 0 0 a

PE+ 40ACP 1 month in pH 4 solution 9 1 0 0 a

PEHB 1 month in pH 4 solution 7 2 1 0 a

PEHB+ 40ACP 1 month in pH 4 solution 4 4 2 0 b

TB control 1 month in pH 4 solution 5 4 1 0 b

VT control 1 month in pH 4 solution 7 3 0 0 a

Table 1.  Adhesive remnant index (ARI) after orthodontic bracket shear bond testing. Each group has 
n =  10. SS refers to statistical significance, with different letters indicating significant differences in the ARI 
scores (p <  0.05).

Figure 2. Results for water sorption (mean ± sd; n = 3). Bars with dissimilar letters indicate values that are 
significantly different from each other (p <  0.05).
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After the third recharge/re-release cycle, the specimens were tested for Ca and P ion release for 42 days with-
out any further recharge. The results are plotted in Fig. 5 (mean ±  sd, n =  3). The released ion concentrations 
increased form 1 day to about 21 days and then gradually reached a plateau. These results demonstrate that, 
after a recharge and after releasing ions continuously for 7 days (in Fig. 4), the cements without any recharge 
could release Ca and P ions for another 21 days continuously. These results demonstrate that it is not necessary 
to recharge daily or weekly; one recharge of the orthodontic cement could yield about four weeks of ion release. 
In addition, PEHB+ 40ACP exhibited significantly higher Ca and P ion re-release than PE+ 40ACP (calcium, 
p =  0.005; phosphate, p <  0.001).

Discussion
Orthodontic patients are often at a high risk of developing dental caries during orthodontic treatment, espe-
cially when their compliance to oral hygiene instructions is doubtful43,44. In addition, in fixed orthodontic treat-
ments, the enamel surface is often etched with phosphoric acid, which produces the appropriate etching pattern 
to facilitate bracket bonding. However, the entire etched enamel surface usually cannot be completely covered 
by orthodontic cement because it is clinically impossible to visualize the small area of etched enamel. The etched 
enamel surface, not covered by the orthodontic cement is vulnerable to the retention of oral micro-organisms 
and the resultant demineralization that results in WSL and caries45. Mature enamel is an acellular matrix, thus it 
is impossible to regenerate after trauma or decay46. Therefore, the repair of vulnerable enamel can only be accom-
plished by using extraneous materials. CaP orthodontic cements that are capable of releasing high level of Ca 
and P ions would allow freely available Ca and P ions to enter enamel to prevent demineralization and enhance 
reminralization15,47. In the present study, a novel 40% ACP orthodontic cement with capability of repeated Ca 
and P ion recharge and re-release was developed. Among the four tested ACP cements, cement PEHB+ 40ACP 
showed the highest Ca and P ion release and recharge capability, as well as a high bracket-enamel bond strength 
that had a good resistance to acid attacks. The hypotheses were proven that the new rechargeable CaP cement 
had a bracket-enamel bond strength similar to commercial orthodontic cements without CaP; that the enamel 

Figure 3. Initial Ca and P ion release (mean ±  sd; n =  6) from the orthodontic cements: (a) Ca ion release, and 
(b) P ion release. PEHB+ 40ACP showed significantly higher Ca and P ion releases than PE+ 40ACP (p <  0.05).
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bond strength and the Ca and P ion recharge and re-release depended on cement composition; and that the new 
CaP cement produced durable ion release which did not decrease with increasing the number of recharge and 
re-release cycles.

The novel rechargeable PEHB+ 40ACP cement could be especially advantageous in the reduction of WSL 
because it has the potential to be repeatedly recharged with Ca and P ions using easy and user-friendly recharging 
protocols such as a mouth-rinse. Indeed, the results of the present study indicate that: (1) one recharge treatment 
has the potential to provide weeks of ion release; (2) the recharge efficacy and re-release did not decrease with 
increasing number of recharge cycles. Therefore, the PEHB+ 40ACP orthodontic cement is promising to provide 
the much needed long-term caries-inhibition and enamel remineralization capability to orthodontic treatments.

For fix orthodontic treatment, a strong bond between bracket and enamel surface is important to provide 
enough support for bands and wires during the orthodontic process. The present study showed that the resin 
matrix of orthodontic cements had a significant effect on the bracket bond strength. All the experimental cements 
in the present study contained PMGDM and EBPADMA. PMGDM is an acidic adhesive monomer that can 
chemically chelate with calcium or phosphate ion from dentin or from the exterior environment32,48. PEHB 
showed significantly higher bracket bond strength than PE. PEHB contained PMGDM and EBPADMA, plus 10% 
HEMA and 5% BisGMA. HEMA has long been used in dental adhesives31. It can improve the hydrophilicity and 
flowability of the cement and facilitate a closer contact with the demineralizaed tooth structure33,49, producing 
cross-linked interlocks between the adhesive and tooth hard tissues. BisGMA is frequently used in adhesives 
and composites33,50. BisGMA contains ester linkages that connect Bis-phenol-A segments to the polymerizable 
vinyl segments. Due to its high molecular weight, BisGMA provides a lower polymerization shrinkage and rapid 
hardening and the polymer had good mechanical properties33,50. These factors contributed to the relatively high 
bracket bond strength of about 13 MPa for PEHB, which was much higher than that of PE and approached that 
of TB control. The use of BisGMA-rich and HEMA-rich bonding agents has raised concerns of adhesive hydrol-
ysis and degradation of the bonded interfaces51,52. Some advanced cements such as Vitremer have been reported 

Figure 4. Ca and P ion recharge and re-release (mean ± sd; n = 3). (a) Ca ion re-release. (b) P ion re-release. 
Ca and P ion re-releases of PEHB+ 40ACP were significantly higher than those of PE+ 40ACP (p <  0.001). 
There was no decrease in the ion re-release level with increasing the number of recharge/re-release cycles from 
cycle 1 to cycle 3 (p >  0.1).
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to release HEMA after setting, which might increase the risks of adverse pulpal responses in patients and the 
allergy in patients and dental personnel53. Therefore, in the present study, PEHB used relatively small amounts of 
10% HEMA and 5% BisGMA. In addition, while dentin is an organic and water rich bonding substrate, enamel 
contains 95–97% of apatite crystals. The bonding mechanism of enamel is mechanical interlock and chemical 
chelation between demineralized enamel and the adhesive monomers54. The bonding is based on the enamel 
matrix being typically dried to a chalky color and thus less susceptible to water. Therefore, most bonding agents 
containing HEMA and BisGMA illustrated strong and durable bonding to enamel in both laboratory studies and 
in the clinical setting55.

The incorporation of 40% ACP into the PE and PEHB, while providing beneficial ion release and recharge, 
did not have a negative effect on the bracket bond strength when PE and PEHB was compared to PE+ 40ACP 
and PEHB+ 40ACP. After 1 month of aging in a demineralization solution, the bracket bond strength of most 
of the tested cements decreased. The demineralization solution of pH 4 was used to mimic demineralizing oral 
fluid conditions and biofilm acids that may cause the degradation of enamel and the bonded interface, which may 
contribute to decreases in the bond strength. However, PE+ 40ACP and PEHB+ 40ACP showed no significant 
decrease in bond strength after 1 month of aging in the demineralization solution. In particular, PEHB+ 40ACP 
showed the highest bracket-enamel bond strength after 1 month of aging. This was likely because PE+ 40ACP 
and PEHB+ 40ACP could release high levels of Ca and P ions which could neutralize acids and raise the acidic 
pH, thus reducing the damaging effect of acid to enamel and to the bonded interface23. In addition, the released 
ions may help repair the micro-gaps and micro-voids along the enamel-resin interfaces, remineralize and protect 
the enamel at the interface, thus yielding a strong and durable bracket-enamel bond. Further study can be rec-
ommended to investigate the effects of PEHB+ 40ACP and its recharge on long-term bond strength and enamel 
protection during acid attacks for longer than a month, such as for one year.

Traditional CaP-containing dental resins used particles with sizes of about 1–55 μ m25–27. The ACP in the pres-
ent study had much smaller sizes with a mean particle size of 116 nm19. ACP had a high surface area of 17.76 m2/g, 

Figure 5. Continuous Ca and P ion re-release after the third recharge (mean ± sd; n = 3), without further 
recharge. PEHB+ 40ACP had higher Ca and P re-release than PE+ 40ACP (p <  0.01). The ion concentration 
increased for about 21 days and then gradually plateaued, indicating that after the third recharge cycle and 
releasing ions for 7 days in Fig. 4, the cements continuously released ions for three more weeks without further 
recharge.
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compared to 0.5 m2/g of traditional particles in previous studies19,25–27. This would increase the amount of inter-
faces between ACP and the resin matrix, producing more pathways for the diffusion of water and ions18. With 
the same ACP content, PEHB+ 40ACP showed a significantly higher Ca and P ion release than PE+ 40ACP. The 
smaller particle size of 116nm increases the surface area per percentage of particles that would have contact with 
the tooth structure and the oral environment. With the incorporation of HEMA, the water sorption in PEHB was 
also increased over that of PE (Fig. 2). Previous studies also showed increasing the HEMA content resulted in an 
increase in water sorption49,56–59. This may promote the water diffusion into the resin and the ion release as well as 
recharge and long-term re-release. The ion release may produce a supersaturated calcium phosphate environment 
that can not only inhibit demineralization, but also remineralize the enamel.

The recharge mechanism of the CAP cement appeared to consist of two factors. The first likely was the 
space-occupying effect. After the initial Ca and P ion release, the sites that were previously occupied by the Ca 
and P ions would be available for the incoming Ca and P ions from the recharge solution. This may explain 
why PE and PEHB containing 0% ACP showed little recharge and re-release, as there was no available space 
in the cement to accept incoming ions. According to this space-occupying mechanism, the material with the 
higher initial Ca and P ion release should also have a higher Ca and P recharge and re-release. The results of 
the present study confirmed this hypothesis: Cement PEHB+ 40ACP with higher initial ion release also showed 
significantly higher re-release than PE+ 40ACP. Second, the chemical properties of the cement matrix likely also 
contributed to the recharge mechanism. Our previous study showed that, with the same content of ACP fillers, 
the resin of PMGDM-EMBPDMA at 1:1 ratio had a significantly higher Ca and P recharge ability than that of the 
BisGMA-based and Bis[2-(methacryloyloxy)ethyl] phosphate (BisMEP)-based resins30. Therefore, the present 
study selected PMGDM and EMBPDMA as the major monomers in orthodontic cement. The carboxylate groups 
of PMGDM can chelate with Ca ions in dentin and from the exterior environment32,48, such as from the recharge 
solution. The chelation of calcium ions into the resin and the re-release of calcium from the resin should be a pro-
cess that depends on the local pH. The recharge solution was at pH 7 to simulate a neutral pH mouth-rinse. The 
solution for release and re-release testing was at pH 4, to simulate the needed release of these ions triggered by an 
acid challenge. PMGDM in the cement may chelate with the free calcium in the recharge solution of pH 7 during 
the recharge. After the recharge and in the pH 4 acid challenge, the bound between PMGDM and calcium might 
break down to produce the re-release of calcium ions. Further study is needed to investigate and confirm the Ca 
and P ion recharge and re-release mechanisms and to further improve the recharge efficacy.

Among orthodontic patients, teenagers are the major group. These patients in general have more dynamic and 
abrasive oral environments due to their diet habits, as well as relatively poor compliance in oral hygiene control. 
These factors place the young orthodontic patients under higher risks of WSL. The results of the present study 
indicate that the new orthodontic cement could be recharged once in the morning and once in the evening for 
a total of two doses of recharge and then it could release Ca and P ions for four weeks without further recharge. 
Therefore, it may be clinically possible to use the Ca and P recharge solution for mouth-rinse for one day to have 
lasting release for four weeks, which would be user friendly, especially for teenagers. Alternatively, the recharge 
of Ca and P ions can be performed in the clinic by dentists at monthly orthodontic appointments. Further studies 
are needed to optimize the recharge method and determine the clinical efficacy.

Based on the shear bond strength and the Ca and P release for the application as an orthodontic cement, 
future research with the PEHB+ 40ACP can include comparative investigations for extended applications to pit 
and fissure sealants. The use of the PEHB+ 40ACP with HEMA would need to be assessed for the cytotoxicity of 
the material before it is used on exposed dentinal root caries and as permanent or temporary restorations.

Conclusion
Novel dental cement capable of Ca and P ion recharge and long-term release was developed to inhibit tooth 
demineralization and promote remineralization. Cement PEHB+ 40ACP showed a relatively high orthodontic 
bracket-enamel bond strength which was more resistant to acid challenge than that without ACP. PEHB+ 40ACP 
had higher initial Ca and P ion release and greater capability for Ca and P ion recharge and re-release, than 
PE+ 40ACP. After one recharge, the cement had continuous release of ions for about four weeks, before another 
recharge would be needed. There was no decrease in recharge and re-release efficacy with increasing number of 
recharge/re-release cycles.
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