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Network mapping of root–microbe interactions in Arabidopsis
thaliana
Xiaoqing He 1,2, Qi Zhang 2, Beibei Li 2, Yi Jin 2, Libo Jiang 1,2 and Rongling Wu 1,2,3✉

Understanding how plants interact with their colonizing microbiota to determine plant phenotypes is a fundamental question in
modern plant science. Existing approaches for genome-wide association studies (GWAS) are often focused on the association
analysis between host genes and the abundance of individual microbes, failing to characterize the genetic bases of microbial
interactions that are thought to be important for microbiota structure, organization, and function. Here, we implement a
behavioral model to quantify various patterns of microbe-microbe interactions, i.e., mutualism, antagonism, aggression, and
altruism, and map host genes that modulate microbial networks constituted by these interaction types. We reanalyze a root-
microbiome data involving 179 accessions of Arabidopsis thaliana and find that the four networks differ structurally in the pattern
of bacterial-fungal interactions and microbiome complexity. We identify several fungus and bacterial hubs that play a central role
in mediating microbial community assembly surrounding A. thaliana root systems. We detect 1142 significant host genetic
variants throughout the plant genome and then implement Bayesian networks (BN) to reconstruct epistatic networks involving
all significant SNPs, of which 91 are identified as hub QTLs. Results from gene annotation analysis suggest that most of the hub
QTLs detected are in proximity to candidate genes, executing a variety of biological functions in plant growth and development,
resilience against pathogens, root development, and abiotic stress resistance. This study provides a new gateway to understand
how genetic variation in host plants influences microbial communities and our results could help improve crops by harnessing
soil microbes.
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INTRODUCTION
The microbiota has been widely thought to be an important
determinant of various natural processes ranging from biogeo-
graphical cycling to human health. Many studies have character-
ized strong associations between the microbiota and a variety of
human disorders, but research on how the microbiome impacts
plant growth has not been conducted until recently1. Increasing
evidence shows that the microbiota plays a pivotal role in
promoting plants’ stress tolerance, determining plant productivity,
improving the bioavailability of nutrients, and preventing invasion
by bacterial pathogens2–8. Some bacteria can fix and preserve
nitrogen in root nodules for plants9,10, whereas others can even
modulate the timing of flowering of plants11,12 and may
contribute to rescuing host populations at the risk of extinction13.
Under drought stress, root microbiomes can help crop plants
maintain production4,14.
While the microbiota affects the phenotypes of the hosts they

colonize, the hosts can also shape the structure and function of
the microbial communities15–18. It has been widely recognized
that the microbiota and their hosts form complex but well-
orchestrated interaction networks19. There is great variability
among plant species or genotypes in their ability to recruit specific
microbial communities20,21. Plant genes affect root metabolism,
immune system functioning, and root exudate composition, which
in turn influence the activity and structure of the root
microbiome22. Recent studies provide a ‘cry-for-help’ hypothesis
to explain that stressed plants assemble health-promoting soil
microbiomes by changing their root exudation chemistry23–25. The

overall influence of host genetic variation on the microbiome
remains an open question.
Roots of healthy plants are colonized by multi-kingdom

microbial consortia26–28. The whole microbiome structure and
function are determined by the pattern and strength of how the
constituent microbes interact with each other through coopera-
tion or competition27,29,30. Interactions between microbiota
members, particularly bacterial-fungal interactions, contribute to
plant health26,27. Given that fungi have a strong influence on the
structure of the root microbiome, characterizing both bacteria and
fungi can enhance our understanding of the root microbiome31.
Several studies have identified highly interconnected ‘hub species’
in microbial networks that act as mediators between a host and its
associated microbiome15,32. Yet, we are still unclear in which way
microbes interact with each other to shape polymicrobial
communities33. We know little about how microbiota members
contribute to the establishment, stability, and resilience of
microbial communities essential for the maintenance of plant
health.
Understanding the fundamental questions described above

requires integrated systems approaches34. Recently, with the
application of next-generation sequencing, the microbiome data
and host genetic data measured at unprecedented resolution
have been increasingly available28,35–37. From these data,
genome-wide association studies (GWAS) have been developed
to systematically characterize the genetic underpinnings of
microbiota-host associations in plants15,31,38. However, traditional
GWAS models can only detect the host QTLs responsible for the
abundance of individual microbes, failing to disentangle the
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relationships of diverse microbial species and microbe–host
interactions31,38,39. It is becoming increasingly clear that genetic
variation in plants influences not only the relative abundance of
individual microbes but also their interaction network. To over-
come the complexity of internal workings within the root
microbiome that contains a highly dense microbial community,
we introduce behavioral ecology theory to derive simple
mathematical descriptors of pairwise interactions that encode
microbial networks at any dimension33,40. These descriptors can
discern and quantify common types of ecological interactions,
including mutualism, antagonism, aggression, and altruism, which
occur in biological communities. The biological relevance of these
descriptors has been validated by an in vitro growth assay using
diverse strains of two bacterial species40. We further integrated
these mathematical descriptors into a GWAS setting to unveil the
genetic and molecular mechanisms underlying microbial interac-
tions in the host gut that contains a dense and highly diverse
microbial community40.
In this article, we report the application of our ecology-based

network model to root-microbiota interactions in Arabidopsis. As a
model system, Arabidopsis has been extensively studied, aimed to
explore the interactions between microbial communities and
hosts. In a GWAS including 179 accessions of A. thaliana,
Bergelson et al.31 identified associations between the abundance
of individual microbes within root microbiomes and plant
genotypes. By reanalyzing this dataset, we further reveal the
intricate relationship between A. thaliana and its colonizing
microorganisms. We identify hub microbes within the root
microbiome, characterize how microbes interact across kingdoms,
and illustrate how this process is governed by the host genes.

RESULTS
Co-occurrence networks of the root microbiota
We developed a behavioral ecology model to define the strengths
of mutualism, antagonism, aggression, and altruism between each
pair of microbes, quantitatively described by Zmu, Zan, Zag, and Zal,
respectively (see Experimental Procedures). Validation of these
descriptors through in vitro growth assays40,41 shows their
usefulness as a proxy to measure mutualism, antagonism, aggres-
sion, and altruism strengths. We use these descriptors to reconstruct
mutualism, antagonism, aggression, and altruism networks for the
root microbiota of the A. thaliana. To reduce the complexity of the
networks, we chose the most abundant 100 OTUs in bacteria and
fungi, respectively, for the reconstruction of four types of bacterial-
fungal networks (OTU1-100 are listed as bacteria and OTU100-200 as
fungi). We calculated node-level topological properties (i.e., degree,
betweenness, closeness and eigencentrality) using the “igraph” R
package. Bacterial and fungal co-occurrence network characteristics
are listed in Supplementary Table 1. We are aware of that rare
microbes may have an over-proportional role in regulating the
functioning of host-associated environments and including rare
microbes in future investigations will improve our understanding of
microbial community function42.
Interkingdom functional diversity among fungi and bacteria is

important for maintaining ecosystem functioning28 and microbial
interkingdom interactions in roots can promote Arabidopsis
survival27. We calculated degree-centrality parameters to deter-
mine the relative importance of bacteria and fungi in each
network. It indicates that bacteria are more central to the structure
of the mutualism and altruism networks than fungi (Fig. 1a, d), as
bacteria tend to have a higher number (i.e., degree) of network
connections than fungi (Wilcoxon test, P= 0.00038 and P=
0.0001029 for the mutualism and altruism networks, respectively)
(Supplementary Table 2). In contrast, fungi in the antagonism and
aggression networks appear to have a higher number of network
connections than bacteria (Fig. 1b, c; P= 0.0002128 and P=

0.01961 for the antagonism and aggression networks, respec-
tively). We also calculated and compared interkingdom microbial
OTU relationships (the number of links; edges information) among
bacterial and fungal taxonomic groups in four interaction
networks (Fig. 1; Supplementary Table 3). Bacterial OTUs belong-
ing to classes Betaproteobacteria, Flavobacteriia, Actinobacteria,
Gammaproteobacteria, and Alphaproteobacteria displayed a
strong mutualistic relationship with fungal OTUs belonging to
classes Leotiomycetes, Dothideomycetes, Sordariomycetes, Agar-
icomycetes, and others, respectively (Fig. 1a). Bacterial classes
such as Actinobacterial, Alphaproteobacteria, Gammaproteobac-
teria all displayed antagnonistic relationships with fungal classes
Leotiomycetes, Dothidemycetes, and Sodariomycetes (Fig. 1b). In
the aggression network, there were three bacterial classes
(Betaproteobacteria, Actinobacteria, and Flavobacteriia) which
were aggressive to fungal classes (Leotiomycetes, Sordariomy-
cetes, Dothideomycetes, etc.) (Fig. 1c). Bacterial classes including
Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and
Gammaproteobacteria were altruistic to fungal classes, Dothideo-
mycetes, Leotiomycetes, Sordariomycetes, Mortierellomycetes,
etc. (Fig. 1d).

Hubs of the co-occurrence network identification
Hub microbes are important in shaping microbial communities
due to their critical roles in maintaining network function15. The
four networks differed structurally in the pattern of social links and
the number of hub microbes. Fungal and bacterial OTUs that
display the highest degree and the highest closeness centrality
scores may serve as hub taxa to drive fungal-bacterial interaction
equilibrium in A. thaliana roots43 (Fig. 2a; Supplementary Table 1).
We identified six hub microbes (leaders), four bacteria, and two

fungi (nodes with degree >11 and closeness centrality values
>0.08 in the network; P < 0.01), which dominate the mutualism
network. The four hub bacteria are classes Betaproteobacteria
(two OTUs), Sphingobacteriia, and Actinobacteria, and the two
fungal hubs are phylum Ascomycota (2 OTUs). In the antagonism
network, 26 hub microbes (‘antagonists’) that are more combative
were found to act as ‘public enemies’, which were antagonistic to
many more microbes than other microbes (degree >139 and
closeness centrality values >0.78). The ‘agonists’ that are less
combative were observed to be more abundant than the
‘antagonists’ (P < 0.01; Fig. 2b). In the aggression network, three
OTUs belonging to the bacterial class Betaproteobacteria (two
OTUs) and Actinobacteria might represent the hub taxa (degree
>100 and closeness centrality values >0.60; P < 0.5). The ‘hawks’
which are considered to aggressively repress others are abundant
than the ‘doves’ (those inhibited by others). The altruism network
includes some ‘altruists’ (24 hub microbes; Fig. 2a; Supplementary
Table 1) that sacrificed their own growth by providing resources to
beneficiaries (degree >90 and closeness centrality values >0.64).
The hub microbes (beneficiaries) are more abundant than the
altruists (Fig. 2b; P < 0.01).
A total of 59 OTUs were identified as hub species, which were

mainly from bacterial phyla proteobacteria (21 OTUs), Actinobac-
teria (12 OTUs), Chloroflexi (1 OTU), Bacteroidetes (3 OTUs) and
fugal phyla Ascomycota (20 OTUs), Mortierellomycota (2 OTUs)
(Supplementary Table 1). The altruism network shares 4, 3, and 2
phyla with the mutualism, antagonism, and aggression networks,
respectively (Fig. 2c).

Mapping root-microbe interactions
We calculated six centrality indices namely connectivity (Con),
closeness (C(u)), betweenness (B(u)), eccentricity (E(u)), eigencen-
trality (G(u)), and PageRank (P(u)) (Fig. 3) for each network using
the formulas given in Jiang et al.40. In the same network type,
these indices exhibit differences among hosts and, also, the same
index varies among network types. All indices depend on network
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type which provides a basis for mapping microbial network QTLs.
In our previous study, we developed a statistical procedure to test
and estimate how individual SNPs are associated with network
properties40. By treating each network index as a phenotype, we
performed association mapping for the interaction networks
(Supplementary Fig. 1). The chosen significant threshold is −log10
(P) ≥ 5. The population structure analysis was performed by
Admixture software for 179 A.thaliana accessions. The results
indicated that the 179 accessions were divided into six subgroups.
We also considered population structure in Q GWAS and QK
GWAS. The QQ plots results showed that the population structure
and genetic relatedness among accessions have subtle impact on
the results of association analysis (Supplementary Figs. 2–7). Our
model identified 1142 significant host genetic variants throughout
the plant genome, which are responsible for centrality indices of
each network, including 225 acting through mutualism, 845
through antagonism, 49 through aggression, and 23 through
altruism (19.70% for mutualism, 73.99% for antagonism, 4.29% for
aggression, and 2.01% for altruism) (Supplementary Table 4). It

appears that more variants control mutualism and antagonism
than aggression and altruism. We also calculated heritability
estimates for each network property as described in Li et al’s
research44. SNP based heritability varied from 0 to 35.95%
(Supplementary Table 5). We found that the total SNP-h2 of
mutualism (C(u)) (96%), antagonism (E(u)) (83%), mutualism (P(u))
(82%) and aggression (Con) (72%) was higher than other
topological features of the networks.

QTL networks
We implemented Jiang et al.’s41 procedure to reconstruct Bayesian
QTL networks among the significant SNPs detected to affect each
type of microbial network and identified 91 hub QTLs (Fig. 4; Table
1). Through QTL network analysis, we can better characterize how
a QTL mediates microbial cooperation or competition through its
epistatic interactions with other QTLs. In the QTL network for the
microbial mutualism network, we identify a hub QTL that affects
connectivity QTL, annotated to gene TMK3 (AT2G01820) that
orchestrates plant growth by regulation of both cell expansion

Fig. 1 Microbial descriptor-based network at the OTU level of the root microbiome in Arabidopsis thaliana. a Zmu-based mutualism
network. b Zan-based antagonism network. c Zag-based aggression network. d Zal-based altruism network. In each network, bacteria and fungi
are distinguished by different colors. The network analysis was performed in the “igraph” R package and visualized in Cytoscape v3.7.1. The
number of links between root inter-kingdom microbes was given at the right. Bacterial and fungal OTUs were grouped at the class level and
sorted according to the number of edges between bacteria and fungi within each network. In boxplots, the fungal and bacterial degrees were
calculated to determine the relative importance of bacteria and fungi in each network.
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and cell proliferation and as a component of auxin signaling45. A
hub QTL for the betweenness of microbial mutualism network is
located in gene IBR1(AT4G05530), encoding indole-3-butyric acid
response 1(IBR1). IBR1 are involved in root hair elongation46. AOC4
(AT1G13280, an eigencentrality hub QTL) encodes allene oxide
cyclase. One of four genes in Arabidopsis that encode this
enzyme, which catalyzes an essential step in jasmonic acid
biosynthesisis, a hormone whose role in defense responses is well
established47. A hub QTL for the PageRank of the mutualism
network represents gene NTRB (AT4G35460) encoding NADPH-
dependent thioredoxin reductase. Thioredoxin is a key regulator
of intracellular redox status that determine plant development in
response to biotic and abiotic stress. Thioredoxin reductase (ntra
ntrb) mutant alters both auxin transport and metabolism, causing

a loss of apical dominance and reduced secondary root
production, etc., largely regulated by auxin48.
In the QTL network for the microbial antagonism network, a

closeness hub QTL acts like gene UBP22(AT5G10790). UBP22
encodes a ubiquitin-specific protease, which plays role in
regulating plant development and stress responses49. A hub QTL
for the betweenness of the microbial antagonism network is
located in gene Hrd1A which may be an important regulator of
heat stress response in Arabidopsis50. A hub QTL for the closeness
of the microbial antagonism network acts like gene PEPR2
(AT1G17750) encoding PEP1 receptor 2, which is transcriptionally
induced by wounding and pathogen-associated molecular pat-
terns and contributes to defense responses in Arabidopsis51. CHL1
(AT5G40090) is the hub QTL for the eigencentrality of the
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Fig. 2 Hubs of the co-occurrence network. a The identity of each OTU is labeled by a number, one to 100 for bacteria and 101 to 200 for
fungi. In each network, hub microbes are highlighted in border colors. The distribution of ‘Hub microbes’ in four different microbial networks
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Visualization was done with Gephi for four microbial networks.

X. He et al.

4

npj Biofilms and Microbiomes (2021)    72 Published in partnership with Nanyang Technological University



antagonism network, which encodes disease resistance protein
(TIR-NBS class). TIR-NBS protein is involved in disease resistance in
Arabidopsis52.
There are 12 pleiotropic genes including UPL4(AT5G02880),

which are detected to influence multiple types of microbial
networks or properties (Table 1). UPL4 encodes a ubiquitin-protein
ligase, function additively in the regulation of plant growth and
development, and positively modulate immune hormone salicylic
acid (SA)-mediated basal and induced resistance responses53.

DISCUSSION
Plant rhizosphere is considered as the second genome of plants.
Nowadays, research on rhizosphere interactions has become one
of the hottest topics in modern biology and agriculture.
Potentially beneficial bacteria and fungi may serve as a valuable
foundation for bio-fertilizer development in agriculture and
forestry. Knowledge about how plants communicate and crosstalk
with their entire microbiota will be crucial for the choice of
microbes that benefit sustainable plant growth54,55. However, our
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understanding of the intrinsic principles underlying the assembly
of the root microbial community is still limited56. In this article, we
demonstrate the potential of a new computational model to
reveal these principles behind.
Currently, network analysis has emerged as an extremely

promising approach for modeling complex biological systems
and can potentially provide deep and unique perspectives on
microbial interactions and ecological assembly rules beyond those
of simple richness and composition17. Properties of co-occurrence
networks can reveal the intrinsic mechanisms of microbial
interactions in response to environmental disturbance35,57. The
connection and strength of the network even are crucial for the
resistance to the pathogens17. In this study, we calculated four
descriptors between each pair of genera and reconstructed four
corresponding 200-node networks accordingly. Each described
root microbiome interactions according to a different ecological
interaction metric and help us to explore co-occurrence patterns
of bacterial and fungal taxa. The four networks differ structurally in
the pattern of bacterial-fungal interactions and microbiome
complexity and the number of hub microbes. These differences
provide a basis for the following microbial network mapping. In
our previous study, we quantified the internal workings of
microbial community within the gut by mathematical descriptors
of pairwise interactions and provided a critical starting point to
investigate these higher order interactions more deeply40.
Different members of root microbiota affect plant health

through a complex network of microbial interactions. It is
important to understand the mechanistic details of how ecological
interactions are generated and how they are at play within the
root microbiota. In our study, the phylogenetic signal measure-
ment of network property parameters is calculated by Pagel’s
lambda (Supplementary Table 6). In mutualism, the signals in both
bacterial and fungal groups are relatively strong while in the other

three networks most phylogenetic signals are close to 0. As can be
seen, the values of lambda vary in different network types and
network property parameters. Take aggression as an example,
bacteria show a much higher signal value than fungi in Con
(connectivity) but less than fungi in C(u) (closeness). We also found
that bacteria have a higher degree in the mutualism and altruism
networks and are more central to the structure of networks. Fungi
have more connections in the antagonism and aggression
networks, however, based on the directions of edges, bacteria
still are more antagonistic and aggressive to fungi (Supplementary
Table 3). Understanding the interaction among different species
within a community is one of the central goals in ecology58.
Bacterial communities aid in maintaining the microbial balance
and protect host plants against the detrimental effects of
filamentous eukaryotic microbes27. In Bergelson et al.’s research,
strong and significant cross-kingdom correlations for the top taxa
were observed which implied that bacteria and fungi interacted in
the root microbiome and variation within the root microbiome
was influenced by members of both kingdoms communities31. A
previous study showed that microbes tend to be positively related
within kingdoms but negatively related between kingdoms15.
Besides bacteria and fungi, rhizosphere bacteriophages and
protists also play roles in plant health59,60, which should be
included in further research.
The identification of network hubs and their importance in

microbial community structure has crucial implications for study-
ing microbe–microbe interactions and can facilitate the design of
strategies for future targeted biocontrol15. Hub microorganisms
have a regulatory influence on the network of microbial
interactions, which can exert strong effects on microbiome
assembly and serve as mediators between the plant and
microbiome15. According to centrality measurements, such as
degree, closeness centrality, and betweenness centrality, hub
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Fig. 4 Bayesian QTL networks of significant SNPs mediating interaction networks of microbial network. a mutualism. b antagonism.
c aggression. d altruism. Hub QTLs within each genetic network are highlighted in green circles. The emergent properties of each microbial
network are described by connectivity (Con), closeness (C(u)), betweenness (B(u)), eccentricity (E(u)), eigencentrality (G(u)), and PageRank (P(u)).
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Table 1. Numbers of mutualism, antagonism, aggression, and altruism QTLs that affect the emergent properties of ecological networks. The names
of genes to which QTLs are annotated are given below.

Emergent property

Con C(u) B(u) E(u) G(u) P(u)

Mutualism QTLs 5 5 5 6 11 11

— AT2G20635 – AT5G35602 – AT2G20635

AT5G35602 AT4G05594 SRF1 TMK3 AT1G04867 AT1G04867

TMK3 – ARPC3 RAD23A AT4G05594 –

— AT1G11700 AT4G10201 CYP721A1 IBR1 AT4G05594

EMB2296 TNPO3 AT3G22421 WSS1/WSS1B VIIIA –

Gene – AT4G36190 AT4G03824

AOC4 IBR1

AT5G46850 AT4G36190

AT2G38260 NTRB

– AT4G35410

NTRB AT1G50330

Antagonism QTLs 0 25 1 9 1 6

– Hrd1A AT1G05380 SS5 AT5G11430

AT5G35555 – AT1G72230

UBP22 JAZ6 CSTF77

– AT3G01850 –

AT3G12350 IGPD –

DELTA-VPE AT4G15640 –

DEL2 AT4G16050

MAIN AT5G19930

CAP1 SBT5.4

DEL2

Gene –

AT4G31360

AT4G25610

NAC058

AT5G20660

–

AT2G34185

AT5G19480

AT4G00320

UPL4

AT3G13662

–

PEPR2

AT5G11750

–

Aggression QTLs 1 2 0 1 7 2

GA2OX5 AT1G12760 AT5G19097 AT5G35525 –

AT3G30405 AT5G35495 PDE320

AT3G29175

UPL4

Gene –

AT1G14800

AT4G08280

Altruism QTLs 2 1 2 0 1 0

EGRET RGLG5 AT5G60470 –

Gene

– PUM11
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microorganisms are tightly connected within a co-occurrence
network15. We identified hub microbes in four types of networks,
mutualism, antagonism, aggression, and altruism. The most
dominant taxa as hub microbes belong to bacterial phyla
Proteobacteria (21 OTUs), Actinobacteria (12 OTUs), and fugal
phyla Ascomycota (20 OTUs). This is consistent with the finding
that Proteobacteria, Actinobacteria, and Ascomycota are the most
abundant phyla in plants and soil43,61. Actinobacteria is one of the
bacteria whose dysbiosis in abundance in tomato rhizosphere
causes the incidence of bacterial wilt disease6. Some key taxa with
the highest degree and betweenness centrality for the root
microbiome identified in Bergelson et al.’s research31 such as
Massilia, Actinobacteria, and Actinoplanes, are also considered as
hub microbes in our study (Supplementary Table 1).
Plant phenotypes are inextricably shaped by their interactions

with microbes34. In a well-designed GWAS study, Bergelson,
et al.31 found a few significant QTLs that are associated with root
microbial species richness and community structure, which are
involved in plant immunity, cell-wall integrity, root, and root-hair
development. In this study, we used a newly developed network
mapping model40 to reanalyze Bergelson et al.’s31 data, character-
izing previously undetected QTLs that mediate microbial interac-
tions. We found that most of the QTLs detected by the new model
can be annotated to candidate genes with known biological
functions including plant growth and development, resilience
against pathogens, root development, and improved resistance
against abiotic stress conditions (Table 1; Supplementary Table 7).
We also investigated candidate genes within ~10 kb windows on
each side of associated SNPs by software PLINK. The genes of R2 >
0.8 were retained. Supplementary Table 8 lists the 135 genes
within a 10 kb window around associated SNPs including genes
such as PEPR2, UBP22, UPL4 which were also identified as hub
genes linked to the six network property parameters.
Understanding how microbes improve plant stress resistance

will enhance our understanding of how plants survive in stress
conditions. In the near future, it will be crucial to unravel the
complex network of genetic, microbial, and metabolic interac-
tions, including the signaling events mediating microbe–host
interactions. Scientists have also linked the phyllosphere micro-
biome to plant Health62 and found host genes could affect
bacterial communities in the phyllosphere17. Building synthetic
microbiomes in plants has been proved to be useful for future
research on plant–microbe interactions30,63–66. Studies have
shown the potential of microbiome adjustment tailored to bring
benefits for plant growth and resistance to biotic and abiotic
challenges67. Bioorganic fertilizers promote indigenous soil plant-
beneficial consortium to enhance plant disease suppression68. The
design of more efficient biofertilizers to update soil function has
important implications for the manipulation of crop microbiomes
for sustainable agriculture. Our work provides a comprehensive
exploration of microbial interkingdom interactions, hub microbes,
and plant genes for the structure of the root microbiome. The
results obtained could help design synthetic microbiomes
beneficial for plant growth.

METHODS
Root microbiome experiment
Bergelson et al.31,38 conducted a genome-wide association study (GWAS)
for the root microbiome in Arabidopsis thaliana. The study included 179
accessions of A. thaliana, each measured for the bacterial and fungal
abundance of the root microbiota using a 16S/ITS rRNA gene sequencing
technique and genotyped for Arabidopsis SNPs by a high-throughput
sequencing technology (Supplementary Table 9).

Microbial interactions analysis
We chose the 100 most abundant bacterial OTUs and the 100 most
abundant fungal OTUs (Supplementary Table 10) to reconstruct microbial

interaction networks using a microbial behavioral network model40. This
model is based on mathematical descriptors of four types of microbe-
microbe interactions, mutualism, antagonism, aggression, and altruism,
expressed as

Zmu ¼ XuXv
Xu� Xv ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ :Mutualism

Zan ¼ 1
XuXvð Þ Xu� Xvð Þ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ :::::::Antagonism

Zag ¼ Xu
Xv ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼Aggression

Zal ¼ 1� Xv
Xu ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼Altruism

(1)

where xu and xv (xu > xv, u ≠ v, u, v= 1,…, m) are the abundance of two
microbes u and v, and m is the number of microbes. Based on the above
equations, we use the corrected microbial abundance (log10-transformed)
to quantify four interactional relationships of two microbes u and v. The
descriptor, Zmu, can be used to quantify a cooperative relationship
(mutualism) between two microbes. The descriptor, Zan, can be used to
quantify a competitive relationship (antagonism) between two microbes.
The descriptor, Zag, can represent the utilization extent (aggression) of a
more abundant microbe to a less abundant microbe. The descriptor, Zal,
can represent the sacrifice extent (altruism) of a more abundant microbe to
a less abundant microbe. Microbial interaction relationships were
quantified as interaction matrices. Each matrix was normalized to control
the range of interaction relationship values within [0,1]. Next, we
performed threshold filtering to obtain microbial interaction sparse matrix.
The threshold is 0.95 in mutualism, antagonism, and aggression networks
and that in altruism network is 0.99. In each network, the value of the
interaction relationship above the threshold was retained. Then we
obtained a sparse network of each interaction type.

Microbial networks analysis
By microbial interactions analysis, we can reveal internal workings within
the root microbial community. The interaction networks can be visualized
using Gephi (https://gephi.org/). We constructed the corresponding
network for mutualism, antagonism, aggression, and altruism, respectively.
Emergent properties of each network can be calculated in the “igraph” R
package69. We calculated six network indices to describe the features of
various networks, including connectivity (Con), closeness (C(u)), between-
ness(B(u)), eccentricity (E(u)), eigencentrality (G(u)) and Pagerank (P(u)). The
specific calculation method was described by Jiang et al.40. The heat maps
of each network index were generated by package pheatmap in R (https://
CRAN.R-project.org/package=pheatmap). Meanwhile, microbial networks
can be used to statistically identify hub taxa. We calculated the degree of
each node for every network using the “igraph” R package69. It is generally
believed that hub microbes with a high degree and closeness centrality
value play crucial roles in microbial networks15,43. These hub microbes
(called leaders, antagonists, hawks, and beneficiaries) in mutualism,
antagonism, aggression, and altruism networks, respectively, are compared
with other microbes (expressed as followers, agonists, doves, and altruists)
from each network type40.

Mapping microbial network properties
To study how host genes influence root microbiomes, we consider six
network property parameters as phenotypic traits that are associated with
host SNPs (Single Nucleotide Polymorphisms). We chose those SNPs with
MAF > 5%) for association analysis. A regression model of log-transformed
phenotypes at a SNP is expressed as

yi ¼ μþ
X2

j¼1

xiβþ ei (2)

where yi represents the phenotype of the ith host, μ is the mean of the
phenotypes over all hosts, xi is the genotype indicator of the ith host which
is 0 for high-frequency allele and 1 for low-frequency allele, β is the geneic
effect of the SNP and ei is a random error value. Then, we used lm function
in R for association analysis from which to get the P-value of each SNP.
Package qqman (https://CRAN.R-project.org/package=qqman) was used to
draw the Manhattan plot. By statistical testing, we can find significant SNPs
that are associated with each network property.

QTL networks
Many existing approaches attempt to reveal the genetic architecture of
complex traits by identifying key individual genes underlying the traits.
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However, epistatic interactions among different genes have been
increasingly recognized to play an important role in genetic control.
Several approaches have been developed to map epistatic interactions
based on gene pairwise analysis, failing to systematically chart a network
of epistasis involving all genes. More recently, Jiang et al.41 proposed an
analytical procedure of reconstructing epistatic networks from mapping
data. This procedure was used to infer QTL networks of the significant
SNPs that mediate the emergent properties of microbial networks. At each
SNP, we calculated the mean value of each genotype for a network
parameter and assigned this value to each Arabidopsis accession,
transforming the GWAS data structure from its SNP-phenotype illustration
to SNP-based genotype representation. We implemented Bayesian net-
works (BN) to reconstruct genetic networks involving all significant SNPs
for each network parameter. The BN-based QTL networks are directed
acyclic graphs, encoded by casual SNP-SNP interactions. We identified hub
QTLs that play a crucial role in the genetic architecture of plant
microbiomes assembly.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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