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SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) has wreaked havoc during
the global pandemic of 2020 infecting millions and leaving over a half million dead. As a
new virus, not previously in the human population, but with similarities to other
coronaviruses causing severe acute respiratory distress syndrome (SARS/ARDS), and
no known treatments, the race to re-purpose existing drugs and to enlist novel
therapeutics is underway. In the half-year since the first cases, we have acquired
substantial knowledge of this virus and the clinical course of COVID-19 progression.
Results from early clinical trials have revealed two treatments (remdesivir, dexamethasone)
that mitigate disease progression but clearly, there is much room for improvement. Initial
case reports indicated many succumb to COVID-19 of hypoxic respiratory failure due to
ARDS. However, ensuing studies revealed an atypical, immune cell-sequestered,
vasculature-inflamed state leading to multiorgan thrombotic complications and end
organ failure likely due to hyperinflammatory host responses. This Perspective focuses
on a potential mechanism for a key COVID-19 disease progression turning point related to
vascular and airway inflammation. The leukotriene lipid mediators have been overlooked
with discussion centering on cytokine storms unleashing the deadly form of COVID-19.
Leukotrienes possess some of the most potent known activities on immune cell trafficking
and vascular leakage. We offer a simple treatment paradigm using two generic drugs
targeting the hyperinflammatory response that characterizes the turning point from mild to
severe/critical COVID-19 by targeting leukotriene biosynthesis with zileuton (Zyflo®

controlled release formulation) and antagonism of the cysteinyl leukotriene 1 receptor
with montelukast (Singulair®).
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INTRODUCTION

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2)
is the viral instigator of coronavirus disease 2019 (COVID-19)
(Oberfeld et al., 2020; Wu F. et al., 2020; Zhou P. et al., 2020; Zhu
et al., 2020). Striking in China in late 2019, the virus has spread to
virtually every inhabited space on the globe creating a wave of
infection killing over half a million people in the first 6 months of
the pandemic1. This pneumonia-causing disorder spreads
primarily from respiratory droplets of infected individuals in
enclosed spaces to mucosal epithelial cells in the upper airway
and oral cavity where it gains entry via its homotrimeric spike
protein to host-cell expressed angiotensin-converting enzyme-2
(ACE2) receptor binding sites in a protease-dependent manner
(Liu et al., 2020; Oberfeld et al., 2020). Viral RNA is released into
the cytoplasm and hijacks the cell coordinating a replication-
transcription complex, whereby viral RNAs are translated into a
distinct set of proteins. Virion assembly is completed and the
viral particles can perpetuate the cycle by infecting new cells in
the lower airways (Type II pneumocytes), enterocytes in the
gastrointestinal tract, while some eventually enter the
bloodstream via damaged host tissues (e.g., alveoli) and will
bind to ACE2 in vascular endothelial cells to initiate a cascade of
deleterious events throughout the body (Lamers et al., 2020;
Oberfeld et al., 2020; Varga et al., 2020).
COVID-19 AS A HYPOXIA/ARDS CLINICAL
DISORDER WITH A UNIQUE VASCULAR
HYPERINFLAMMATORY/
PROCOAGULANT STATE

COVID-19 can be divided roughly into mild, moderate, severe,
and critical cases (Berlin et al., 2020; Chen at al., 2020; Figure 1).
The vast majority of infected individuals remain largely
asymptomatic or only develop mild symptoms. These four
general classifications may be part of a continuum in the same
individual or discrete, distinct clinical entities in other cases that
do not progress from one category to the next. Once infected
with SARS-CoV-2, the median incubation period is 5 days to
symptoms, although this can be significantly shorter or longer,
presumably due to initial viral load of exposure (Berlin et al.,
2020). Initial clinical symptoms include fever, dry and persistent
cough, and fatigue with the potential for a wide range of other
symptoms (e.g., loss of taste/smell, loss of appetite, dyspnea,
headaches, sore throat, myalgia, intestinal discomfort/diarrhea,
conjunctivitis) with extensive variations between adults and
Abbreviations: COVID-19, Coronavirus disease 2019; SARS-CoV-2, Severe acute
respiratory syndrome coronavirus 2; ARDS, acute respiratory distress syndrome;
CRP, C-reactive protein; MIS-C, multisystem inflammatory syndrome in children;
LT, leukotriene; cysLT, cysteinyl leukotriene; LTB4, leukotriene B4; BLT1, B
leukotriene receptor subtype 1; CysLT1, cysteinyl leukotriene receptor subtype 1;
CysLT2, cysteinyl leukotriene receptor subtype 2; CSS, cytokine storm syndrome;
GPCR, G protein-coupled receptor; LTRA, leukotriene receptor antagonist; CR,
controlled release.
1https://coronavirus.jhu.edu/map.html [accessed June 30, 2020]
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children (Guan et al., 2020; Oberfeld et al., 2020). Severe
symptoms leading to hospitalization that progress rapidly to
hypoxia and acute respiratory distress syndrome (ARDS)
requiring supplemental oxygen and ventilator support are most
prevalent in the elderly with underlying co-morbidities such as
diabetes, obesity, and cardiovascular disease (Vetter et al., 2020;
Du et al., 2020) (see Figure 1). Circulating cytokines, such as IL-
6, IL-8, TNFa are significantly elevated in severe COVID-19
patients with documented SARS-CoV-2 infection in
pneumocytes and endothelial cells, which leads to severe
alveolar damage (Figure 2). In severe cases, lymphocytopenia
is evident, with depletion of CD4+ and CD8+ lymphocyte subsets
(Li et al., 2020) in blood. There is associated endothelial cell
damage of pulmonary vessels with widespread thrombosis
(elevated marker: D-dimer), complement activation and
microangiopathy (Ackermann et al., 2020; Becker, 2020; Magro
et al., 2020). The patients with severe COVID-19 develop an
overwhelming state of inflammation (elevated marker: C-
reactive protein) with multiorgan dysfunction that has been
labeled COVID-19 cytokine storm syndrome (CSS) (England
et al., 2020). Comparisons to other disorders including secondary
hemophagocytic lymphohistiocytosis (sHLH), macrophage-
activation syndrome (MAS), Castleman disease, and the
cytokine-release syndrome (CRS) associated with chimeric
antigen receptor T cell therapy (CAR-T)) have been detailed
(Becker, 2020; England et al., 2020) but none match precisely
what has been seen in COVID-19 CSS. An unusual presentation
in children, similar to Kawasaki Disease, termed MIS-C
(multisystem inflammatory disease in children) is showing
enhanced prevalence (Viner and Whittaker, 2020). Increasingly
clear is the unique multifocal nature of COVID-19 pathogenesis.
SARS-CoV-2 may instigate destruction to blood vessel
endothelial cells leading to coagulopathy and strokes, with
ensuing damage to kidneys, perhaps pancreatic islet cells, along
with neurological problems (Ackermann et al., 2020; Becker,
2020; Mallapaty, 2020; Sardu et al., 2020; Teuwen et al., 2020).
Factors affecting disease severity and protective immunity
include genetics, age, co-morbidities, sex, ethnicity,
demographics, and likely many more that have not yet been
defined (Casanova et al., 2020). Overall, SARS-CoV-2 appears to
promulgate a novel clinical presentation never before seen in the
human population.
MECHANISTIC PATHWAYS EXPLAINING
COVID-19 PROGRESSION THAT INVOLVE
LEUKOTRIENES

While a majority of attention has focused on the COVID-19 CSS
provoking an over exuberant host immune response to SARS-
CoV-2 infection in severe/critical cases, some have used a more
broad description of a hyperimmune or hyperinflammatory
storm (Alunno et al., 2020; Becker, 2020; England et al., 2020;
Jamilloux et al., 2020; Jose and Manuel, 2020; Mehta et al., 2020;
Panigrahy et al., 2020). In this classification, other inflammation-
provoking molecular entities, in addition to cytokines, would be
August 2020 | Volume 11 | Article 1214

https://coronavirus.jhu.edu/map.html
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Funk and Ardakani Leukotrienes in COVID-19
included. Severe disease pathogenesis is likely the result of
alveolar pneumocyte injury leading to SARS-CoV-2
dissemination to vascular endothelial cells facilitated by
widespread ACE2 expression in vascular beds (Ackermann
et al., 2020; Becker, 2020; Teuwen et al., 2020; Varga et al.,
2020) (Figure 2). Breaches in vascular integrity have been
reported with profound vascular leakage/permeability changes
(Ackermann et al., 2020; Becker, 2020; Teuwen et al., 2020).
These changes could also influence influx of inflammatory cells
throughout the airways and vessel walls. A totally neglected set of
molecules not discussed to date include the class of lipid
mediators known as leukotrienes (Samuelsson et al., 1987;
Funk, 2001; Capra et al., 2007; Peters-Golden and Henderson,
2007) (Figure 2). Leukotrienes are prime candidates to provoke
the hyperimmune/inflammatory response in progressing
COVID-19, with elevated leukotriene levels detected previously
in tracheal aspirates of patients with ARDS (Sala et al., 1991).
Leukotriene B4 (LTB4) is one of the most potent known
chemoattractants for neutrophils (Ford-Hutchinson et al.,
1980; Bisgaard et al., 1986) and lymphocyte subsets (Tager
et al., 2003; Taube et al., 2006), via signaling through the B
leukotriene subtype 1 (BLT1) G protein-coupled receptor
(GPCR) (Sasaki and Yokomizo, 2019). LTB4 is likely one of
Frontiers in Pharmacology | www.frontiersin.org 3
the key mediators carrying out the huge influx of these cells to
airways, which leads to the profound blood lymphocytopenia
observed in severe COVID-19 and neutrophilia in airways
(Zhang et al., 2020; Li et al., 2020). Moreover, the cysteinyl
leukotrienes (cysLTs) LTC4 and LTD4 are among the most
profound vascular leakage promoting agents in man and
animal models, signaling via two GPCR subtypes CysLT1 and
CysLT2 (Samuelsson et al., 1987; Funk, 2001; Maekawa et al.,
2002; Lee et al., 2004; Moos et al., 2008; Capra et al., 2015).
CysLTs also provoke a number of immune cell actions e.g.,
macrophage activation, inflammatory cell cytokine secretion and
activation of the transcription factor NF-kB, which controls
numerous genes involved in inflammation, all of which would
heighten the hyperimmune/inflammatory response (Kanaoka
and Boyce, 2004; Maeba et al., 2005; Tahan et al., 2008) in
COVID-19.

If leukotrienes (LTs) have such potent inflammation-
promoting actions, why have they not been considered so far?
First, they are not easily measured compared to widely available
clinical diagnostic assays of cytokines and other generalized
biomarkers of inflammation (e.g., C-reactive protein, CRP) and
coagulation (e.g., D-dimer), respectively. There are no routine
diagnostic tests in hospitals and other clinical settings for
FIGURE 1 | Schematic depictions of mild, moderate, severe, and critical cases of coronavirus disease 2019 (COVID-19) including some symptoms, laboratory
findings, and clinical timeline. The disease course is highly variable with dotted lines representing this unpredictability. Criteria are based on World Health Organization
categories. In a large cohort of COVID-19 patients that experience symptoms (mentioned in Berlin et al., 2020), percentages are shown in three categories mild,
severe and critical. Moderate were not included (shown by *). Up to half of critical cases may die from COVID-19 complications with fewer deaths in the severe
category. Lab data are based on (England et al., 2020; table 6) and are meant to show approximations for each marker. Units for CRP, D-dimer, Ferritin, IL-6 are
mg/L, mg/ml, mg/L, and pg/ml, respectively. The numbers in the LTE4 column, at this point, are hypothetical and based on baseline data of urinary LTE4 levels of ≈1
ng/mg creatinine in normal controls and 4 ng/mg creatinine in severe ARDS patients (Bernard et al., 1991). These values would need to be validated in SARS-CoV-2
infected individuals. LTE4 is the major urinary metabolite of the cysteinyl leukotrienes LTC4 and LTD4.
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Funk and Ardakani Leukotrienes in COVID-19

F

FIGURE 2 | Continued
rontiers in Pharmacology | www.frontiersin.org August 2020 | Volume 11 | Article 12144

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 2 | Vascular leakage, inflammation-provoking, and thrombotic events in coronavirus disease 2019 (COVID-19). A normal alveolus in the healthy state with
associated capillary vessel (top) and SARS-CoV-2 infected alveolus with surrounding vasculature (middle) are shown. Potential roles for LTB4 to promote
inflammatory cell influx into the airways and for CysLTs to initiate vascular leakage are depicted. LTB4 and CysLTs can be synthesized de novo by alveolar
macrophages, infiltrating leukocytes, sentinel mucosal mast cells (not shown here) and via interactions of inflammatory cells with endothelial cells. The figures are
“cartoon” representations, so cells/viruses/blood vessels are not to scale. Concepts of the model indicating that COVID-19 is an endothelial disorder are based on
(Ackermann et al., 2020; Becker, 2020; Sardu et al., 2020; Teuwen et al., 2020; Varga et al., 2020) but with an emphasis here on leukotriene inflammatory
mediators. Depiction of leukotriene biosynthesis along with the two drugs zileuton and montelukast proposed to mitigate disease progression of COVID-19 (bottom).
Zileuton, acting intracellularly, inhibits 5-lipoxygenase (5-LO) to decrease leukotriene ligands able to bind downstream receptors BLT1 (mediating neutrophil/T
lymphocyte trafficking) and CysLT receptors (promoting vascular leakage). Montelukast, acting extracellularly, antagonizes selectively CysLT1 to dampen inflammation
and reduce vascular leakage. FLAP, 5-lipoxygenase-activating protein.
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measuring LTs. Their measurement most often entails a labor-
intensive mass spectrometry assay with prior solid-phase
extraction from blood or urine (Murphy et al., 2005), with most
commercially available ELISA kits not recommended for human
diagnostics. Second, lipid inflammatory mediators, in general,
receive less attention than their cytokine counterparts due to
their labile nature and rapid metabolism. Third, there are very few
clinically approved drugs in the leukotriene modifier class (Funk,
2005; Capra et al., 2006; Werz and Steinhilber, 2006). The field to
developing successful therapeutics has been fraught with a
minefield of abandoned pre-clinical candidates. After 30+ years
of targeted research in the field by many leading pharmaceutical
companies, there are only a few approved drugs in the pathway2;
one is the 5-lipoxygenase enzyme inhibitor, which blocks the
synthesis of all downstream LTs, known as zileuton (Zyflo®)
(Werz and Steinhilber, 2006; Bouchette and Preuss, 2020) and the
other is an antagonist of the CysLT1 receptor, montelukast
(Singulair®; with two other approved drugs in this class)
(Wermuth et al., 2020). No drugs have reached the clinical
market for other targets in the leukotriene pathway (Figure 2,
bottom) including the 5-lipoxygenase-activating protein (FLAP),
leukotriene A4 hydrolase, two subtypes of B leukotriene receptors
(BLT1, BLT2) and for CysLT2, although many pre-clinical
candidates have been advanced over the years (Funk, 2005;
Werz and Steinhilber, 2006).
DUAL DRUG TREATMENT PARADIGM
FOR COVID-19 TARGETING
LEUKOTRIENES

There are currently no approved effective therapies or
preventative vaccines to protect the immune naïve global
population from COVID-19. Over 2500 clinical trials are
registered worldwide in attempts to treat the clinical sequelae
of SARS-CoV-2 infection3,4. Numerous drugs, both approved or
in preclinical development, designed to treat other disorders
have been repurposed to treat COVID-19 in the first half of 2020.
Several drug candidates have already been ruled out as effective
agents, based on early trial results (e.g., hydroxychloroquine),
with only two (the antiviral remdesivir and the synthetic
2https://www.aaaai.org/conditions-and-treatments/drug-guide/leukotriene-
modifiers [accessed June 29, 2020]
3https://clinicaltrials.gov/ct2/results?cond=COVID-19 [accessed June 29, 2020]
4https://public.tableau.com/profile/marinamarin#!/vizhome/covidTrials/COVID-
19ClinicalTrialsExplorer [accessed June 29, 2020]
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glucocorticoid dexamethasone) showing partial efficacy in
randomized clinical trials (Goldman et al., 2020; Recovery
Collaborative Group, 2020; Wang et al., 2020). Current WHO
guidelines (as of June 30, 2020) do not recommend treatment
with any drugs outside of clinical trials, although some regional
authorities are now incorporating dexamethasone into treatment
guidelines to combat the hyperinflammatory stages of severe
COVID (Mahase, 2020).

At the time of writing this perspective, we have found only
three papers out of >20,000 listed on PubMed mentioning
COVID, that hypothesize the use of a clinically approved drug
targeting leukotrienes, known as leukotriene modifiers (Funk,
2005), namely the leukotriene receptor antagonist (LTRA)
montelukast for COVID-19 treatment (Almerie and Kerrigan,
2020; Bozek and Winterstein, 2020; Fidan and Aydoğdu, 2020).
In addition, the first and only registered trial mentioning
leukotrienes was just recently registered (May 15, 2020) -
The COvid-19 Symptom MOntelukast Trial (COSMO)5. While
these are welcome forays into the area, we believe for optimal
chances to relieve the hyperimmune/inflammatory storm in
COVID-19 it will be necessary to not only block CysLT1

signaling with montelukast but also the other LT receptors,
CysLT2 and BLT1. Since there are no approved blockers for
these latter two receptors, it would be imperative to reduce
production of all LTs from inflammatory cells before the
deadly orchestration of hyperinflammation and cascade of
procoagulant actions can take place. This could be achieved
potentially with both a 5-lipoxygenase inhibitor (zileuton) and
an LTRA (montelukast). Montelukast has been in widespread
use for over 20 years to treat the airway inflammatory symptoms
of mild-moderate asthma and allergic rhinitis and has an
excellent safety profile (Jones et al., 1995; Wermuth et al.,
2020). However, zileuton, also used for the same indication
and on the market for >20 years (Rubin et al., 1991; Bouchette
and Preuss, 2020), has been used much less frequently mainly
due to weaker potency (large 600 mg tablets) and poor
pharmacokinetics (increased dosing) with the potential for
hepatotoxicity (Funk, 2005; Werz and Steinhilber, 2006;
Bouchette and Preuss, 2020). The newer controlled release
(CR) formulation (two tablets, bid) obviates partially the
pharmacokinetics issue. We suggest a treatment paradigm with
two leukotriene modifiers zileuton CR/montelukast in
individuals presenting with minor symptoms and receiving
diagnosis of a positive test for SARS-CoV-2. The drugs would
be administered orally for a period of approximately 1–3 weeks
5https://clinicaltrials.gov/ct2/show/NCT04389411 [accessed June 29, 2020]
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until symptoms resolve completely and diagnosis indicating
negative for SARS-CoV-2 infection. This regimen could be
added, in theory, as a trial arm to an existing protocol (similar
to the Phase III COSMO trial) or as a standalone trial to avoid
the potentially fatal hyperinflammatory response.
DISCUSSION

The rationale for the role of leukotrienes in COVID-19
pathogenesis is clear. A wealth of information exists on elevated
LTs in ARDS/sepsis/end organ failure in humans and efficacy of
both zileuton and montelukast in various preclinical models
(Sprague et al., 1989; Davis et al., 1990; Bernard et al., 1991;
Westcott et al., 1991; Collin et al., 2004; Khodir et al., 2014;
Monteiro et al., 2014). The roles of LTs in COVID-19 have been
neglected to date. To strengthen the case for LT involvement in
COVID-19 severity, non-invasive measurements of the major
urinary metabolite of cysLTs, known as LTE4 (Sala et al., 1990),
should be performed in normal controls and people infected at
various stages with SARS-CoV-2 (Figure 1), as previously executed
in ARDS patients and controls (Bernard et al., 1991; Sala et al., 1991;
Westcott et al., 1991). By targeting vascular permeability, immune
modulating and general inflammation-dampening effects at the
CysLT1 level with montelukast (Dahlén et al., 1981; Maeba et al.,
2005; Capra et al., 2007; Tahan et al., 2008; Khodir et al., 2014) and
LT biosynthesis with the 5-lipoxygenase inhibitor zileuton, to block
both arms of the LT pathway (Figure 2) and remove ligands for
another key receptor regulating vascular permeability, CysLT2

(Moos et al., 2008), as well as inflammatory cell recruitment and
endothelial cell adhesion via BLT1 receptor (Ford-Hutchinson et al.,
1980; Tager et al., 2003; Taube et al., 2006; Sasaki and Yokomizo,
2019), there is a sound scientific basis for alleviating disease
progression from mild to severe-critical stages of COVID-19
(Figures 1 and 2).

Both drugs are generic. While montelukast is inexpensive (about
$1/day), the zileuton CR formulation is rather expensive (about
$100 day), only available in certain countries (e.g., USA, but not in
Canada), and requires a sophisticated process to manufacture the
CR/instant release formulation. This pricing is still much less than a
5-day course of the antiviral drug remdesivir (over $3,000 USD)6,
which has shown limited efficacy to date (Goldman et al., 2020).
Drug-drug interactions may have to be monitored (liver function
tests). While zileuton is metabolized primarily via CYP1A2 and
montelukast via CYP2C8, both are metabolized by the same
secondary CYP450 liver enzymes (e.g., 2C9, 3A4) (Funk, 2005).
Since the treatment paradigm we are proposing is a single, short-
term treatment, hepatic function monitoring should not be a major
concern since hepatotoxicity, when it does occur, usually happens
after a month and is infrequent with zileuton alone7. The timing of
drug administration during the clinical course of COVID-19 is
important, especially so, for a general immune system dampening
6https://endpts.com/gilead-opts-for-3120-us-insurer-price-for-covid-19-drug-
remdesivir-let-the-debate-begin/ [accessed June 30]
7https://www.ncbi.nlm.nih.gov/books/NBK548397/ [accessed June 29, 2020]
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treatment like dexamethasone, which interestingly may also
diminish leukotriene production by virtue of its effects to block
substrate supply via the enzyme cytosolic phospholipase A2 (Yao
et al., 1999). The initial host antiviral immune response to SARS-
CoV-2 involves steps of innate immunity implicating interferons
(Zhou Q. et al., 2020), so dexamethasone may quell the initial host
antiviral response. Leukotrienes, while generally considered
“villain” inflammatory mediators, are in some contexts of
pathogen invasion deemed innate effectors of the immune
response but not for all cases in pre-clinical models (Secor et al.,
1998; Peters-Golden et al., 2005; Flamand et al., 2007). The timing
for zileuton/montelukast administration in humans with COVID-
19 should be addressed.

Montelukast has been predicted to bind to the SARS-CoV-2
main protease (MPro) and could perhaps disrupt viral replication
(Almerie and Kerrigan, 2020; Wu C. et al., 2020). A coordinated
network of lipid signaling molecules including LTs, as well as
cytokines, orchestrates proper leukocyte recruitment in settings of
inflammation (Sadik and Luster, 2012). In COVID-19, providing
the zileuton/montelukast combination prior to out-of-control host
inflammatory cell recruitment to the lungs and before pulmonary
edema sets in is paramount. Whether females would benefit
preferentially from LT modifiers compared to males due to
known androgen-dependence of leukotriene biosynthesis
(Pergola et al., 2008) and preclinical effects noted with a non-
approved member in this class in other settings (Pace et al., 2017)
remains to be determined. We are recommending initiation of
treatment with zileuton/montelukast in the 24-48 h window when
a positive test is confirmed and before major symptoms arise, if
feasible. The impetus to move forward quickly is vital to combat
SARS-CoV-2 while waiting for a preventative vaccine (Funk et al.,
2020) or other treatments such as neutralizing antibodies.
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