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Genomewide landscape of gene–metabolome
associations in Escherichia coli
Tobias Fuhrer† , Mattia Zampieri†, Daniel C Sévin†,‡, Uwe Sauer* & Nicola Zamboni

Abstract

Metabolism is one of the best-understood cellular processes whose
network topology of enzymatic reactions is determined by an organ-
ism’s genome. The influence of genes on metabolite levels, however,
remains largely unknown, particularly for the many genes encoding
non-enzymatic proteins. Serendipitously, genomewide association
studies explore the relationship between genetic variants and
metabolite levels, but a comprehensive interaction network has
remained elusive even for the simplest single-celled organisms.
Here, we systematically mapped the association between > 3,800
single-gene deletions in the bacterium Escherichia coli and relative
concentrations of > 7,000 intracellular metabolite ions. Beyond
expected metabolic changes in the proximity to abolished enzyme
activities, the association map reveals a largely unknown landscape
of gene–metabolite interactions that are not represented in meta-
bolic models. Therefore, the map provides a unique resource for
assessing the genetic basis of metabolic changes and conversely
hypothesizing metabolic consequences of genetic alterations. We
illustrate this by predicting metabolism-related functions of 72 so
far not annotated genes and by identifying key genes mediating the
cellular response to environmental perturbations.
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Introduction

Decades of in vitro biochemistry have established extensive

enzyme-catalyzed networks of metabolite conversions, culminating

in genome-scale reconstructions of bacterial metabolism with about

1,000 reactions (Feist et al, 2009; Orth et al, 2011). Largely unex-

plored is the even larger network of metabolites affecting general

protein activities (Heinemann & Sauer, 2010; Link et al, 2013) and

proteins influencing metabolism, mechanistically connected through

direct or indirect relationships such as regulation processes or func-

tional consequences, respectively. Scarce molecular knowledge of

these interactions limits our ability to predict how genetic perturba-

tions propagate throughout the multiple interlinked networks and

affect the global metabolic state of a cell (Wang et al, 2010;

Ghazalpour et al, 2014; Shin et al, 2014). Although gene–gene inter-

actions exclusively based on growth phenotype measurements have

provided valuable guidance in the form of genome-scale functional

interaction maps (Costanzo et al, 2010; Nichols et al, 2011), the

underlying mechanisms of such genetic interactions often remain

obscure.

To resolve the complex traits by which abolished gene products

can influence metabolism, we here exploit the multi-feature readout

of non-targeted metabolomics to systematically map gene–metabo-

lite associations at genome-scale in the bacterium Escherichia coli.

To this end, we developed an experimental-computational approach

to quantify the strength of gene–metabolite ion interactions from

high-throughput, non-targeted metabolomics (Fuhrer et al, 2011)

data obtained from two independent clones of each of the 3,807

mutants (Table EV1) in the E. coli single-gene deletion collection

(Baba et al, 2006).

Analysis of our metabolome signatures revealed the presence of

local effects caused by simple enzyme-reactant relationships but

also numerous strong gene–metabolite associations that cannot be

explained by metabolic proximity in classical stoichiometric models.

The application potential of this comprehensive resource is demon-

strated by predicting functionality of genes with unknown metabolic

function and identifying genes involved in the cellular response to

environmental perturbations solely on the basis of the metabolome.

Hence, we believe the reported empirical associations between

genes and metabolites to be a unique and powerful resource to

support and inspire functional genomics studies.

Results

Metabolome profiling of Escherichia coli single
knockout collection

Metabolome extracts were prepared from cultures growing exponen-

tially in mineral salts medium containing glucose and amino acids
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and analyzed in technical duplicates by non-targeted mass spec-

trometry. To enable analysis of more than 34,000 injections, we

used high-throughput, flow-injection analysis on an high-resolution,

time-of-flight (TOF) instrument (Fuhrer et al, 2011). This is a

chromatography-free system that is well suited for large-scale profil-

ing of the polar metabolome but cannot resolve metabolites with

similar molecular weight and is subject to misquantification or

misannotation in regions of the measured spectrum that are densely

crowded with peaks or in the presence of unknown metabolites.

Spectral data processing identified 3,169 and 4,365 distinct mass-to-

charge (m/z) features in negative and positive ionization mode,

respectively.

Based on the measured accurate mass, a total of 3,130 ions with

distinct m/z could be putatively matched to expectable ions of 1,432

of the 2,028 chemical formulas listed in the KEGG E. coli database

(Kanehisa et al, 2012) (Table EV2). Since metabolites with equal

molecular weight are not distinguishable, these 1,432 formulas theo-

retically match to 2,472 metabolites. As expected, most of the poten-

tially detected compounds relate to abundant and polar metabolites

such as intermediates of primary metabolism (Fig EV1). All data

were condensed in a two-dimensional gene–metabolite ion associa-

tion matrix that reports relative abundances of all detectable

metabolite ions in all 3,807 analyzed deletion strains (Fig 1). Modi-

fied z-score normalization was applied to compare ion changes

across all mutants independent of ionization mode and signal

intensity. Ninety-nine percent of variability between biological repli-

cates was estimated to be smaller than a z-score of 2.765

(Fig EV2A). Thus, the gene–metabolite association matrix can be

directly queried for reproducibly changing ions in each mutant.

The overall rearrangements of steady-state metabolite concen-

trations in each mutant varied greatly across genotypes, regardless

of mutant growth rate (Fig EV2B). Metabolites responded to dele-

tion of genes from essentially all functional classes, including

those with unknown function (Fig 2). The largest normalized

metabolic changes in individual mutants were often located 1–2

metabolites upstream of deleted enzymes (e.g., DpurK in Fig 1 and

chorismate biosynthesis mutants in Fig EV3A), consistent with

earlier observations (Ishii et al, 2007; Fendt et al, 2010). On the

other hand, some gene deletions led to a widespread alteration of

several metabolites (e.g., DpstS in Fig 1). Analogously, some

metabolites responded only to a limited number of genetic abla-

tions (e.g., enterobactin) while others varied in many mutants

(e.g., xanthine) (Fig 1).

Proximity and similarity of metabolic changes across
gene deletions

Generally, metabolites are expected to change in proximity of reac-

tions that were directly affected by gene deletions because of

perturbed metabolic fluxes (Fendt et al, 2010). We tested this
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Figure 1. Gene–metabolite association matrix derived from metabolome analysis of single-gene deletion mutants.
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functional association between metabolite changes and site of

perturbation in mutants for which the metabolic effect can be

predicted from known cellular networks. For enzyme deletions,

we indeed observed a significant enrichment of metabolic changes

in the immediate metabolic vicinity of the affected reactions

(Figs 3, EV4 and EV5). We found a significant (P-value < 0.05)

overrepresentation of enzyme deletions yielding the largest meta-

bolic changes up to two enzymatic steps distance. Local metabolic

changes are reabsorbed already at a distance of three, after which

the reduced probability of finding the large metabolic changes

remains constant.

Extending this locality analysis to larger models including the

genome-scale metabolic network, the transcriptional regulatory

network, and protein–protein interactions allowed us to probe the

locality of measured metabolic responses of mutants lacking one of

166 transcription factors or 1,426 non-metabolic, non-enzymatic

proteins, for example, those involved in regulation (e.g., PuuR) and

membrane transport (e.g., BrnQ, Fig 1) (Andres Leon et al, 2009).

In all cases, metabolite changes were enriched in the metabolic

proximity of reactions that are known to be affected by the mutation

(Fig EV6).

While this proximity analysis confirms the occurrence of local

metabolic effects, a surprising result of this empirical genome–meta-

bolome map is the many reproducible associations between genes

and seemingly distant metabolites. Overall, genes involved in

coenzyme transport and metabolism, nucleotide transport and meta-

bolism, signal transduction mechanisms, and transcription tend to

induce widespread metabolic changes (Fig EV7). For example, we

detected a strong interaction between malate and the aro and pur

genes in chorismate and purine biosynthesis (Fig EV3B). Such distal

changes could reflect functional interactions beyond the metabolic

network topology. In most cases, the molecular links underlying

such distal gene–metabolite associations remain elusive at this

point, yet these interactions appear to be gene-specific rather than

an unspecific consequences of mutant growth rate. One of the better

understood molecular links is the strong association between the

enterobactin-dependent iron uptake system (encoded by the ent,

fep, and fes operons) and citrate/aconitate in the TCA cycle, high-

lighting the dichotomous role of iron as an essential modulator of

aconitase activity (Varghese et al, 2003) and citrate as an iron chela-

tor (Fig EV3B). These newly identified distal interactions provide

leads to mechanisms of coordination across cellular pathways and

functional modules.

The observed occurrence of widespread metabolic responses to

specific genetic perturbations complicates the interpretation of meta-

bolomics data, in particular from mutants lacking a gene with

unknown function. We wondered whether the metabolome profiles

are sufficient to characterize the genetic lesion regardless of prior

information on network structure or metabolic proximity. We there-

fore determined the metabolome similarities between mutants
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Figure 2. Gene–metabolite associations in the 0.1% most significant associations ranked by z-score, corresponding to an absolute z-score > ~5.
Genes were classified according to the Cluster of Orthologous Groups. Annotated ions were grouped according to the genome-scale metabolic model of Escherichia coli (Orth
et al, 2011). Unknown ions were omitted. The ribbon width scales with the number of interactions.

ª 2017 The Authors Molecular Systems Biology 13: 907 | 2017

Tobias Fuhrer et al Gene–metabolome associations in E. coli Molecular Systems Biology

3



lacking genes encoding for (i) complementary partners of protein

complexes or (ii) isoenzymes. Although not all genes are expected

to be relevant under the tested condition, we were able to recover

significant fractions of both types of functional relationships using

the context likelihood of relatedness (CLR) algorithm (Faith et al,

2007) (Fig 4A). The best-reconstructed protein complexes belonged

to multi-subunit enzymes (Fig 4B), but strong similarity was also

found among functionally related processes, for example, between

the sdh operon-encoded succinate dehydrogenase and the quinol

oxidase (cyo) or between the NADH:ubiquinone oxidoreductase

(nuo) and the fumarate reductase (frd) complexes. Thus, similar

metabolic profiles indeed reflect functional dependencies between

genes.

Our analyses demonstrate that metabolome profiles correctly

capture known functional links between related genes and cellular

processes, even if underlying gene–metabolite associations go

beyond the canonical metabolic network. Consequently, our empiri-

cally constructed association map provides a unique resource for

data-driven investigation of gene–metabolite interactions. In the

following, we provide two representative applications to illustrate

how the association map can predict metabolic function of orphan

genes and identify potential genes mediating metabolic adaptations

to external perturbations.

Prediction of orphan gene function

A particularly persisting problem in the post-genomic era is the 30–

40% fraction of genes with unknown function (y-genes) even in the

best-characterized species (Jaroszewski et al, 2009; Hanson et al,

2010). To demonstrate the use of the association map in detailing

the roles of uncharacterized genes, we attempted to infer functions

for the 1,274 y-genes (Hu et al, 2009) in our screen by searching for

similarities between the metabolome profiles of their deletion

mutants and those of the 2,533 mutants lacking genes with known

functions. Metabolic and other cellular functions were enriched

among deleted genes eliciting similar responses for one quarter and

about half of the y-gene mutants, respectively (Fig 5A). Based on

consistency of enriched pathways among similar responding

mutants and the observed differential ions in y-gene knockouts, we

propose metabolism-related functions for 72 y-genes (Table EV3).

Enrichment scores of enzymes or transcription factors among the

similar genes were mutually exclusive, indicating that strong local

and weaker global effects form two separate groups also among

orphan genes (Fig 5B).

Two of our top y-gene predictions, Yhhk and YgfY, were

annotated during the course of this study. These are representative

examples to illustrate how functional hypotheses are derived from

the association map and similarity analysis (Fig EV8A–C). YhhK

knockout mutant exhibited strong similarity to several enzymes in

pantothenate and coenzyme A biosynthesis (panB, panC, panD, and

panE), with several differential metabolites in the coenzyme A

biosynthesis pathway, including (R)-pantoate and (R)-pantothenate.

Consistent with our data, YhhK was found to be an acetyl-

transferase activating PanD and recently annotated as PanZ (Nozaki

et al, 2012; Stuecker et al, 2012). Similarly, metabolome profiling of

ygfY deletion mutant featured common metabolic changes

(Table EV3) to genes encoding subunits of succinate dehydrogenase

(i.e., sdhB and sdhC). In addition, the top ranked differential ions

observed in the ygfY mutant are dominated by succinate annotated

ions (Table EV3). While enzymatic assays of YgfY using succinate

as only substrate did not result in any detectable catalytic activity,

when using crude cell lysate of the ygfY mutant instead of purified

protein, we found succinate dehydrogenase activity to be drastically

reduced in comparison with wild type (Fig EV8B). In addition,

growth of the ygfY mutant was almost completely abolished when

cells were grown on succinate as sole carbon source (Fig EV8C).

Consistent with our findings, ygfY was recently reannotated to

encoded sdhE, a FAD assembly factor for SdhA and FrdA (McNeil

et al, 2012, 2013, 2014).

Different from the two previous examples, the functional role of

YidK and YidR is still unknown. Metabolome-based predictions

suggested a common role of these two genes in galactose and

gluconate/galacturonate metabolism, respectively (Fig EV8D and

E). Deletion mutants of functionally characterized genes with simi-

lar metabolic responses are mainly related to sugar catabolism

(e.g., treF, malS, and tktA). Furthermore, most strongly affected

metabolites include various sugar derivates including UDP-galac-

tose, 3-deoxy-D-manno-2-octulosonate, or tagatose 6-phosphate

(Table EV3). These observations are consistent with other large-

scale datasets such as StringDB (Szklarczyk et al, 2011) suggesting

a genomic context-based relation to galactose metabolism, or M3D

showing good expression level correlation with genes involved in

carbohydrate metabolism such as fucR, fucI, fucK, xylAB, and rfaB

(Fig EV8E). Because of this metabolic similarity and because of its

membrane-localized domain (Reizer et al, 1994), we hypothesized

that YidK might be involved in the transport of some sugar-related

compounds. Consistent with our prediction, ΔyidK mutant exhib-

ited a growth phenotype when grown in galactose (Fig EV8D).

For yidR gene deletion, the strongest metabotype similarity was

observed for dgoT (galactonate transporter), and we consistently
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Figure 3. Locality analysis for enzyme deletions.
Distribution of empirical P-values (calculated from a permutation test) for
enzyme deletions and the respective metabolites up to a distance of five
enzymatic steps are plotted. In each enzyme-deletion mutant, the modified
z-scores of metabolites at distance 1, 2, 3, 4 or 5 are compared to the
average changes generated by selecting metabolites at random. For the five
tested distances between enzyme and metabolites, the fraction of enzyme
deletions yielding significant distance enriched metabolic changes are
highlighted below the red line. For a substantial fraction of tested enzymes,
the largest metabolic changes are observed within up to two enzymatic
distance steps.

Molecular Systems Biology 13: 907 | 2017 ª 2017 The Authors

Molecular Systems Biology Gene–metabolome associations in E. coli Tobias Fuhrer et al

4



cyoD
cyoC
cyoB
cyoA
cusC
cusF
cusB
cusA
sdhC
sdhD
sdhA
sdhB
potD
potC
potB
potA
sapF
sapD
sapC
sapA
cysP
cysU

sbp
cysA
cysW
gspD
gspE
gspJ
gspK
dppF
dppC
dppB
dppA
pstB
pstA
pstC
pstS
frdD
frdC
frdB
frdA
trxA

ptsG
crr

malX
chbC
chbB
agaB
agaC
glvB
glvC
frvB
frvA
frwC
frwB
ulaA
ulaB
ptsI

sgcC
sgcX
ptsH

oppA
oppB
oppC
oppD
oppF
rpmF
rpmI
rplY

prmA
rpmG

rplI
fhuA
fhuC
fhuD
btuF
btuE
fecE
fecD
fecB
fepC
fepG
fepD
fepB
tonB
exbB
ybgC
ybgF

ompF
btuB
tolQ
tolR
tolB
pal

nuoN
nuoM
nuoL
nuoK
nuoJ
nuoI

nuoH
nuoG
nuoF
nuoE
nuoB
nuoA

fliM
motA

flgE
flgK
flgL
flhA
fliD
fliH
fliI

fliO
fliP
fliR

flgB
flgC
flgF
flgG

motB

−2.5

−2

−1.5

−1

−0.5

0

0.5

cyoD
cyoC
cyoB
cyoA

sdhC
sdhD
sdhA
sdhB

dppF
dppC
dppB
dppA
pstB
pstA
pstC
pstS
frdD
frdC
frdB
frdA

sgcC
sgcX
ptsH

oppA
oppB
oppC
oppD
oppF

fecE
fecD
fecB
fepC
fepG
fepD
fepB

1

2

5
4

3

6

tolQ
tolR
tolB
pal

nuoN
nuoM
nuoL
nuoK
nuoJ
nuoI

nuoH
nuoG
nuoF
nuoE
nuoB
nuoA

nuoN
nuoM
nuoL
nuoK
nuoJ
nuoI

nuoH
nuoG
nuoF
nuoE
nuoB
nuoA

frd
D
frd

C
frd

B
frd

A

sdhC
sdhD
sdhA
sdhB

cy
oD

cy
oC

cy
oB

cy
oA

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Protein complexes (0.68)
Iso-enzymes (0.75)

100

1A

B

Figure 4. Network recovery for isoenzymes and protein complexes.

A Recovery of enzyme function. Receiver operating characteristic curves obtained for the recovery of Escherichia coli isoenzymes and protein complexes based on the
metabolome profiles recorded in single deletion mutants. The area under the curve (AUC) is reported in parentheses.

B Consistent metabolic patterns in mutants of protein complex subunits. The heatmap shows the pair-wise similarity (e.g., CLR index) between metabolome response to
gene deletions. Genes related to densely connected protein complexes consisting of at least three subunits are selected. We visualized the protein complex adjacency
matrix, opportunely reordered. Magnified protein complexes are 1, succinate dehydrogenase; 2, cytochrome bo terminal oxidase; 3, fumarate reductase/phosphate ABC
transporter/dipeptide ABC transporter; 4, murein tripeptide ABC transporter; 5, ferric enterobactin transport complex/ferric dicitrate transport system; 6, NADH:
ubiquinone oxidoreductase/Tol–Pal cell envelope complex and high-scoring combinations thereof.
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observed changes in different metabolites related to carbohydrate

metabolism, such as sedoheptulose-7-phosphate or D-sorbitol 6-

phosphate. Additionally, four genes of the D-galactonate degradation

pathway (dgoT, dgoD, dgoR, and dgoK) were among the top ten

correlating genes in the M3D database (Fig EV8E). Growth pheno-

typing revealed that, indeed, the yidR deletion mutant displays a

growth defect specifically on gluconate and galacturonate

(Fig EV8D), confirming that yidR is functionally relevant for the

assimilation of these compounds. The association map thus informs

on metabolism-related gene functions and can provide leads for

further functional genomics investigations. In most cases, however,

the prediction relates to pathways because of the complex and wide-

spread metabolic changes we observed. More specific prediction on

specific reactions or enzyme class is only possible if the immediate

substrates are detectable and characterized by a particularly strong

response.

Predicting genes mediating the metabolic response to
environmental perturbations

The rapidly growing number of large-scale metabolomics studies

poses a serious challenge to data interpretation, in particular when

complicated patterns emerge (Sevin et al, 2015). Here, we investi-

gated whether complex metabolic patterns in response to an exter-

nal perturbations can be functionally interpreted with our gene–

metabolite association map. To this end, we recorded the metabo-

lome response of wild-type E. coli to a variety of naturally relevant

nutrient limitations (e.g., phosphate, sulfur, oxygen, or iron limita-

tion) and stresses (osmotic and deoxycholate). By comparing the

metabolic response to an external perturbing agent to the metabo-

lome profiles of individual gene deletions, we tested the ability

to recover genes mediating the adaptive response of E. coli to

sudden environmental changes (Fig EV9). In agreement with our

expectations, for nutritional limitations, we consistently identified

genes directly related to the utilization of the corresponding limit-

ing nutrient, such as iron uptake and cysteine biosynthesis in the

case of iron and sulfur limitations, respectively. Deoxycholate is

found in bile acids and represents a common stress factor for

bacteria in the gut, such as E. coli (Merritt & Donaldson, 2009).

However, little is known about the underlying metabolic response.

Based on our genomewide metabolome map, we identified seven

single-gene deletion mutants in the compendium eliciting similar

metabolic changes to those observed upon exposure to deoxy-

cholate (Fig 6A). Notably, we found that six out of these seven

mutants were substantially more resistant to deoxycholate inhibi-

tion compared to the wild-type E. coli strain, confirming the

predicted functional role of these genes in mediating the stress

response to deoxycholate (Fig 6B). Five of these beneficial mutants

were disrupted in the uptake of ferric enterobactin (fepB, fepC,

fepD, and fepG) or the release of iron into the cytosol (fes). While

the function of these genes might suggest a direct role of iron,

growth experiments under iron limitation and deoxycholate stress

demonstrated that iron depletion per se is not sufficient to confer

deoxycholate resistance (Fig EV10A). A common metabolic feature

between these mutants and deoxycholate-stressed cells was the

intracellular accumulation of enterobactin (Fig 1A). While enter-

obactin supplementation (Fig EV10B) did not affect deoxycholate

sensitivity in the wild type (Fig 6C), mutants with disrupted enter-

obactin biosynthesis (DentF, DentB, DentC) were surprisingly

insensitive to deoxycholate stress in minimal medium containing

exogenous enterobactin (Fig 6C). Hence, while the underlying

mechanism remains to be elucidated, these results support the

predicted functional link between enterobactin biosynthesis and

deoxycholate tolerance. Overall, interrogating the metabolic

response to complex perturbations using our compendium of gene

deletion profiles can reveal new and non-obvious hypothesis on

the molecular players that mediate the adaptive response of E. coli

to an external stimulus.
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Discussion

Large-scale phenotypic screening of single- and double-gene dele-

tion mutants has proven powerful in understanding gene functions,

gene–gene interactions, and condition-dependent gene essentiality

(Costanzo et al, 2010; Nichols et al, 2011). However, screening of

large mutant libraries typically comes at the cost of measuring only

one or few phenotypic traits (e.g., growth rate or viability). The

implicit lack of fine-grained molecular or intracellular information,

in turn, hinders attaining a detailed understanding on how interac-

tions between genes, or between genes and the environment are

established. Increasing the space of features that characterize func-

tional consequences of genetic deletions on a molecular level

improves the ability to disentangle the interplay between genes and

to discern the regulatory architecture within cells (van Wageningen

et al, 2010).

For the investigation of metabolism and its regulation, metabolo-

mics provides a direct functional readout that convolutes the

cell-wide interplay of enzyme activity and metabolites. Regulatory

events that modify enzyme properties such as their abundance,

localization, or kinetic properties eventually affect metabolite levels.

Metabolomics offers the possibility of quickly profiling hundreds of

metabolites involved in primary metabolism and thus characterizes

the response of all key pathways that sustain growth and energy

production. To this end, we generated the first comprehensive

empirical map of gene–metabolite interactions by systematically

measuring the relative changes in the abundance of hundreds of

metabolite (ions) in 3,807 E. coli single-gene deletion mutants (Baba

et al, 2006). This comprehensive compendium can be searched to

find gene deletions that have the largest impact on a metabolite of

interest, or vice versa, to find which metabolites are affected upon a

specific gene deletion. This gene–metabolite interaction map

complements classical genomewide phenotypic screens and is

a valuable resource to mechanistically interpret macroscopic

phenotypes.

An important result of our analysis of the gene–metabolite map

is that marked metabolite changes can occur distant from the

genetic lesion, even when enzymes with known catalytic functions

were deleted and no global growth defect was detected. Hence, the

topology and connectivity defined by the metabolic network are not

sufficient to explain and predict the impact of gene deletions on the

overall cell/metabolic phenotype. While these distal gene–metabo-

lite interactions remain largely elusive to explain at this point, they

can be interpreted as metabolic fingerprints of gene function and in

our study were used to (i) predict the enzymatic functions of

y-genes even in the absence of growth phenotypes and (ii) establish

a metabolic link between gene and their functional role in mediating

the cell response to environmental perturbations.

Altogether, we hypothesized metabolic function for 72 y-genes,

of which YidK and YidR were experimentally validated. Our metabo-

lome compendium also provides a key to interpret metabolic

changes induced upon perturbations other than gene deletions. By

establishing an indirect link between common metabolic changes

induced by gene deletions and external perturbations, we predicted

non-obvious mediators of the cellular response to deoxycholate

treatment, which involved genes in iron metabolism.

The two above examples of functional gene annotation and

predicting genes involved in cellular responses demonstrate the util-

ity of the association map for generating novel lead hypotheses on

the functional roles of genes in metabolism. Because of the large

number of tested genetic lesions and covered metabolites, the map

constitutes a unique resource to inspire new and less conventional
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Figure 6. Predicting genes mediating the metabolic response to environmental perturbations.

A Dendrogram representing genes with significant overlap of differential metabolites in the respective knockout and during growth in the presence of 10 mg/ml
deoxycholate in wild-type Escherichia coli. Genes are hierarchically clustered based on their topological distance assessed by the minimum number of connecting
reactions in the metabolic network.

B Relative growth rates of wild-type E. coli and deletion mutants in glucose minimal medium supplemented with casein hydrolysate and deoxycholate. Error bars
represent standard deviations from three biological replicates.

C Relative growth rates of wild-type E. coli and enterobactin biosynthesis mutants in glucose minimal medium supplemented with enterobactin and deoxycholate.
Error bars represent standard deviations from three biological replicates.
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approaches to predict the mode of action of genetic and environ-

mental perturbations. Moreover, the large number of newly

revealed gene–metabolite associations paves the road to explore so

far unknown functional and regulatory interactions beyond those

represented in current genome-scale metabolic models (Feist et al,

2009; Orth et al, 2011).

Materials and Methods

Chemicals

Water, methanol and 2-propanol, all CHROMASOLV LC-MS grade,

buffer additives for online mass referencing, media, and sample

preparation chemicals at the highest available purity were

purchased from Sigma-Aldrich and Agilent Technologies. Pure water

for extraction and resuspension with an electric resistance greater

than 16 MΩ was obtained from a NANOpure purification unit

(Barnstead, Dubuque, IA, USA).

Biological samples

Escherichia coli wild-type and 4,320 deletion mutants (Table EV1)

from the KEIO knockout collection (Baba et al, 2006) were grown

on glucose minimal medium supplemented with casein hydrolysate

containing (per liter): 4 g glucose, 2 g N-Z Case Plus, 7.52 g

Na2HPO4�2H2O, 3 g KH2PO4, 0.5 g NaCl, 2.5 g (NH4)2SO4, 14.7 mg

CaCl2�2H2O, 246.5 mg MgSO4�7H2O, 16.2 mg FeCl3�6H2O, 180 lg
ZnSO4�7H2O, 120 lg CuCl2�2H2O, 120 lg MnSO4�H2O, 180 lg
CoCl2�6H2O, 1 mg thiamine�HCl. Culture volumes of 1 ml were

incubated in 96-deep well plates at 37°C with shaking at 300 rpm.

Growth was followed via absorbance at 600 nm measured at four

time-points, and all samples were harvested during mid-exponential

growth phase by centrifugation for 10 min at 0°C and 2,200 g. Cell

pellets were immediately extracted with 150 ll preheated water

containing 2 lM reserpine and 2 lM taurocholic acid for 10 min at

80°C and occasional vortexing. This extraction broth was centri-

fuged for 10 min at 0°C and 2,200 g, and supernatants were stored

at �80°C until further analysis.

Flow-injection analysis—TOF MS

The analysis was performed on a platform consisting of an Agilent

Series 1100 LC pump coupled to a Gerstel MPS2 autosampler and an

Agilent 6520 Series Quadrupole TOF mass spectrometer (Agilent,

Santa Clara, CA, USA) as described previously (Fuhrer et al, 2011).

The flow rate was 150 ll/min of mobile phase consisting of isopro-

panol:water (60:40, v/v) buffered with 5 mM ammonium carbonate

at pH 9 for negative mode and methanol:water (60:40, v/v) with

0.1% formic acid at pH 3 for positive mode. For online mass axis

correction, 2-propanol (in the mobile phase) and taurocholic acid or

reserpine were used for negative mode or for positive mode, respec-

tively. Mass spectra were recorded in profile mode from m/z 50 to

1,000 with a frequency of 1.4 s for 2 × 0.48 min (double injection)

using the highest resolving power (4 GHz HiRes). Source tempera-

ture was set to 325°C, with 5 l/min drying gas and a nebulizer

pressure of 30 psig. Fragmentor, skimmer, and octopole voltages

were set to 175 V, 65 V, and 750 V, respectively.

Spectral data processing and annotation

All steps of mass spectrometry data processing and analysis were

performed with MATLAB (The Mathworks, Natick, MA, USA) using

functions embedded in the Bioinformatics, Statistics, Database, and

Parallel Computing toolboxes as described previously (Fuhrer et al,

2011). Peak picking was done for each sample once on the total pro-

file spectrum obtained by summing all single scans recorded over

time, and using wavelet decomposition as provided by the Bioinfor-

matics toolbox. In this procedure, we applied a cutoff to filter peaks

of less than 500 ion counts (in the summed spectrum) to avoid

detection of features that are in any case too low to deliver statisti-

cally meaningful insights. Centroid lists from samples were then

merged to a single matrix by binning the accurate centroid masses

within the tolerance given by the instrument resolution (about

0.002 amu at m/z 300). The resulting matrix lists the intensity of

each mass peak in each analyzed sample. An accurate common m/z

was recalculated with a weighted average of the values obtained

from independent centroiding. Because mass axis calibration is

applied online during acquisition, no m/z correction was applied

during processing to correct for potential drifts. After merging, 3,169

and 4,365 common ions were obtained for negative and positive

mode, respectively, which were annotated based on accurate mass

using 3 mDa tolerance (Tables EV1 and EV2). Annotation was based

on assumption that �H+, +OH�, and +Cl� are the possible ioniza-

tion options for negative mode, and +H+, +K+, and +Na+ for

positive mode. Additional commonly observed adducts were consid-

ered as described previously in detail (Fuhrer et al, 2011): 12C1-
13C1,

12C2-
13C2, �H++Na+, �H++K+, �H2O, �CO2, �NH3, �HPO3,

�H3PO4, +H2PO4Na, +H2PO4K, +HPO4Na2, +HPO4K2, +(H2PO4Na)2,

+(H2PO4K)2, +(H2PO4)2NaH, and +(H2PO4)2KH. Putative coverage

of E. coli metabolism is shown in Fig EV1.

Physiology

Growth rates were calculated as the slopes of linear fits to log-trans-

formed experimentally determined OD values. Approximate harvest

OD values were estimated by the calculated growth rates and

harvest time. Identification of extremely sick mutants was based on

a 0.1 OD cutoff on the last two OD values as the respective calcu-

lated growth rates were not reliable. Of the 3,847 unique gene

knockouts, 21 extremely sick mutants were omitted from data anal-

ysis: aceF, carA, eptB, frmA, guaA, guaB, hflD, lpd, parC, purA, rfaI,

rfaP, rfaS, rplA, ybaB, ybeY, yiQ, yjjG, yqaB, yrdA, and ytfE. Further-

more, 16 mutants were removed due to injection errors during mass

spectrometry analysis: ybdG, stfQ, ybiB, mntR, ybgJ, ybaK, ybjJ,

yahD, ylaB, yqcA, wcaJ, ybhR, yliJ, yaiB, ybhN, and ykgF. The

remaining 3,810 unique gene knockouts were further analyzed.

Data normalization and calculation of differential ions

Preprocessing of raw mass spectrometry data consists of four steps:

(i) correction of intensity drift throughout sequential injections within

one plate by a low pass filter over a moving window of five injections,

(ii) correction of intensity drifts across plates due to regular instru-

ment cleaning procedures, extraction effects or long-term ionization

drifts by normalizing the mean of every ion to be equal over all

plates, (iii) correction of intensities for harvest OD dependencies
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using a locally weighted scatterplot smoothing (LOWESS). This

procedure was used to perform a model-free estimation of the

ion-specific dependency with harvest ODs. The local least square

regression was employed to normalize for OD effects as follows:

intensityion i ¼ raw intensityion i � trendion i þmedian intensityion i

(iv) a modified z-score is then used to select for significantly and

specifically affected ions according to:

z-scoreði;jÞ ¼
intensityði;jÞ �medianði;allÞ

stdði;allÞ

where i and j denote ion and samples, respectively, and median as

well as standard deviation (std) refers to all intensities of ion i in

the entire dataset. Modified z-scores referring to technical and

biological replicates are summarized into a unique median modified

z-score, and three additional mutants were removed from the

dataset having inconsistent z-score among the replicates (flhC, hrpB,

and yhfW), resulting in a final data set with 3,807 mutants. Notably,

no internal standards were used because they are not suited to

normalize thousands of mostly unknown chemical entities.

Reproducibility between biological replicates

For each knockout mutant, two different clones contained on sepa-

rate plates in the library were separately processed on different

days. We assessed reproducibility of the metabolome profiles

between the two biological replicates by calculating the absolute dif-

ference between z-scores (Fig EV2A). The resulting distribution of

z-score differences shows that above a z-score of 2.765, we have 1%

probability of having false positives.

Network recovery from pair-wise similarity

Pair-wise similarity among normalized metabolome profiles for each

tested mutant was calculated by the CLR approach (Faith et al,

2007), which estimates a similarity score for each pair of gene

profiles by comparing a joint likelihood measure based on mutual

information. Isoenzymes were identified by the Orth genome-scale

model (Orth et al, 2011). Protein complexes were obtained from

EciD (Andres Leon et al, 2009). We then evaluated the overlap

between the above known interaction graphs and the inferred

network of similarities derived from metabolome profiles using

receiver operating characteristic (ROC) curves. Briefly, this frame-

work allows us to span the entire range of cutoff values for the

estimated pair-wise similarities to describe the trade-off between

sensitivity and the false-positive rate (FPR) in the network recon-

struction. Sensitivity is defined as the fraction of the known interac-

tions, which were also inferred by our similarity score (true

positive, TP) and the total number of known interactions, given by

the sum of TP and true negatives (TN) [sensitivity = TP/

(TP + FN)], while FPR is the fraction of incorrect inferred relation-

ships (false positive, FP) over the sum of all known negative interac-

tions (given by the sum of FP and true negative, TN) [FPR = FP/

(FP + TN)]. Finally, the area under the curve (AUC) was used to

give an estimate of the quality of the reconstruction. For Fig 4A, the

analysis was performed by restricting the calculation of TP and FP

interactions only among 46% of genes with at least one significant

metabolic change (i.e., silent genes were excluded, Fig EV7C).

Locality analysis

A genome-scale network model of E. coli metabolism was used to

determine the distance between each enzyme–metabolite pair. The

resulting pair-wise distance matrix between metabolic enzymes and

metabolites was estimated by means of the minimum number of

reactions separating the two in a non-directional network. All highly

connected metabolites were removed prior to calculation. To assess

whether largest metabolic changes are statistically more probable in

the proximity of the deleted enzymes (Fig 3), we used a permuta-

tion test. For each enzyme deletion, we calculated the sum of abso-

lute changes of metabolites directly linked to the enzyme (i.e.,

substrates/products) corresponding to distance 1, up to metabolites

at five enzymatic steps away from deleted gene. For each tested

enzyme, the observed statistic (Sobs) was compared with a permuted

one (Sperm) obtained by randomizing 1,000 times the original

distance matrix. P-value was empirically estimated as follows:

P-valueg;d ¼ ðSperm � SobsÞ
1; 000

where g is the selected gene and d is the distance (from 1 to 5).

This first statistical analysis revealed a tendency of enzyme dele-

tions, often within amino acids biosynthetic pathways, to exhibit

larger metabolic changes within one to two enzymatic steps (Figs 3

and EV4). This result enabled us to generalize and extend our analysis

to non-metabolic genes using a locality scoring function as follows.

For transcription factors (TFs), we augmented the metabolic

network with the connections between TFs and their known meta-

bolic enzyme targets extracted from RegulonDB (Salgado et al,

2013). Similarly, to calculate the distance between non-metabolic

proteins and detectable compounds, we included known protein–

enzyme interactions from the EciD database (Andres Leon et al,

2009) (Fig EV6). The distance for all pairs of genes and detectable

compounds was calculated as the minimum number of edges (regu-

latory links) connecting the non-metabolic proteins to enzymes, and

enzymes to metabolites (reactions). We then implemented a locality

scoring function weighted for distance as follows:

SðgiÞ ¼
PM

m¼1

D�2
i;m � 1� z:pvali;m

� � � jZi;mj
PM

m¼1

D�2
i;m � 1� z:pvali;m

� �

SkrandðgiÞ ¼
PM

m¼1

Dk
rand�2

i;m

� 1� z:pvali;m
� � � jZi;mj

PM

m¼1
Dk
rand�2

i;m

� 1� z:pvali;m
� �

P:valueðgiÞ ¼
P
k

Skrand � S
� �

K

where for each gene (encoding for enzymes, TFs, or proteins) gi, a

weighted mean over corresponding Zi,m (Z-scores of metabolome
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profiles corresponding to gene i and metabolite m) is computed.

Weights are a function of the inverse of the squared distance

between the gene i and the metabolite m and the z-test P-value

associated with the ion measurements (measure of confidence of

metabolite measurements). We performed a permutation test with

randomly shuffling of the distance matrix D (Drand) K times (i.e.,

K = 100) to assign a significance value to each gene.

Pathway enrichment analysis

Enzyme deletions and annotated metabolites were grouped accord-

ing to the corresponding metabolic pathways as defined in the

genome-scale model of Orth et al (2011). Only the largest 0.1% of

metabolic changes were considered. The statistical significance of

enzymes belonging to a metabolic pathway to elicit metabolic

changes in each different metabolic pathway (Fig EV5) was assessed

by a permutation test, where the metabolite and gene orders are

randomly shuffled and the number of randomly assigned metabolite

with a relative change in absolute abundance (modified z-score) > 5

is counted. Significance of the observed statistics was assessed by

counting how many times randomly assigned metabolites exceed the

originally observed metabolic changes in each metabolic pathway.

Categorization of mutants based on number of differential ions
and enrichment of cellular functions

We applied stringent absolute 0.1 percentile (0.1%) cutoff to the

distribution of the z-scores to select significantly differential ions.

Choosing a typical P-value cutoff of 0.05 for 0.1 percentile cutoff

leads to four distinct scenarios: 0 hits for silent mutations, a region

where we get less hits than expected (1–4 hits), a region with signifi-

cant probability to get hits (5–10 hits), and a region where we get

more hits than expected (> 10 hits) (Fig EV7B). Based on these

distributions, we classified the strains as mutants being silent, or

having rare, moderate, and global effects, respectively (Fig EV7C).

Enrichment significance (P-value) for of Cluster of Orthologous

Groups (Tatusov et al, 2003; Hu et al, 2009) within the different

categories silent, rare, moderate, and global was derived by hyper-

geometric probability density function for each cellular function

category for the 0.1 percentile cutoff (Fig EV7D).

Potential function predictions for orphan genes—calculation of
prediction score

Metabolome profile similarity based on CLR enabled us to relate

genes with similar catalytic activity (Fig 4A). Hence, we envisaged

the possibility to employ such similarity patterns to infer potential

catalytic properties of functionally uncharacterized proteins. More-

over, the observed locality of metabolic responses can suggest

potential reactants of eventually catalyzed reactions. In order to

predict the enzymatic activity of a functionally uncharacterized

protein, we thus combined the information of both CLR and dif-

ferential annotated ions. To allow for contribution of more subtly

affected differential ions, the percentile cutoff on the z-score was

relaxed to 0.5% (corresponding to 0.01 P-value based on the proba-

bility distribution estimated in Fig EV2A). First, for a particular

candidate gene, we selected among the top similar gene based on

CLR (Table EV3—CLR hits, also see legend for prediction table

supplied as Word file) the annotated enzymes and extrapolated

from overrepresented linked metabolites (i.e., their substrates and

products enriched with P-value < 0.01, Table EV3—MET prediction

hits, top hit and top score) when at least two enzymes were signifi-

cantly similar. The genes with the highest similarity scores (i.e.,

highest CLR index) were selected using a threshold corresponding

to a 5% FPR in the recovery of iso-enzyme network (Fig 4A).

Columns CLR—top hit and top score in Table EV3 report the most

similar gene by CLR and the corresponding CLR index value, respec-

tively. Second, we tested for each annotated metabolite how likely it

is that perturbations yielding most significant changes of the anno-

tated ions were associated with deletion of those enzymes directly

capable of converting the selected metabolite. For this test, we used

a ROC curve analysis and ranked deletion mutants based on the z-

score matrix. From this analysis, we derived for each ion-annotation

an estimate of the AUC index representing annotation confidence

(Table EV4). The changes in ion abundance (i.e., z-score) were then

weighted by corresponding AUC indices (Table EV3, DIFF IONS hits,

top hit, and top score). Third, we identified overrepresented

metabolites linked to annotated enzymes either as substrates or

products of catalyzed reactions and determined their intersection

with metabolites identified as annotated differential ions (based on

0.5% percentile cutoff, Table EV3, MET Prediction overlap). Finally,

the sum of AUC weighted z-scores of overlapping metabolites

(Table EV3, CLR—prediction score) was used to rank all y-genes

according to consistency between CLR-based predictions and

observed differential annotated ions to prioritize further validations.

Table EV3 also includes enrichment of KEGG pathways using hyper-

geometric probability tests of annotated similar genes based on dif-

ferential ions, similar genes, or both (KEGG PATHWAYS by CLR,

hits, top hits and top score). We also provide hyperlinks to three

databases (i.e., Ecocyc, KEGG, and PortEco, Table EV3—links), and

of enriched COG terms among similar genes (Table EV3—COG hits,

top hit, and top score).

Overexpression and purification of proteins encoded by y-genes

A genomewide E. coli gene overexpression library (Kitagawa et al,

2005) served as resource for expression and purification of proteins

for functional validation. This library consists of 4,267 clones of

E. coli K-12 AG1 each containing a plasmid encoding one ORF as a

N-terminal His6-fusion under control of the isopropyl-b-D-thiogalac-
topyranoside (IPTG)-inducible lac-promoter as well as chloram-

phenicol-acetyl-transferase providing chloramphenicol resistance as

dominant selection marker. The selected expression strains were

grown in 500 ml shake flasks (50 ml culture volume) on an orbital

shaker for 16 h at 37°C and 300 rpm. Overexpression was performed

in LB medium (10 g/l yeast extract, 10 g/l tryptone, 5 g/l NaCl at pH

7.5) supplemented with 5 g/l glucose, 20 lg/ml chloramphenicol,

and 100 lg/ml IPTG. Cells were harvested by centrifugation at

2,200 g and 4°C for 10 min. The supernatant was discarded, and the

pellet was washed once with 500 ll (2 ml cultures) or 10 ml (50 ml

cultures) 0.9% NaCl + 1 mM MgCl2. For the 50 ml cultures, cells

were resuspended in 4 ml of 100 mM Tris-buffer at pH 7.5 supple-

mented with 5 mM MgCl2, 20 mM imidazole, 2 mM DTT, and 4 mM

PMSF and lysed by three passages through a French pressure cell

(Thermo Fisher) at 1,000 psig. Proteins were purified by immobi-

lized metal-ion affinity chromatography using a sepharose resin with
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nitriotriacetic acid groups chelating Ni2+ ions. Imidazole and salts

from the elution buffer were removed by ultrafiltration using 10 kDa

MWCO centrifugal filters in 4 ml tube (50 ml cultures) or 96-well

plate format (2 ml cultures) (Millipore). Proteins were resuspended

in 2 mM Tris pH 7.4 and 1 mM MgCl2 and stored at 4°C until further

usage. Expression and purity was checked by standard Bradford

assays and SDS–PAGE analysis.

Predicting gene mediators of environmental perturbations

For deoxycholate, the IC50 (concentration inhibiting growth by 50%)

of 10 mg/l was determined by automated microtiter-scale cultivations

with a gradient of 0–20 mg/l deoxycholate. Limiting concentrations

of 35 lM sulfate (MgSO4), 100 nM ferric iron (FeCl3), and 120 lM
phosphate (KH2PO4) was determined analogously. Perturbation

experiments were performed in 5 ml cultures in glucose-M9 minimal

medium without casein hydrolysate at 37°C and 300 rpm. Anaerobic

cultures were performed at 37°C under N2 atmosphere in N2 sparged

septum flasks. 1 ml of cells at OD 0.5 was harvested in triplicates by

fast filtration and extracted in 4 ml 40:40:20 acetonitrile:MeOH:

ddH2O (vol %) for 2 h at �20°C. Extracts were dried under vacuum

and resuspended in 150 ll ddH2O. Metabolomics measurements

were performed by flow-injection TOF-MS as described previously

(Fuhrer et al, 2011), and for osmotic stress (500 mM NaCl),

previously published data were used (Sevin & Sauer, 2014).

Metabolites undergoing significant changes upon an environmen-

tal perturbations compared to mock treated cells were defined as

passing an absolute fold-change cutoff of 2 at a false-discovery rate

of 0.01 relative to unperturbed cells. Subsequently, the overlap

between metabolites significantly affected by an environmental

perturbation and metabolites influenced by single-gene deletions

(considering only the largest 0.1% of observed metabolic changes)

was systematically determined. For each gene deletion, the sum of

relative changes among the set of metabolites (Ω) commonly

affected by each environmental perturbation (E) was calculated

according to:

Sg ¼
X

X\E
Z-scorei

Significance of the overlap was estimated by means of P-values

obtained using a permutation test:

Spermg ¼
X

Xperm\E
Z-scorei

P-valueg ¼
Spermg � Sg
� �

1; 000

where Sperm is the permuted score obtained by selecting at random

the set of metabolites affected upon gene deletion (Ωperm).

Randomization was performed 1,000 times for P-value estimation.

Growth assay of predicted gene knockouts under
deoxycholate stress

Escherichia coli wild-type strain and single-gene deletion mutants

with a metabolic phenotype consistent with that of cells under

deoxycholate stress (Fig 6A) were cultivated at microtiter scale at

different deoxycholate concentrations (0, 1, 2, 3 mg/ml) in glucose-

M9 minimal medium with casein hydrolysate (Fig 6B). Maximum

growth rates during exponential growth phase were calculated from

triplicate cultivations.

Growth assay of Escherichia coli wild-type strain and
enterobactin biosynthesis mutant strains with enterobactin
supplementation and deoxycholate stress

Escherichia coli wild-type and mutant strains were cultivated at

microtiter scale at different deoxycholate concentrations (0, 1, 2,

3 mg/ml) with varying enterobactin concentration (0, 0.5, 1.5 lM)

in glucose-M9 minimal medium (Figs 6C and EV10B). Maximum

growth rates during exponential growth phase were calculated from

triplicate cultivations.

Growth assay of Escherichia coli wild-type strain under iron
limitation and deoxycholate stress

Escherichia coli wild-type strain was cultivated at microtiter scale at

different deoxycholate concentrations (0, 1, 2, 3 mg/ml) with vary-

ing iron concentration (0.05, 0.15, 0.5, 1, 5, 10, 25, 50 lM) in

glucose minimal medium (Fig EV10A). Maximum growth rates

during exponential growth phase were calculated from triplicate

cultivations.

Data availability

The following data are available as separate files online: Profile data

for > 34,000 mass spectrometric analysis can be downloaded from

http://massive.ucsd.edu/, accession code: MSV000078963. Raw

data and modified z-scores for positive and negative mode (tab-

separated and excel files) can be downloaded from https://www.eb

i.ac.uk/biostudies/, accession code: S-BSST5.

Expanded View for this article is available online.

Acknowledgements
This work was in part supported by an ETH postdoctoral fellowship to MZ.

Author contributions
TF, DCS, and MZ conceived and designed the study, performed the experimen-

tal work and computational analysis, and wrote the manuscript. NZ performed

computational analysis, supervised the study, and wrote the manuscript. US

supervised the study and wrote the manuscript. All authors read and approved

the final paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Andres Leon E, Ezkurdia I, Garcia B, Valencia A, Juan D (2009) EcID. A

database for the inference of functional interactions in E. coli. Nucleic

Acids Res 37: D629 –D635

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA,

Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12

ª 2017 The Authors Molecular Systems Biology 13: 907 | 2017

Tobias Fuhrer et al Gene–metabolome associations in E. coli Molecular Systems Biology

11

http://massive.ucsd.edu/
https://www.ebi.ac.uk/biostudies/
https://www.ebi.ac.uk/biostudies/
https://doi.org/10.15252/msb.20167150


in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol

2: 2006.0008

Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh

JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych

T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M et al

(2010) The genetic landscape of a cell. Science 327: 425 – 431

Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S,

Collins JJ, Gardner TS (2007) Large-scale mapping and validation of

Escherichia coli transcriptional regulation from a compendium of

expression profiles. PLoS Biol 5: e8

Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of

biochemical networks in microorganisms. Nat Rev Microbiol 7: 129 – 143

Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U (2010)

Tradeoff between enzyme and metabolite efficiency maintains metabolic

homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 6: 356

Fuhrer T, Heer D, Begemann B, Zamboni N (2011) High-throughput, accurate

mass metabolome profiling of cellular extracts by flow injection-time-of-

flight mass spectrometry. Anal Chem 83: 7074 – 7080

Ghazalpour A, Bennett BJ, Shih D, Che N, Orozco L, Pan C, Hagopian R, He A,

Kayne P, Yang WP, Kirchgessner T, Lusis AJ (2014) Genetic regulation of

mouse liver metabolite levels. Mol Syst Biol 10: 730

Hanson AD, Pribat A, Waller JC, de Crecy-Lagard V (2010) ‘Unknown’ proteins

and ‘orphan’ enzymes: the missing half of the engineering parts list - and

how to find it. Biochem J 425: 1 – 11

Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr

Opin Microbiol 13: 337 – 343

Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G, Yang W, Pogoutse O, Guo

X, Phanse S, Wong P, Chandran S, Christopoulos C, Nazarians-Armavil A,

Nasseri NK, Musso G, Ali M, Nazemof N, Eroukova V, Golshani A,

Paccanaro A et al (2009) Global functional atlas of Escherichia coli

encompassing previously uncharacterized proteins. PLoS Biol 7: e96

Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba

M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S,

Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y et al (2007)

Multiple high-throughput analyses monitor the response of E. coli to

perturbations. Science 316: 593 – 597

Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA,

Godzik A (2009) Exploration of uncharted regions of the protein universe.

PLoS Biol 7: e1000205

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for

integration and interpretation of large-scale molecular data sets. Nucleic

Acids Res 40: D109 –D114

Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga

H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA

library (a complete set of E. coli K-12 ORF archive): unique resources for

biological research. DNA Res 12: 291 – 299

Link H, Kochanowski K, Sauer U (2013) Systematic identification of allosteric

protein-metabolite interactions that control enzyme activity in vivo. Nat

Biotechnol 31: 357 – 361

McNeil MB, Clulow JS, Wilf NM, Salmond GP, Fineran PC (2012) SdhE is a

conserved protein required for flavinylation of succinate dehydrogenase in

bacteria. J Biol Chem 287: 18418 – 18428

McNeil MB, Iglesias-Cans MC, Clulow JS, Fineran PC (2013) YgfX (CptA) is a

multimeric membrane protein that interacts with the succinate

dehydrogenase assembly factor SdhE (YgfY). Microbiology 159:

1352 – 1365

McNeil MB, Hampton HG, Hards KJ, Watson BN, Cook GM, Fineran PC (2014)

The succinate dehydrogenase assembly factor, SdhE, is required for the

flavinylation and activation of fumarate reductase in bacteria. FEBS Lett

588: 414 – 421

Merritt ME, Donaldson JR (2009) Effect of bile salts on the DNA and

membrane integrity of enteric bacteria. J Med Microbiol 58: 1533 – 1541

Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM,

Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA

(2011) Phenotypic landscape of a bacterial cell. Cell 144: 143 – 156

Nozaki S, Webb ME, Niki H (2012) An activator for pyruvoyl-dependent l-

aspartate alpha-decarboxylase is conserved in a small group of the gamma-

proteobacteria including Escherichia coli. Microbiologyopen 1: 298 – 310

Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO (2011) A

comprehensive genome-scale reconstruction of Escherichia coli

metabolism–2011. Mol Syst Biol 7: 535

Reizer J, Reizer A, Saier MH Jr (1994) A functional superfamily of sodium/

solute symporters. Biochim Biophys Acta 1197: 133 – 166

Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado

L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-

Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K,

Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C,

Balderas-Martinez YI, Pannier L, Olvera M et al (2013) RegulonDB v8.0:

omics data sets, evolutionary conservation, regulatory phrases, cross-

validated gold standards and more. Nucleic Acids Res 41: D203 –D213

Sevin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress

tolerance in Escherichia coli. Nat Chem Biol 10: 266 – 272

Sevin DC, Kuehne A, Zamboni N, Sauer U (2015) Biological insights through

nontargeted metabolomics. Curr Opin Biotechnol 34: 1 – 8

Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, Arnold M,

Erte I, Forgetta V, Yang TP, Walter K, Menni C, Chen L, Vasquez L, Valdes

AM, Hyde CL, Wang V, Ziemek D, Roberts P, Xi L et al (2014) An atlas of

genetic influences on human blood metabolites. Nat Genet 46: 543 – 550

Stuecker TN, Hodge KM, Escalante-Semerena JC (2012) The missing link in

coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5

acetyltransferase homologue triggers aspartate decarboxylase (PanD)

maturation in Salmonella enterica. Mol Microbiol 84: 608 – 619

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,

Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The

STRING database in 2011: functional interaction networks of proteins,

globally integrated and scored. Nucleic Acids Res 39: D561 –D568

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov

DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov

AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an

updated version includes eukaryotes. BMC Bioinformatics 4: 41

Varghese S, Tang Y, Imlay JA (2003) Contrasting sensitivities of Escherichia coli

aconitases A and B to oxidation and iron depletion. J Bacteriol 185: 221 – 230

van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, de

Castro IJ, van Leenen D, Groot Koerkamp MJ, Ko CW, Miles AJ, Brabers N,

Brok MO, Lenstra TL, Fiedler D, Fokkens L, Aldecoa R, Apweiler E,

Taliadouros V, Sameith K, van de Pasch LA et al (2010) Functional overlap

and regulatory links shape genetic interactions between signaling

pathways. Cell 143: 991 – 1004

Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in

genome-wide association studies. Nat Rev Genet 11: 843 – 854

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

Molecular Systems Biology 13: 907 | 2017 ª 2017 The Authors

Molecular Systems Biology Gene–metabolome associations in E. coli Tobias Fuhrer et al

12


