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The foreign body response (FBR) caused by biomaterials can essentially be understood as
the interaction between the immune microenvironment and biomaterials, which has
severely impeded the application of biomaterials in tissue repair. This concrete
interaction occurs via cells and bioactive substances, such as proteins and nucleic
acids. These cellular and molecular interactions provide important cues for determining
which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can
thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms
of cellular, IMBs are modified tomodulate functions of immune cells, such asmacrophages
and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered
to influence the immune microenvironment. Meanwhile, IMBs are designed with high
affinity for spatial targets and the ability to self-adapt over time, which allows for more
efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional
integration in the host, representing a breakthrough in tissue repair and regeneration
medicine.
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1 INTRODUCTION

With the development of tissue engineering and regenerative medicine, biomaterials have been
explored to design implants targeting promoting wound healing (Kim et al., 2017; Castaño
et al., 2018; Nourian Dehkordi et al., 2019; Oliva and Almquist, 2020; Sharifi et al., 2020),
repairing injured tissue (Han et al., 2019; Gaharwar et al., 2020; Primavera et al., 2020),
constructing bionic organs (Eke et al., 2017; Lee et al., 2017; Brennan et al., 2020; Lee et al., 2021;
Wang et al., 2021), and so on (Chung et al., 2017; Pugliese and Gelain, 2017; Liu et al., 2018; Wu
et al., 2018; Sultankulov et al., 2019). Some of these biomaterials such as wound healing
adhesives and bone cement, have been applied in clinical situations and have benefited patients
worldwide (Schmalz and Galler, 2017; Perez et al., 2018; Turnbull et al., 2018; Zhang et al., 2018;
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Kargozar et al., 2019; Cheng et al., 2020a; Armiento et al.,
2020; Khare et al., 2020). Regenerative medicine approaches
that repair damaged and malfunctioned tissues using
biomaterials have a promising future (Li et al., 2020; Liu
et al., 2021; Peng et al., 2020; Xu et al., 2020; Kumar et al.,
2020; D’Este et al., 2018; Kowalski et al., 2018; Defraeye and
Martynenko, 2018).

However, when biomaterials are integrated into the host,
the foreign body response (FBR) inevitably arises (Doloff
et al., 2017; Ibrahim et al., 2017; Chandorkar et al., 2018;
Sharifi et al., 2019; Veiseh and Vegas, 2019), in which the
immune microenvironment interacts with biomaterials via
humoral and cellular factors, and this process determines the
success of the integration and the biological performance of
the biomaterials (Anderson et al., 2008; Sadtler et al., 2016a;
Chu et al., 2019). When the FBR is excessively happened,
inflammation, fibrosis, infection, and thrombosis can occur
(Bitar, 2015; Adu-Berchie and Mooney, 2020), resulting in
material degradation, fiber proliferation, and so on, which
impedes the morphological and functional maintenance of
biomaterials in vivo (Martin and Leibovich, 2005; Bitar,
2015).

Immunomodulatory biomaterials (IMBs) are defined as
biomaterials with the design to control the FBR processes in
order to biomaterial−tissue integration and tissue repair, which
are a feasible principle of biomaterial development (Sadtler et al.,
2016b; Chu et al., 2017a; Andorko and Jewell, 2017; Chu et al.,
2017b; Dziki and Badylak, 2018; Lee et al., 2019; Wolf et al., 2019;
Adu-Berchie and Mooney, 2020; Hu et al., 2021). In the design of
the IMBs, the immune-related substances or cells can be attached
to the biomaterials, to produce an immunomodulatory effect on
the microenvironment and to control the FBR. Since the FBR
essentially arises from the interaction between the immune
microenvironment and the biomaterials, many researchers
have designed IMBs based on modulating these interactions,
and the design element used were coming from the analysis of
specific interactions, such as those between cells and bioactive
substances which including proteins, and nucleic acids, and so on
(Dellacherie et al., 2019; Eslami-Kaliji et al., 2020; Lasola et al.,
2020).

In this review, we summarized the development of IMBs
incorporating the cells and substances involved in the
interaction between IMBs and the immune
microenvironment. The principle and aim of IMB

FIGURE 1 | The mechanism map of three FBR stages. The mechanism and biological process of the foreign body response (FBR) induced by implants include
three stages: protein adsorption, inflammation, and in vivo integration.
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modification should be the modulation of the FBR by
regulating interactions, resulting in IMBs that can function
in tissue regeneration and repair.

2 THE MECHANISM OF THE FOREIGN
BODY RESPONSE: THE INTERACTIONS
BETWEEN IMMUNOMODULATORY
BIOMATERIAL AND IMMUNE
MICROENVIRONMENT

As several excellent reviews have elaborated on the mechanism
and biological process of the FBR, we have briefly summarized
these processes and divided them into the following three stages
(Mariani et al., 2019; Gaharwar et al., 2020; Mukherjee et al., 2020;
Zhang et al., 2021) (Figure 1)

1) Protein adsorption. The first FBR stage occurs within
seconds, in which components of the blood, including
fibrous protein immediately adsorbed onto the surface of
the biomaterial and platelets adherent (forming a
provisional matrix) (Barker and Engler, 2017; Wight, 2017;
Mendes et al., 2018). The complement system in the host is
activated at the same time (Barrington et al., 2001; Donat et al.,
2019; Haapasalo and Meri, 2019), directly attacks the cells in
the biomaterial implants and recruits neutrophil infiltration,
resulting in vascular endothelial damage, fibrin deposition,
and massive platelet aggregation around the implant (Park
et al., 2018a; Rahman et al., 2018; Braune et al., 2019;
Tanneberger et al., 2021).

2) Acute inflammation. The second stage occurs within a few
hours to a few days. The provisional matrix contains many
growth factors and chemokines, which recruit mast cells and
multinucleated lymphocytes (Zhou and Groth, 2018; Lock
et al., 2019; Teixeira et al., 2020). Mast cells release TNF-α, IL-
1β, and MCP-1, which recruit monocytes and activate Toll-
like receptors on the monocyte surface to stimulate maturity
(Beghdadi et al., 2011; Maximiano et al., 2017; Komi et al.,
2020; Ozpinar et al., 2021a). On this basis, TH1 lymphocytes
(Th1) release IFN-γ to promote macrophage polarization
toward the M1 phenotype (M1) (Mariani et al., 2019;
Vassey et al., 2020), M1 macrophages release IL-1, IL-6, IL-
8, IL-12, and TNF-α to mediate inflammation, and the protein
mentioned above can further stimulate the polarization of
macrophages (Wynn and Vannella, 2016; Zhou et al., 2020a;
Engler et al., 2020).

3) Host integration. The third stage occurs a few days after the
second stage, and its direction depends on the
immunomodulatory results of the previous two stages. In
the microenvironment with inflammation-related genes (IL-
1β-related genes, etc.) upregulation (He et al., 2020; Nakkala
et al., 2021a), FBR outcomes such as chronic inflammation,
excessive granulation, collagen fiber deposition and fibrous
tissue formation (Castaño et al., 2018; Adu-Berchie and
Mooney, 2020; Gaharwar et al., 2020). In regard to FBR
controlled, fibroblasts and mesenchymal stem cells (MSCs)

are recruited to regenerate and continue a good repair process
(Hannan et al., 2017; Soundararajan and Kannan, 2018; Wang
et al., 2018).

3 INTERACTION LINKS: CUES FOR THE
DEVELOPMENT OF
IMMUNOMODULATORY BIOMATERIALS
WITH INTEGRATED SUBSTANCES

The FBR process remodels and integrates the implants into the
immune microenvironment of the host by interacting with cells
and bioactive substances. Therefore, the IMB should be designed
with an “immune-informed” ability (Reid et al., 2018; Tang et al.,
2018;Mariani et al., 2019; Adu-Berchie andMooney, 2020; Zhang
et al., 2021), precisely, the ability to regulate microenvironment
bioactive substances to form feedback. In this way, the interaction
between the FBR activity and IMB feedback can control the FBR
by regulating bioactive substances. In this review, the interactions
among regulating cells and bioactive substances which including
proteins and nucleic acids are summarized, which provide cues
for determining IMB incorporation strategies to achieve better
tissue repair. (Figure 2).

4 CELL INTERACTION: MODIFYING
IMMUNOMODULATORY BIOMATERIALS
TO MODULATE IMMUNE CELL
FUNCTIONS

4.1 Macrophage Polarization
Macrophages play an important role in the second stage of the
FBR (Wynn and Vannella, 2016; Petrosyan et al., 2017; Boada-
Romero et al., 2020) and mainly exist as the pro-inflammatory
M1 phenotype. The M1 phenotype secretes numerous matrix
metalloproteinases (MMPs) and different cytokines, such as
TNF-α, IL-1, IL-6, IL-8, and IL-10, which further stimulates
the inflammatory response (Delavary et al., 2011;
Vishwakarma et al., 2016; Wynn and Vannella, 2016; Zhang
et al., 2016; Olingy et al., 2019; Davenport Huyer et al., 2020).
Meanwhile, different macrophage phenotypes can arise in
response to immune information (Sica and Bronte, 2007; Liu
and Yang, 2013; Vassey et al., 2020; Muñoz-Rojas et al., 2021).
Therefore, many researchers aim to design IMBs capable of
transforming naive macrophages or M1 macrophages in the
microenvironment into anti-inflammatory M2 macrophages
and improve the anti-inflammatory ability and tissue repair
function of the IMB (Sridharan et al., 2015; Wynn and
Vannella, 2016; Ghasemi et al., 2019; Yin et al., 2020a; Zhou
et al., 2020a; Engler et al., 2020). IMB modification methods can
be focused on biophysical cues and biochemical cues.

4.1.1 Biophysical Modifications
Macrophage polarization can be controlled by biophysical cues,
such as surface morphology (Sridharan et al., 2015; Zhou et al.,
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2020a; Davenport Huyer et al., 2020; Muñoz-Rojas et al., 2021)
(Figure 2A1, Figures 3A,B).

In terms of mechanical properties, macrophages perceive the
material’s rigidity through Rac-1 mechanosensory pathways,
which then influence M1/M2 polarization (Acevedo and
González-Billault, 2018; Guimarães et al., 2020; Healy et al.,
2020). Many studies have demonstrated that M2 is the main
direction of macrophage polarization on soft materials (Li et al.,
2018; Guimarães et al., 2020; Atcha et al., 2021; Ye et al., 2021).
For example, Blakney et al. (2012) have shown that when the
internal rigidity of 3D polyethylene glycol-RGD is kept at 130 kPa
(low stiffness), the proportion of M2 macrophages increases,
upregulating the release of anti-inflammatory cytokines such
as IL-10 and inhibiting the FBR. Yanlun Zhu et al. (Zhu et al.,
2021) used rigid regulation cues and added bioactive glass to
sodium alginate hydrogel to soften its mechanical properties,
which effectively promoted M2 polarization and optimized the
repair effect in damaged skin tissue.

Macrophages are sensitive to surface morphology changes
larger than 5 μm, as a result of Rac-1 mechanosensory
pathway and F-actin changes (Acevedo and González-Billault,
2018; Guimarães et al., 2020; Healy et al., 2020). Matthew et al.
(Vassey et al., 2020) used a high-throughput method to screen the
relationship between 2,176 types of surface morphology and
macrophage attachment and phenotype. The results showed
that modifying the IMB surface with microcolumns, retaining
a diameter between five and 10 μm, yields excellent effects on
macrophage attachment and M2 polarization.

Pore size is also an important driver of macrophage
polarization. Fa-Ming Chen et al.(Yin et al., 2020b) proved
that collagen-scaffolds with 360 μm sized pore promoted
macrophages undergoing a higher degree of M1-to-M2
transition. Groll et al. (Tylek et al., 2020) pronounced that

fibrous scaffolds with inter-fiber pore from 100 to 40 μm
facilitated macrophage elongation accompanied by M2
polarization. Also, M2 polarization was reported in response
to polyurethane scaffolds with 100 μm sized pore (Liang et al.,
2018). In general, macrophages could undergoM2 polarization in
macro pores with sizes ranging from tens of microns to hundreds
of microns. The specific optimal pore size varies greatly among
different materials due to the properties of scaffold materials,
such as rigidity and elasticity.

4.1.2 Biochemical Decorations
Chemical coatings and nanomaterial coatings are also feasible
mainstream research directions (Davenport Huyer et al., 2020;
Gao et al., 2020). For example, Nakkala et al. (2021b) showed that
a dimethyl itaconate (DMI) coating on IMBs promoted the adhesion
of M2 macrophage, and protected against myocardial infarction in
vivo by improving left ventricular heart function. McBane and others
studies have shown that coating IMBs hydrophobic ionic
polyurethane (DPHI) has produces effective anti-inflammatory
activities. Mahon et al. (2020) performed an immunomodulatory
modification of bone defect healing biomaterials by adding
nanohydroxyapatite particles (BMnP), which promoted M2
polarization, tissue angiogenesis, and increased bonemass (Figure 3).

4.2 Cues From Mast Cell Maturity
Mast cells also play an essential role in the second stage of the FBR
(Beghdadi et al., 2011), in which mast cells are activated to a
mature state by several receptors, such as FcεRI, Toll-like
receptor, and RIG-like receptor (Beghdadi et al., 2011; Komi
et al., 2020). Mature mast cells release histamine, tryptase and
monocyte chemoattractant protein-1 (MCP-1) activate
fibroblasts, who in turn release stem cell factor (SCF) to
continue regulating MCs through CD117, which promote

FIGURE 2 | IMB decoration methods and a self-adaptive example. (A) IMB decoration with cues from cell; (A1) decorate surface morphology and mechanical
properties to control macrophages and mast cells; (A2) add biochemical coating to control macrophage M2 polarization; (A3) control macrophage polarization by time-
dependent change of external stimulus. (B) IMB decoration strategy with cues from protein delivery; (B1) decorate scaffold to be a delivery syetem; (B2) decorate MSCs
to be a delivery syetem for high-targetting; (B3) integrated sustained-release chips. (C) IMB decoration with cues from nucleic acid; (C1) RNA interference; (C2)
plasmid vectors; (C3) DNA grafting.
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beneficial tissue repair process, like neovascularization and so on
(Maximiano et al., 2017; Ozpinar et al., 2021a). Therefore, the
controller strategy can be applied on mast cells to accelerate mast

cell maturity, and thereby more cytokines will be secreted.
Additionally, modification methods can be focused on
biophysical cues and biochemical cues.

FIGURE 3 | IMB Decoration with cues from macrophage polarization. (A,B) Reprinted with Creative Commons CC BY license(Vassey et al., 2020). (A) A high
throughput screening approach is utilized to investigate the relationship between 2,176micropatterns surfacemorphology andmacrophage attachment and phenotype.
(B) Micropillars 5–10 μm in diameter play a dominant role in driving macrophage attachment and M2 phenotype. (C) Dimethyl itaconate (DMI)-loaded PCL nanofibers
and their roles on modulating the polarization of M1 into alternatively activated M2 macrophages, and protecting frommyocardial infarction in vivo by improving left
ventricular heart functions and down regulating inflammation-associated genes. Reprinted with permission from© 2022 WILEY (Nakkala et al., 2021b). (D,E) Nano-
particle treated macrophages enhances osteogenic differentiation and vascularization. Reprinted with permission from© 2022 WILEY (Arizmendi et al., 2021).
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4.2.1 Biophysical Modifications
The maturation of mast cells can also be promoted by changing
the material surface morphology (Atiakshin et al., 2018; De Zuani
et al., 2018; Frossi et al., 2018; Chu et al., 2019; Sammarco et al.,
2019; Galli et al., 2020; Ragipoglu et al., 2020; Yabut et al., 2020;
Arizmendi et al., 2021). Maximiano et al. (2017) have indicated
that, similar to macrophages, the maturity and functional activity
of mast cells can also be controlled by the IMB surface
morphology. For example, mast cells tend to adhere to and
mature on IMBs constructed with large pore size microholes
(Ozpinar et al., 2021b) (Figure 2A1).

4.2.2 Biochemical Modifications
Maturation-associated receptors provide cues for accelerating the
release of functional proteins from mast cells (Kempuraj et al.,
2018; Olivera et al., 2018; Thangam et al., 2018;Widiapradja et al.,
2019; Wilcock et al., 2019). Milmy et al. (Ortiz et al., 2020)
demonstrated that PCL scaffolds modified to generate IMB
scaffolds by the incorporation of dinitrophenyl IgE can
activate FcεRI to promote mast cell maturity and then further
regulate the FBR and facilitate tissue repair by TNF-α and IL-13,
which are released by mature mast cells. Modifications using that
activate Toll-like receptors and c-type receptors are also a feasible
method for “controlling”mast cell maturation and regulating the
immune microenvironment (Ozpinar et al., 2021a).

4.3 More Promising Cues From Immune
Cells
Macrophage polarization and mast cell maturation have been
successfully promoted by IMBs, proving that modifying IMBs to
“control” cell function is feasible. The highlight of this strategy is that
immune information attached in a simple modification recognized by
the cells in themicroenvironment promotes the cells to differentiate as
required for tissue repair. This strategy shifts the dominance of the
interaction from the microenvironment to the material. The result of
other studies have also indicated that other immune cells, such as
T cells (Th1, Th2) (Choo et al., 2017; Wolf et al., 2019), dendritic cells
(Eslami-Kaliji et al., 2020; Nguyen et al., 2020; Čolić et al., 2020),
multinucleated lymphocytes, and even fibroblasts and MSCs
(Soundara Rajan et al., 2020; Chang et al., 2021) in the
microenvironment could be controllable by modified IMBs to
further regulate the FBR.

5 CUES FROM PROTEIN INTERACTION:
MODIFYING IMMUNOMODULATORY
BIOMATERIALS TO OPTIMIZE PROTEIN
DELIVERY

5.1 Modified Immunomodulatory
Biomaterial as Protein Delivery Systems
Proteins, including interleukins, growth factors, and complement
proteins, are bioactive constituents of the immune
microenvironment, that interact with cells and nucleic acids to
form a microenvironmental regulatory network. Therefore, protein

delivery is a viable strategy to regulate the FBR. (Sharma et al., 2016).
Determining which effector proteins should be selected and how to
deliver these proteins is a leading research direction (Chung et al.,
2017; Leach et al., 2019). (Table 1).

In terms of protein selection (Fisher et al., 2017; Frejd and
Kim, 2017; Grim et al., 2018; Simeon and Chen, 2018;
Mohammadinejad et al., 2019), Sharma and others have
demonstrated that the interleukin family (IL) has effects
several target cells (Akdis et al., 2016; Ghilardi et al., 2020).
For example, IL-1 enhances immune function, IL-4 and IL-13
regulate the inflammatory response (Arend et al., 2008).
Therefore, implants modified with these proteins can inhibit
the FBR and are better integrated into the surrounding tissue.
Meanwhile, growth factor (GF) is a polypeptide substance that
regulates cell growth and its expression can be upregulated in an
inflammatory microenvironment, which can promote vascular
regeneration (Akdis et al., 2016; Zbinden et al., 2020). Vascular
regeneration inhibits the FBR, and the implant can integrate in
the host to facilitate tissue repair. Additionally, the complement
protein family (Donat et al., 2019), including some oligopeptides
(Zhang et al., 2020), has been considered for IMB modification,
because it is a component of the innate immune system and plays
a vital role in the first stage of the FBR (Barrington et al., 2001;
Haapasalo and Meri, 2019), this stage of the FBR can destroy
biomaterials directly and also recruit neutrophils to facilitate
uncontrolled progression to later FBR stage (Panichi et al.,
2000). These proteins are representative bioactive substances
that have been widely investigated as IMB modifications.

In terms of the delivery system (Shadish et al., 2019; Takeuchi et al.,
2017; Kuo et al., 2018; Rehmann et al., 2017; Leijten et al., 2017),
(Figure 2B), most biomaterials, such as alginate, PEGate-gelatin
scaffolds, and collagen/hyaluronic acid scaffolds, possess their own
slowly releasing proteins for internal charge adhesion and porosity,
indicating that it is feasible to attach a protein delivery system to IMBs.
One promising example is the use of a polyelectrolyte multilayer
coating (PLG-scaffold) (Deng et al., 2020) to enhance the sustained-
release function of IMBs, as the thickness of the coating can be easily
modified to achieve different hydrophilic protein levels and release
rates. For example, David et al. (Li et al., 2020) used a PLG coating
modification for the sustained-release of steroid drugs to reduce aseptic
inflammation in nerve prosthesis transplantation. Additionally, IMBs
can be modified to carry multiple proteins through direct protein
mixing and the use of integrated chips (Sharma et al., 2021). On this
basis, a strategy for the sequential release of proteins in spatiotemporal
coordination initiated by an external stimulus [light, heat (Gnaim and
Shabat, 2019), magnetic (Orapiriyakul et al., 2020), acoustic wave
(Moncion et al., 2017), etc.] has been proposed to align the IMB
function with the tissue repair process in the body (Jimi et al., 2020;
Oliva and Almquist, 2020) (Figure 2B3).

5.2 Optimal Immunomodulatory Biomaterial
Modification: Highly Targeted Delivery
Systems
To improve targeted delivery, many researchers have modified
stem cells (Zhou et al., 2020b; Su et al., 2020), T cells (Choo et al.,
2017; Cevaal et al., 2021), biological vesicles (Anika Nagelkerke,
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2020; Brennan et al., 2020), and other vehicles into delivery
systems due to their excellent biocompatibility and targeting
ability to eliminate the problem of proteins diffusing locally
around the implants (Jin et al., 2018).

For example, the Martinez team creatively proposed
combining MSCs with nanocarriers to construct a
multifunctional multicomponent “M&M delivery platform”.
This IMB platform takes advantage of the inflammation-
targeted function of MSCs, and the drug is accurately targeted
and delivered to the activated immune microenvironment. IMBs
constructed with a combination of a targeted carrier and a
bioactive substance are vividly defined as “Trojan horses”
(Martinez et al., 2021) (Figure 2B2). Wang et al. (Wang et al.,
2017) demonstrated the feasibility of these IMBs by coating
bioactive substances with platelet extension vesicles (PEVs) to
regulate bleeding and protein deposition in the FBR.

The protein delivery strategy is the most widely used modification
strategy at present (Ooi et al., 2017; Rosales et al., 2017; Brown, 2018;
Hedegaard et al., 2018; Jain et al., 2018); the biomaterial itself is a
suitable carrier formany regulatory proteins, and extensive knowledge
of cytokines (interleukin family, growth factors, chemokines, etc.) in
immunology provides a foundation for its application. The highlight
of this approach is that in the material-microenvironment interaction

process, the proteins are not only involved in cell and nucleic acid
interactions but are also the main component of the FBR.

Therefore, the protein delivery strategy is simple and effective,
and IMBs carrying proteins can directly prevent the progression
of the FBR. Moreover, the targeted optimization of the “Trojan
Horse” approach allows the delivered protein to act more
specifically in the immune microenvironment, improves the
efficacy of tissue repair and reduces the potential for a
systemic response.

6 CUES FROM NUCLEIC ACID
INTERACTIONS: MODIFYING
IMMUNOMODULATORY BIOMATERIALS
USING GENOME-EDITING TECHNIQUES

6.1 Modifying Immunomodulatory
Biomaterials to Determine Cell Fate and to
Form a Regenerative Microenvironment
Recently, with the development of molecular biology and
genome-editing techniques, a deep molecular understanding of

TABLE 1 | IMB modulates FBR to meet better outcomes by delivering proteins.

Scaffold Protein Delivery mode Outcome References

PLGA/PDA/PCL composite
scaffolds

Insulin Single protein sustained release The scaffolds stimulated chondrocytes
proliferation, BMSCs differentiation, and
enhanced bone and cartilage repair in vivo

Liming Wang Wei
et al. (2021)

Nerve guidance conduit
(NGC) scaffold

Melatonin (MLT) NGC-MLT scaffold promoted morphological,
functional, and electrophysiological recovery
of regenerated sciatic nerves in vivo.

Wei-En Yuan Xu
et al. (2020)
Wei-En Yuan Chen
et al. (2020a)

Tannic acid (TA) coating Ca-
alginate scaffold

E7/P15 peptides Synergistic sustained release of
multiple protein

The scaffold induced BMSC recruitment and
bi-lineage differentiation by E7 and P15,
enhancing cartilage and subchondral bone
regeneration

Jialin Chen Zhang
et al. (2020)

Hyaluronic acid (HA)
injectable scaffold

Stromal cell derived factor-1
(SDF-1); Kartogenin (KGN)

The regenerated tissue had the typical
cartilage histological characters and
integrated well with the surrounding tissue
after 12 weeks of injection

Zhibing Zhang Wu
et al. (2020)

A drug-releasing
microporous annealed
particle (drugMAP) system

Forskolin (F); Repsox (R) FR/drugMAP treatment increased
angiogenesis, reduced fibrosis and
inflammatory response, and improved left
ventricular functions

Song Li Fang et al.
(2020)

Silk fibroin (SF)/nano-
hydroxyapatite (nHAp)
scaffold

Stromal cell derived factor-1
(SDF-1); Bone morphogenetic
protein-2 (BMP-2)

A time-dependent sequential
synergistic release of multiple
protein

Scaffold increased bone regeneration in rat
cranial defects, and the bone completely
bridged the injury site after 12 weeks of
implantation

Liang Chen Shen
et al. (2016)

Porous mesoporous
bioglass scaffold

Dexamethasone; Bone
morphogenetic protein (BMP)

The scaffold regulated the recruitment and
polarization of macrophage phenotypes and
facilitated developmental bone growth
process

Changsheng Liu
Liu et al. (2021)

3D printed zinc oxide (ZnO)
micro-particles hydrogel
patch

vascular endothelial growth
factor (VEGF)

Sequential release in
spatiotemporal coordination
started by stimulus (light, heat,
magnetic, etc.)

The printed wound patches reduced
immunogenicity and enhanced wound
healing in vivo

Su Ryon Shin
Siebert et al.
(2021)

Integrating biomimetic 3D
bioprinted fluid perfused
microstructure

vascular endothelial growth
factor (VEGF); Bone
morphogenetic protein (BMP)

The microstructure benefited vascularized
bone regeneration, improved complex
vascularized tissue or organ regenerations

Lijie Grace Zhang
Cui et al. (2016)
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the FBR has been obtained, which has provided cues for applying
genome-editing techniques for the modification of IMBs (Mali
and Cheng, 2012; Nelson and Gersbach, 2016; Kamburova et al.,
2017; Glass et al., 2018; Metje-Sprink et al., 2019; Mushtaq et al.,
2019; Vats et al., 2019; Ali et al., 2020). This approach can be used
to generate IMBs that can regulate the immune cells, stem cells
and fibroblasts recruited in the third stage of the FBR (Hiew et al.,
2018; Ma et al., 2018; Ng et al., 2021). After using genome-editing
techniques to integrate nucleic acid information into repair-
related cells, such as MSCs, repair-related proteins such as
growth factors are secreted, which promote a
microenvironment more conducive to tissue repair.
Additionally, the nucleic acids transcribed by MSCs can
directly regulate stem cell fate, determine the direction of
differentiation of specific cell types, and complete the repair of
specific structures.

It is novel to use nucleic acids as an upstream regulation
strategy. The progression of the FBR and the characteristics of the
microenvironment are influenced by IMBs modified in this
manner. This modification method targets earlier in the repair

process than cellular- and protein-level modifications and is
widely applicable for tissue repair and other directions. Of
course, more research is still needed to determine the safety,
ethical requirements, and stability of this approach.

6.2 Examples of Genome-Editing
Techniques Applied for Immunomodulatory
Biomaterial Modification
6.2.1 The RNA Interference (RNAi) Technique
Alexandra McMillan et al. (2021) encapsulated RNA
nanocomplexes in IMBs to construct IMBs with RNA
interference (RNAi) technology to influence the cell fate
decision at the messenger RNA (mRNA) level. The properties
of IMB ensure the long-term retention and effectiveness of RNA
nanocomplexes in vivo. The results proved that RNA
nanocomplexes were still locally functional after 28 days and
controlled the fate of stem cells, which differentiated into
osteoblasts and chondrocytes, providing a new strategy for
bone repair (Figure 2 C1, Figures 4A,B).

FIGURE 4 | IMB Decoration with cues from nucleic acid-associated technologies. (A,B) Reprinted with permission from Copyright© 2022, Elsevier (Alexandra
McMillan et al., 2021). (A) Schematic show the fabrication of DEX based MS encapsulating siRNA-micelles, and depicte the incorporation of siRNA-MS into a MSCs
aggregate for localized and sustained siRNA presentation and subsequent sustained gene silencing within a stem cell aggregate. (B) Distribution of incorporated MS in
MSCs aggregates for sustained siRNA presentation. Fluorescence confocal photomicrographs of rhodamine-labeled (red) siGLO-MS incorporated into MSCs
aggregates to visualize siGLO uptake (green) and DAPI stained MSCs nuclei (blue) in 3D aggregates after different culture periods (C,D) Reprinted with Creative
Commons CC BY license (Chen et al., 2020b). (C) NIR light-controllable SNAs release based on DNA-grafted HA for OA treatment. HA-SNAs system is injected into the
knee joint and irradiated by NIR light to gradually release the SNAs, which enter into cells to interfere with mRNA molecules to silence IL-1 expression. (D) Histological
staining shows the treatment of mouse after injection of PBS and HA-SNAs + NIR at 12 weeks after surgery.
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6.2.2 The Plasmid Transfection Technique
In the study of Moreira (Moreira et al., 2021), plasmid vectors
were attached to IMBs for the continuous production of repair-
and regeneration-related proteins (e.g., VEGF and FGF) to
promote tissue regeneration and repair. In this study, based on
the original porous sponge material, chitosan (Ch) and
polyethyleneimine (PEI) were used as nonviral vectors to
transfer the plasmid encoding vascular endothelial growth
factor (p-VEGF) and the plasmid encoding fibroblast growth
factor-2 (p-FGF-2). The results showed that plasmid DNA
rapidly produced these growth factors in the
microenvironment, which induced the formation of capillary-
like structures and promoted the assembly of endothelial cells
into several capillary segments (Figure 2C2).

6.2.3 The DNA Grafting Technique
Chen et al. (2020b) modified hydrogel scaffolds by spherical
nucleic acid and DNA grafting to regulate the immune
microenvironment. Chen grafted complementary strand DNA
onto hyaluronic acid to obtain DNAHA and then combined
spherical nucleic acids (SNAs) by base pairing to form an
SNA-DNAHA system. The DNA was unhybridized by
photothermal induction, and the SNAs were released to
downregulate the expression of inflammation-related genes,
such as the IL-1β gene and the protease MMP gene, and
upregulate the expression of matrix synthesis genes, such as
the collagen II gene, thus controlling the inflammation caused
by the FBR (Figure 2C3, Figures 4C,D).

7 CUES FROM THE SPATIAL-TEMPORAL
HETEROGENEITY OF THE FBR: OPTIMAL
IMMUNOMODULATORY BIOMATERIAL
MODIFICATIONS FOR RESPONSIVENESS

7.1 Spatial-Temporal Heterogeneity of the
FBR: Requirement for Responsive
Immunomodulatory Biomaterials
As described above, the FBR involves the integration of
biomaterials into the immune microenvironment of the host
through interaction with bioactive substances, such as cells,
proteins, and nucleic acids. These interactions provide cues for
biomaterial modification strategies, which allow IMBs to
modulate the FBR and induce the evolution of the FBR
toward tissue regeneration and repair (Campi et al., 2017;
Lalitha Sridhar et al., 2017; Rose and De Laporte, 2018;
Ashammakhi et al., 2019; Gonzalez-Fernandez et al., 2019;
Riley et al., 2019; Daly et al., 2021).

However, the FBR and tissue repair occur in stages and have
spatial-temporal heterogeneity; that is, the various bioactive
substances form divergent interactions at different temporal
points. The concept of responsive IMBs was proposed for
modulating multiple interactions, in which the IMBs can
respond to environmental or external stimuli and provide
diverse immune information feedback at different stages of the

FBR. In other words, responsive IMBs exert a combination of the
effects of the three IMB modification strategies mentioned
previously, and can produce the effect of cascade amplification
in tissue repair.

Responses to both external and environmental stimuli have
individual advantages, and both are promising targets for the
development of responsive IMBs. External stimuli are artificially
imposed and can be better controlled. Additionally, the design of
biomarkers responsive to external biomaterials is achievable.
Environmental stimuli arise from changes in the immune
microenvironment, and the temporal point of the response is
more reasonable, but it is uncontrollable in vivo, thus requires
more rigorous design.

7.2 Utilizing External Stimuli to Form a
Multiple-Stage Regulation
If the original three-dimensional material structure is endowed
with the ability to respond to external stimuli, such as heat, light,
magnetic, and so on, the modified IMBs can exert different
functions over time, which allows for diverse regulation.

For example, magnetic nanomaterials are feasible carriers for
the implementation of this strategy, and Choi and others have
indicated that magnetic control of nanoligands can promote
tissue regeneration (Choi et al., 2020). In their study, time-
dependent magnetic stimulation was used to promote
nanoligands carrying integrin-binding ligands (such as RGD)
to aggregate in one area. Thus, the ligand density can be increased
at a certain time point. When dense ligands aggregate the
macrophage adhesion structure and promote the elongated
assembly of actin, M1 phenotype polarization is inhibited, and
M2 polarization is promoted. There are other examples of the use
of external stimuli, such as ultraviolet (UV) light, which is used to
trigger UV-mediated photolysis molecules and form different
surface morphologies at different times, and this method has also
been shown to be feasible for modulating various immune cell
functions. (Figures 5A,B).

7.3 Utilizing Environmental Stimuli to Form a
Self-Adaptive Regulation
Self-adaptive regulation of IMBs can provide diverse immune
information feedback after initiation by changes in the immune
environment, such as photothermal changes, pH changes,
changes in the metabolites in the microenvironment, and so
on, to inhibit multistage FBR and promote tissue repair.

Cui et al. (Cheng et al., 2020b) exploited the double
responsiveness of NIPAAm molecules to explore this
approach. When the FBR causes inflammation, the
accumulated metabolites change the pH of the
microenvironment and exceed the response threshold of
NIPAAms, and NIPAAms respond to pH changes by releasing
proteins through “gel transformation”, thus using the immune
microenvironment as a method to activate the IMBs.

Gao et al. (Peng et al., 2020) designed a self-adaptive skin
repair IMB, further demonstrating the feasibility of this approach.
Self-adaptive IMBs can first increase the recruitment of MSCs

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8209409

Chen et al. Cues for Immmunomodulation Strategies

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


into the microenvironment with a protein release strategy, then
respond to the accumulation of stem cell matrix
metalloproteinase (MMP) and release pFGF/DNA, promoting
the neuronal differentiation of MSCs through pFGF/DNA, and
ultimately, lead to the repair and functional recovery of damaged
skin. Zhang et al. also used MMP to degrade the outer scaffold
and to realize the sequential release of VEGF and BMP in
temporal coordination and produce better bone repair, as
VEGF-induced vascularization provides a foundation for
vascularized bone regeneration.

8 DISCUSSION: INTELLIGENT
IMMUNOMODULATORY BIOMATERIALS

Self-adaptive responses can initiate multiple superimposed
interactions at the level of cells, proteins and nucleic acids, provide
various stimuli required for regulating the FBR and repair processes,
and produce cascading amplification effects. Meanwhile, IMBs with
high targeting capacity are required for specificity, and the previously

mentioned “Trojan Horse” approach has been developed to achieve
this. Therefore, developing IMBs that provide self-adaptative feedback
over time and have high targeting capacity within specific areas is a
future direction of IMB modification research (Veiseh et al., 2015;
Tzu-Chieh et al., 2021).

Nowadays, IMBs have promising application prospects, but
there is still a gap between clinical uses. In the future, while the
design of IMB is being optimized, biocompatibility and biosafety
evaluation should also be necessary to demonstrate the safety of
the final product. Meanwhile, cadaveric and clinical studies
should be performed to validate that the product’s safety and
efficacy could meet preset clinical needs.

In addition, for modifications involving cells and bioactive
substances which including proteins and nucleic acids, high
throughput screening can be used as a reference to determine
targets (Park et al., 2018b; Seo et al., 2018) and for more advanced
mathematical modeling and big data analysis methods (Yang
et al., 2021), which may result in better outcomes for screening
surface morphology, modeling interactions between cytokines,
and so on. Additionally, this approach will improve the stability

FIGURE 5 | Examples of external stimuli and environmental stimuli. (A,B) Time-dependent magnetic attraction of the slidable nano-ligand facilitates macrophages
adhesion, and stimulate regenerative M2 phenotype. Reprinted with permission from© 2022WILEY (Choi et al., 2020). (C) Self-adaptive chip complete the damage skin
repair with neuronal function by stimulating the nerve fiber formation and excitation function recovery with four major steps. Reprinted with permission from© 2022
WILEY (Li et al., 2020).
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and effect of single interactions and provide a foundation for
intelligent self-adaptive tissue repair.
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