SUPPLEMENTARY INFORMATION

Ratiometric fluorescent sensing of pyrophosphate with sp^3 -functionalized singlewalled carbon nanotubes

Simon Settele¹, C. Alexander Schrage², Sebastian Jung², Elena Michel³, Han Li^{4,5}, Benjamin S. Flavel⁴, A. Stephen K. Hashmi^{3,6}, Sebastian Kruss^{2,7}* and Jana Zaumseil¹*

¹ Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany

² Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, D-44801 Bochum, Germany

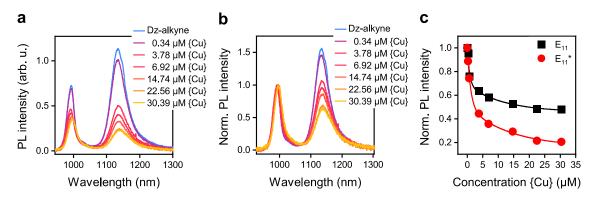
³ Institute for Organic Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany

⁴ Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany

⁵ Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland

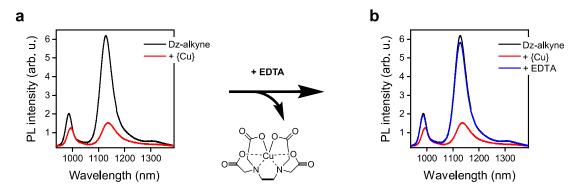
⁶ Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia

⁷ Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, D-47057 Duisburg, Germany

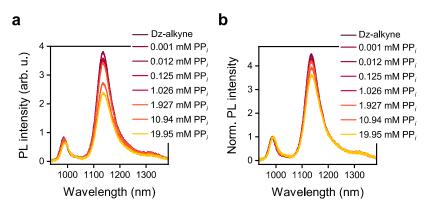

^{*} corresponding authors: zaumseil@uni-heidelberg.de, sebastian.kruss@rub.de

CONTENTS

Supplementary Figures and Tables	3
Suppl. Fig. 1 Copper induced quenching of sp³-functionalized (6,5) SWNTs	3
Suppl. Fig. 2 Reversible quenching of sp³-functionalized (6,5) SWNTs	3
Suppl. Fig. 3 Effect of PP _i on the PL of functionalized SDS-dispersed (6,5) SWNTs	4
Suppl. Note 1 Effect of PP _i on the PL of functionalized SDS-dispersed (6,5) SWNTs	4
Suppl. Fig. 4 Dependence of PL area ratio and E ₁₁ peak position on PP _i concentration	5
Suppl. Fig. 5 Sensor response in the presence of various analytes	5
Suppl. Table 1 Extracted emission peak positions after addition of various analytes	6
Suppl. Fig. 6 Sensing of different mixing ratios of PP _i and ATP	7
Suppl. Fig. 7 Impact of THPTA	7
Suppl. Fig. 8 Competitive complexation of Cu ²⁺ ions	8
Suppl. Note 2 Competitive complexation of Cu ²⁺ ions	8
Suppl. Fig. 9 Impact of the functional group	9
Suppl. Fig. 10 Comparison between functionalized and pristine (6,5) SWNTs	9
Suppl. Note 3 Comparison between functionalized and pristine (6,5) SWNTs	9
Suppl. Fig. 11 PP _i Sensing with E ₁₁ * and E ₁₁ *- emission	. 10
Suppl. Table 2 Extracted values for PP _i sensing with E ₁₁ * and E ₁₁ *- emission	. 10
Suppl. Fig. 12 Impact of {Cu} on the absorption spectra	
Suppl. Fig. 13 Detection of PP _i under pulsed laser excitation	. 11
Suppl. Table 3 Extracted lifetime values from TCSPC measurements	. 12
Suppl. Fig. 14 Investigation of the quenching mechanism	. 12
Suppl. Note 4 Estimation of PET & mechanistic considerations	. 13
Suppl. Fig. 15 Influence of the defect density on sensor sensitivity	. 14
Suppl. Note 5 Influence of the defect density on sensor sensitivity	. 15
Suppl. Fig. 16 Transfer of ethynylbenzene-functionalized (6,5) SWNTs to PL-PEG $_{5000}$. 16
Suppl. Fig. 17 Cu ²⁺ ion induced quenching for DOC-coated (6,5) SWNTs	. 16
Suppl. Fig. 18 Effect of PP $_{\it i}$ on the PL of functionalized PL-PEG $_{\it 5000}$ -coated (6,5) SWNTs .	. 17
Suppl. Fig. 19 Detection of PP _i in PL-PEG ₅₀₀₀ and buffer system	. 17
Suppl. Fig. 20 Detection of PP _i at high defect density	. 18
Suppl. Fig. 21 Shift of PL peak positions at high defect density	. 19
Suppl. Fig. 22 Comparison of sensing metrics at low and high defect densities	. 20
Suppl. Table 4 Extracted dissociation constants and Hill-parameters	
Suppl. Fig. 23 Determination of the limit of detection.	
Suppl. Note 6 Determination of the limit of detection	. 21
Suppl. Fig. 24 Spiking experiment – shift in peak position	. 22
Suppl. Fig. 25 Sensing of PP _i released in PCR	
Suppl. Fig. 26 Synthesis of arenediazonium tetrafluoroborates	
Suppl. Note 7 Synthesis of arenediazonium tetrafluoroborates	
Suppl. Fig. 27 Workflow sample preparation of functionalized (6,5) SWNTs dispersed in	
PL-PEG ₅₀₀₀ ready for PP _i sensing.	
Supplementary References	. 25


Supplementary Figures and Tables

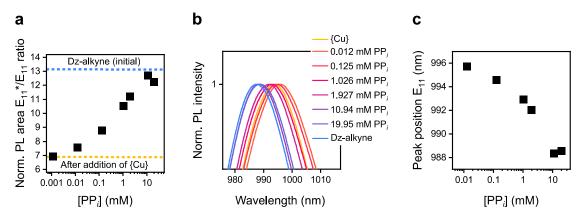
Suppl. Fig. 1 | Copper induced quenching of sp³-functionalized (6,5) SWNTs


Supplementary Fig. 1 | **Copper induced quenching**. **a,b** Absolute (**a**) and normalized (**b**) PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs after the addition of various concentration of $\{Cu\}$. **c** Norm. E_{11} (black) and E_{11} * (red) PL intensity *vs.* concentration of $\{Cu\}$ (lines are guides to the eye). Source data are provided as a Source Data file.

Suppl. Fig. 2 | Reversible quenching of sp³-functionalized (6,5) SWNTs

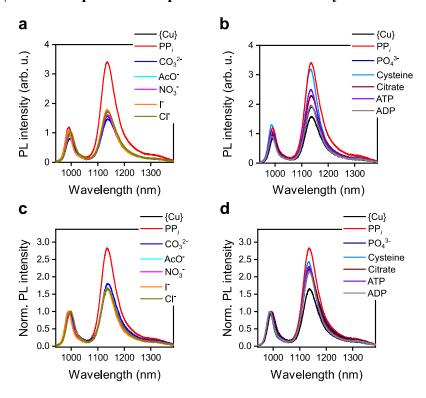
Supplementary Fig. 2 | Reversible quenching with EDTA. a PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs before and after the addition of $\{Cu\}$ (30 μ M). b Further PL spectra after the addition of EDTA (1 mM). The expected complex formed by Cu^{2+} ions and EDTA is indicated below the black arrows. Source data are provided as a Source Data file.

Suppl. Fig. 3 | Effect of PP_i on the PL of functionalized SDS-dispersed (6,5) SWNTs



Supplementary Fig. 3. | **Effect of PP**_i **on SDS-dispersed (6,5) SWNTs.** Absolute (a) and normalized (b) PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs dispersed in SDS before and after the addition of various concentrations of PP_i. Source data are provided as a Source Data file.

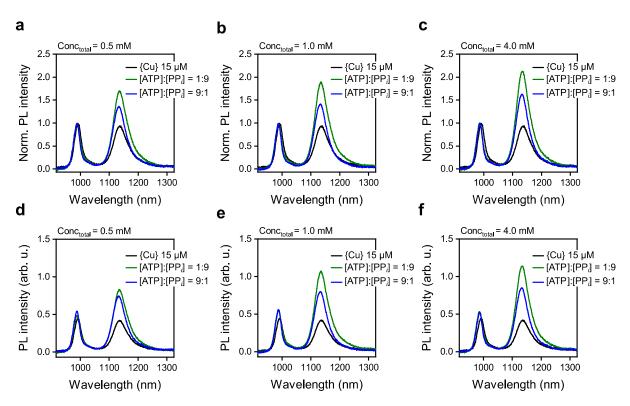
Suppl. Note 1 | Effect of PP_i on the PL of functionalized SDS-dispersed (6,5) SWNTs


For SDS-dispersed SWNTs, a small decrease in the overall PL intensity and the $E_{11}*/E_{11}$ ratio can be observed for low concentrations of PP_i (< 2 mM) and a significant drop at high concentrations of PP_i (> 11 mM). The latter decrease in PL intensity is accompanied by a small red-shift of the E_{11} and $E_{11}*$ emission peaks. Aggregation of surfactant-dispersed SWNTs is expected at high salt concentrations as described by Niyogi *et al.* and Koh *et al.* and could cause the observed drop in PL intensity as well as the red-shift.^{1,2} However, the $E_{11}*/E_{11}$ PL ratio is affected to a lesser extent.

Suppl. Fig. 4 | Dependence of PL area ratio and E₁₁ peak position on PP_i concentration

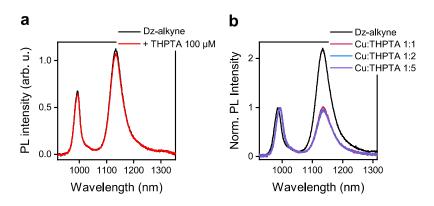
Supplementary Fig. 4. | PP_i dependent changes in PL characteristics. a $E_{11}*/E_{11}$ PL area ratio upon addition of various concentrations of PP_i. Initial PL area ratio before and after the addition of {Cu} is indicated by blue and yellow dotted lines, respectively. b Zoom-in on the normalized E_{11} peak of ethynylbenzene-functionalized (6,5) SWNTs before and after the addition of {Cu} (15 μ M) and various concentrations of PP_i. c E_{11} peak position upon addition of various concentrations of PP_i. Source data are provided as a Source Data file.

Suppl. Fig. 5 | Sensor response in the presence of various analytes

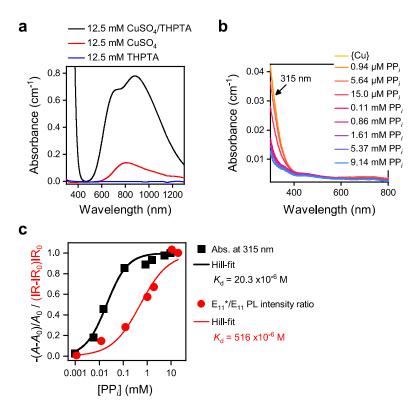

Supplementary Fig. 5. | Sensor response towards variouse analytes. a,c Response of the absolute (a) and normalized (c) PL of 4-ethynylbenzene-functionalized (6,5) SWNTs in the presence of various analytes that weakly complex copper(II) (1 mM). b,d Response of the absolute (b) and normalized (d) PL in the presence of various analytes which strongly complex copper(II) (1 mM). In all cases 15 μ M {Cu} was used. Source data are provided as a Source Data file.

Suppl. Table 1 | Extracted emission peak positions after addition of various analytes

Supplementary Table 1. | Extracted peak position after addition of various analytes. E_{11} and E_{11} * peak position and optical trap depth ΔE after addition of various analytes (1 mM).


Sample/Analyte	Molecular structure E_{11} (nm)		E ₁₁ * (nm)	$\Delta E \text{ (meV)}$	
Dz-alkyne	-	986.2	1133.5	163.4	
{Cu}	-	992.1	1137.7	159.9	
PP_i	-0, 00, 0- _0, 0, 0-	991.0	1135.8	159.5	
ADP	NH ₂ N N N N N N N N N N N N N N N N N N N	988.7	1135.8	162.4	
ATP	NH ₂ N N N N N N N N N N N N N N N N N N N	988.5	1135	161.9	
L-Cysteine	$HS \longrightarrow OH$ NH_2	987.6	1133.6	161.7	
Citrate	-0 OH O-	992.2	1136.3	158.5	
I-	-	989.6	1136.3	161.7	
CO ₃ ²⁻	o -o ^{,C} ,o-	994.9	1138.1	156.8	
AcO ⁻	O -0, ^C ,0-	990.4	1136.3	160.7	
NO_3^-	O -0´ ^N `0-	991.7	1137.4	160.1	
PO4 ³⁻	0 -0-P-0- 0-	994.5	1136.3	155.6	
Cl ⁻	-	997.9	1137.4	152.4	

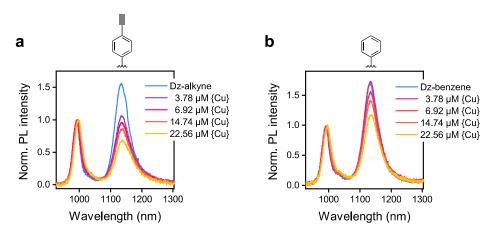
Suppl. Fig. 6 | Sensing of different mixing ratios of PP_i and ATP


Supplementary Fig. 6. | Sensing of different mixing ratios. a-c Normalized PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs after the addition of different ratios of ATP and PP_i with a total analyte concentration of 0.5 mM, 1.0 mM and 4.0 mM. d-f Absolute PL spectra after the addition of different ratios of ATP and PP_i with a total analyte concentration of 0.5 mM, 1.0 mM and 4.0 mM. In all cases 15 μ M {Cu} was used. Source data are provided as a Source Data file.

Suppl. Fig. 7 | Impact of THPTA

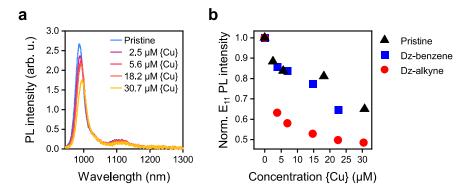
Supplementary Fig. 7. | **Impact of THPTA. a** PL Spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs before and after the addition of 100 μ M THPTA. **b** Normalized PL spectra after the addition of 15 μ M {Cu} with different ratios of CuSO₄(H₂O)₅/THPTA. Source data are provided as a Source Data file.

Suppl. Fig. 8 | Competitive complexation of Cu²⁺ ions


Supplementary Fig. 8. | Competitive compelxation of Cu^{2+} ions. a Absorption spectra of a 1:1 complex of $CuSO_4$ and THPTA (12.5 mM), $CuSO_4$ (12.5 mM) and THPTA (12.5 mM) **b** Absorption spectra of a 1:1 complex of $CuSO_4$ and THPTA (15 μ M) after addition of various concentrations of PP_i . **c** Black squares: PP_i concentration dependent changes of absorption at 315 nm are displayed with A as the absorbance and A_0 as the absorbance before addition of PP_i . Red circles: PP_i concentration dependent changes of the $E_{11}*/E_{11}$ PL intensity ratio extracted from PL measurements as displayed in Fig. 2. IR is the $E_{11}*/E_{11}$ intensity ratio and IR_0 the $E_{11}*/E_{11}$ intensity ratio after addition of $\{Cu\}$. The data were fitted with a Hill-function and dissociation constants of $20.3 \cdot 10^{-6}$ M and $516 \cdot 10^{-6}$ M were extracted, respectively. Source data are provided as a Source Data file.

Suppl. Note 2 | Competitive complexation of Cu²⁺ ions

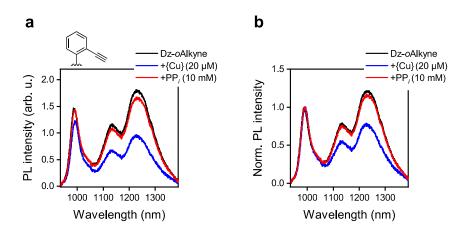
The complexation/decomplexation of the $Cu^{2+}/THPTA$ complex upon addition of PP_i can be tracked *in situ* by absorption spectroscopy. The absorption band around ≈ 315 nm is suitable for this purpose as it arises from the THPTA ligand when coordinated to $CuSO_4$. Neither the THPTA ligand itself nor $CuSO_4$ show significant absorption bands at this wavelength. Upon titration with PP_i , this absorption feature vanishes with increasing PP_i concentration indicating the removal of Cu^{2+} ions from the THPTA ligand. No absorption feature for the PP_i/Cu^{2+} complex is expected at this absorption wavelength due to the lack of an aromatic backbone. Hence, the concentration of Cu/THPTA complex can be directly correlated with the absorbance at 315 nm. When fitted with a Hill-function a dissociation constant of $K_d = 20.3 \cdot 10^{-6}$ M can be extracted. This value can be compared to the dissociation constant for the $Cu^{2+}/THPTA$ complex on the SWNT surface when the $E_{11}*/E_{11}$ intensity ratio of the SWNT probe is tracked.


The corresponding K_d extracted from SWNT PL measurements is 25 times higher $(K_d = 516 \cdot 10^{-6} \text{ M})$ and shows the additional stabilization of the complex by the SWNT surface and the ethynylbenzene group attached to the sp^3 defect.

Suppl. Fig. 9 | Impact of the functional group

Supplementary Fig. 9. | **Impact of the functional group. a** Normalized PL spectrum of 4-ethynylbenzene-functionalized (6,5) SWNTs after the addition of various concentration of {Cu}. **b** Normalized PL spectra of benzene-functionalized (6,5) SWNTs after the addition of various concentration of {Cu}. Corresponding functional groups are indicated above the spectra. Source data are provided as a Source Data file.

Suppl. Fig. 10 | Comparison between functionalized and pristine (6,5) SWNTs

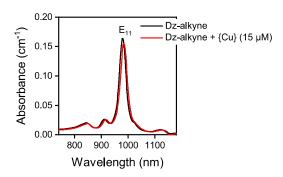

Supplementary Fig. 10. | Comparison in PL quenching. a PL spectrum of pristine (6,5) SWNTs after the addition of various concentrations of $\{Cu\}$. b Extracted E_{11} PL intensities normalized to their initial values before addition of $\{Cu\}$ for pristine, benzene-functionalized and 4-ethnylbenzene-functionalized (6,5) SWNTs vs. concentration of $\{Cu\}$. Source data are provided as a Source Data file.

Suppl. Note 3 | Comparison between functionalized and pristine (6,5) SWNTs

PL quenching after addition of $\{Cu\}$ occurs for pristine (6,5) SWNTs to a similar degree as observed for functionalized SWNTs with a benzene moiety. Thus, we can consider quenching of E_{11} excitons to be independent of E_{11} * excitons. The stronger quenching effect for

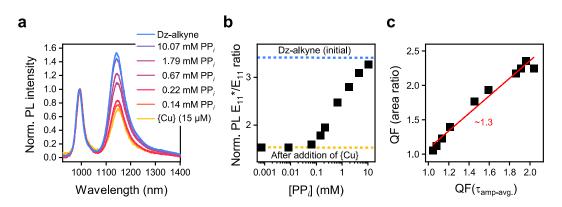
functionalized SWNTs with alkynyl moiety is likely to originate from additional coordination of {Cu} to the alkynyl group, which facilitates adsorption to the SWNT surface.

Suppl. Fig. 11 | PP_i Sensing with E₁₁* and E₁₁*-emission


Supplementary Fig. 11. | PP_i sensing with E_{11} * and E_{11} *- emission. a,b Absolute (a) and normalized (b) PL spectra of 2-ethynylbenzene-functionalized (oAlkyne) (6,5) SWNTs after the addition of 20 μ M {Cu}. The functional group is indicated above the spectrum in a. Source data are provided as a Source Data file.

Suppl. Table 2| Extracted values for PP_i sensing with E₁₁* and E₁₁*- emission

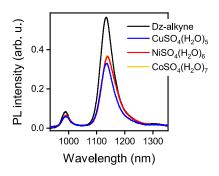
Supplementary Table 2. | **Extracted values for PP**_i sensing. Extracted peak positions, area ratios and quenching factors (QF) for E_{11}^{*-} and E_{11}^{*-} emission after fitting with Voigt functions. Note that E_{11}^{*-} emission is quenched stronger than E_{11}^{*-} emission, likely caused by its initially longer PL lifetime.


Sample	Dz-oAlkyne	+{Cu}
Peak position E ₁₁ (nm)	990	995
Peak position E ₁₁ * (nm)	1128	1127
Peak position E ₁₁ *-(nm)	1242	1240
Area ratio E ₁₁ */E ₁₁	1.00	0.86
Area ratio E_{11}^{*-}/E_{11}	2.93	2.13
QF E_{11} */ E_{11} (area ratio)	-	1.16
QF E ₁₁ *-/E ₁₁ (area ratio)	-	1.38

Suppl. Fig. 12 | Impact of {Cu} on the absorption spectra

Supplementary Fig. 12. | Imapet of {Cu} on the absorption spectra. Absorption spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs before and after addition of $15\mu M$ {Cu}. Source data are provided as a Source Data file.

Suppl. Fig. 13 | Detection of PP_i under pulsed laser excitation


Supplementary Fig. 13. | Detection of PP_i under pulsed laser excitation. a Normalized PL spectrum under pulsed laser excitation (as in TCSPC measurements for data in Table S3) after addition of various concentrations of PP_i. b $E_{11}*/E_{11}$ PL area ratio upon addition of various concentrations of PP_i. The initial PL area ratios before and after the addition of {Cu} are indicated by blue and yellow dotted lines, respectively. c QF extracted from $E_{11}/E_{11}*$ PL area ratios plotted vs. the QFs extracted from amplitude averaged lifetimes ($\tau_{amp-avg.}$) obtained by TCSPC measurements (see Supplementary Table 3). The red solid line is a linear fit to the data with a slope of ~1.3. The strong correlation between QFs extracted from PL area ratios and $\tau_{amp-avg.}$ indicates the absence of ground-state quenching. Source data are provided as a Source Data file.

Suppl. Table 3 | Extracted lifetime values from TCSPC measurements

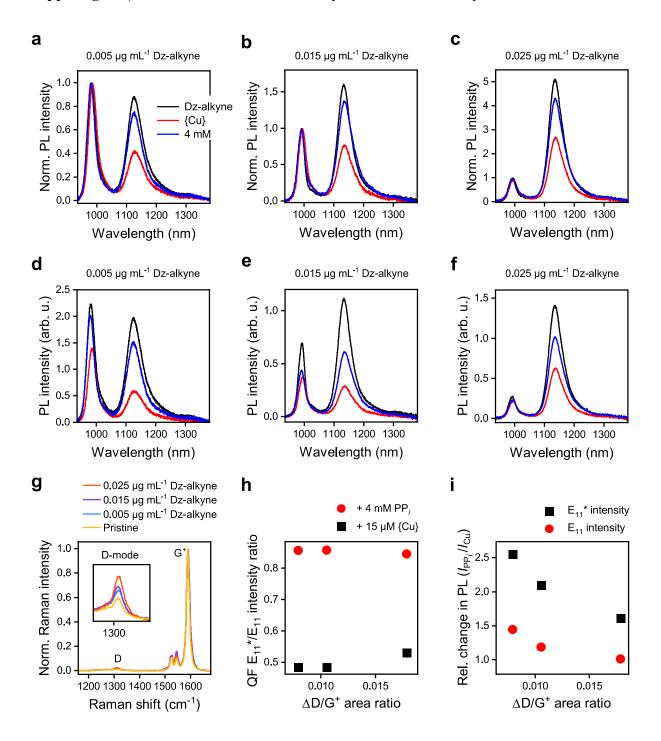
Supplementary Table 3. | **Extracted lifetime values from TCSPC.** Extracted $\tau_{\text{amp-avg.}}$ from TCSPC measurements and E_{11}/E_{11} * PL area ratios with corresponding QF.

Sample	$ au_{ ext{amp-avg.}}$	$\begin{array}{c} \text{QF} \\ (\tau_{\text{amp-avg.}}) \end{array}$	Area ratio	QF (Area ratio)
Dz-alkyne	151		3.47	
+{Cu}	79	1.91	1.54	2.25
0.75 μΜ	74	2.04	1.54	2.25
8.27 μΜ	77	1.96	1.47	2.36
64.7 μΜ	81	1.86	1.59	2.18
0.14 mM	95	1.59	1.79	1.94
0.22 mM	104	1.45	1.96	1.77
0.67 mM	125	1.21	2.48	1.40
1.80 mM	134	1.13	2.81	1.23
4.43 mM	140	1.08	3.10	1.12
10.07 mM	145	1.04	3.27	1.06

Suppl. Fig. 14 \mid Investigation of the quenching mechanism

Supplementary Fig. 14. | Metal ion dependent PL quenching. PL spectra after addition of $CuSO_4(H_2O)_5$, $NiSO_4(H_2O)_6$ and $CoSO_4(H_2O)_7$ (0.25 mM). Source data are provided as a Source Data file.

Suppl. Note 4 | Estimation of PET & mechanistic considerations

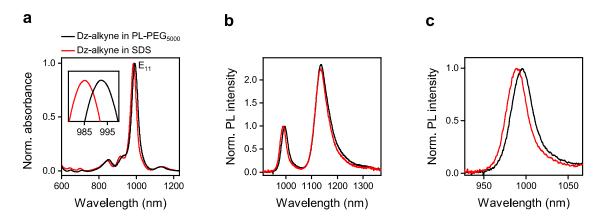

Quenching mechanisms from paramagnetic metals are frequently expected to result from fast electron transfer mechanisms such as photoinduced electron transfer (PET) from the excited state of the fluorophore to the paramagnetic metal centre.³⁻⁵ To evaluate this possibility, the Gibbs free energy of the PET was estimated according to

$$\Delta G_{\text{PET}} = eE_{\text{red}}(D^+/D) - eE_{\text{red}}(A/A^-) - \Delta G_{00} - \frac{e^2}{4\pi\varepsilon_r\varepsilon_0 d}$$
 (1)

where E_{red} is the reduction potential, ΔG_{00} the optical transition energy, ε_{r} the relative permittivity of water (ε_{r} (20 °C) = 80). A distance d of approximately 1.0 nm between the defect site and the metal centre was assumed. For the redox potential of functionalized (6,5) SWNTs (Donor, D) values reported by Shiraishi et al. were used (E_{ox} (V) = 0.584 vs. Ag/AgCl)⁶ and for Cu(II)/Cu(I) (Acceptor, A) E_0 (V) = 0.161 was used.⁷ Note, that the reduction potential of Cu(II) is expected to shift upon complexation with THPTA.⁸ However, no exact values are reported and its redox potential may further vary upon adsorption to the SWNT sidewall. Hence, the effect of the ligand was not considered within this estimation. With an optical transition energy of ΔG_{00} = 1.09 eV, a large negative ΔG_{PET} was calculated (ΔG_{PET} = -2.05 eV). Thus, PET would be thermodynamically highly favourable and would present a viable route to quench E_{11} * emission (as well E_{11} emission).⁹

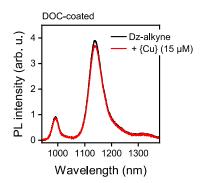
If the above assumption is correct, the quenching efficiency is expected to correlate with the standard reduction potential of the metal ion. With a standard reduction potential for Ni(II/0) and Co(II/0) of -0.26 V and -0.28 V, respectively, a negative ΔG_{PET} of -1.61 eV and -1.65 eV can be calculated.⁷ Thus, PL quenching of Ni(II) and Co(II) *via* PET is also likely and quenching should occur to a similar degree. This notion agrees with our observation that Ni(II) and Co(II) exhibit similarly strong quenching (see Supplementary Fig. 11) while stronger quenching is observed for Cu(II). Other effects such as the influence of the counter ion and impact of pH value were previously reported to be negligible and thus were not further investigated within the scope of this work.¹⁰ While our observations indicate PL quenching *via* PET, further studies with different metal ions are necessary to obtain a more conclusive picture.

Suppl. Fig. 15 | Influence of the defect density on sensor sensitivity

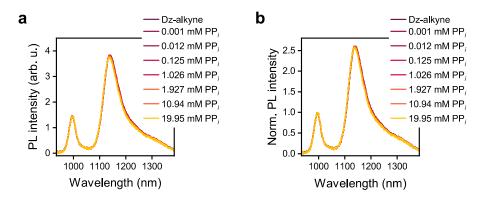

Supplementary Fig. 15. | Imapet of the defect density on PP_i sensing. Normalized (a-c) and absolute (d-f) PL spectra of (6,5) SWNTs in SDS functionalized at various concentrations of 4-ethynyl benzene diazonium tetrafluoroborate after addition of 15 μ M {Cu} and 4 mM PP_i. g Normalized Raman spectra of functionalized (6,5) SWNTs. h QF of the $E_{11}*/E_{11}$ intensity ratio vs. change in D/G⁺ area ratio (Δ D/G⁺). i Relative changes in PL intensity (I_{PPi}/I_{Cu}) of E_{11} and $E_{11}*$ emission vs. change in D/G⁺ area ratio (Δ D/G⁺). Source data are provided as a Source Data file.

Suppl. Note 5 | Influence of the defect density on sensor sensitivity

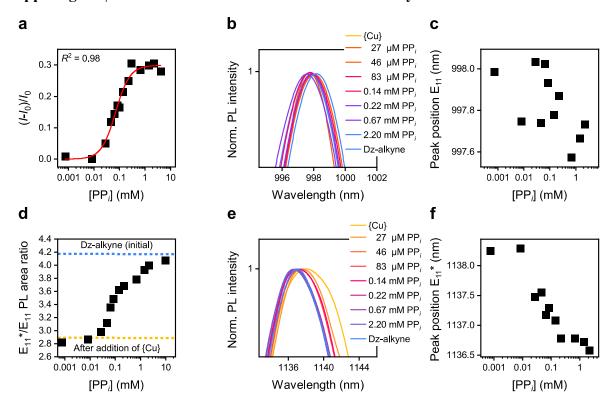
PL and Raman spectra were recorded for SWNT dispersions with three different defect densities that were obtained by variation of the 4-ethynylbenzene diazonium tetrafluoroborate concentration during functionalization. Normalized as well as absolute PL spectra and Raman spectra are shown in Supplementary Fig. 15. The defect density after functionalization correlates with the differential Raman $\Delta D/G^+$ area ratio, representing the change in D/G^+ area ratio compared to the pristine sample. Upon addition of 15 μ M {Cu} similarly strong quenching and PL recovery after addition of 4 mM PP_i is observed, although, with subtle differences. Extracting the QF ($I_{\text{Cu}}/I_{\text{Ref-alkyne}}$) of the PL $E_{11}*/E_{11}$ intensity ratio and plotting it against the $\Delta D/G^+$ area ratio shows that the overall reduction of the PL ratio is slightly reduced at higher defect densities. This is reasonable, as more defect sites must be coordinated by Cu²⁺ ions in contrast to samples with low defect densities to achieve a similarly strong quenching of the defect state emission. However, we do not find a change in the sensitivity/dynamic range for the PL $E_{11}*/E_{11}$ intensity ratio. This observation agrees with data presented later (see Supplementary Fig. 22a).


In contrast to this, a dependence on the absolute PL intensities can be observed. When extracting the relative increase in PL intensities for E_{11} and E_{11} * emission, *i.e.* the ratio of PL intensity before and after the addition of $PP_i(I_{PPi}/I_{Cu})$ (see Supplementary Fig. 15i), a clear correlation with the defect density is found. In this case, a higher sensitivity is obtained for low defect densities. Supplementary Fig. 22b shows a similar effect, where the dynamic range shifts toward higher concentrations of PP_i for SWNTs that were functionalized to a higher degree. In summary, the best sensitivity can be obtained at very low defect densities, however, its impact on the PL intensity ratio is minimal. Thus, we recommend to use defect densities that are close or slightly below the PLQY maximum of functionalized SWNTs to obtain an overall high PL signal with good sensitivity.

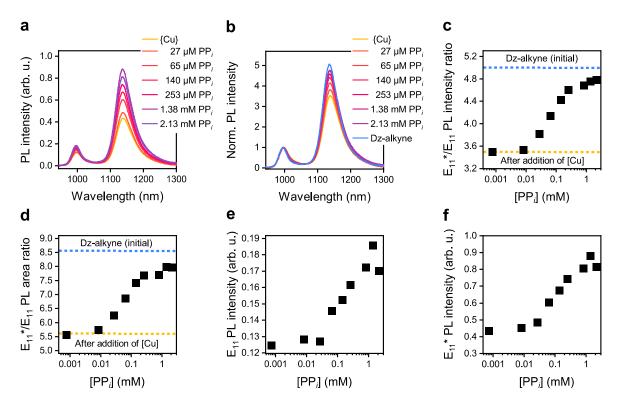
Suppl. Fig. 16 | Transfer of ethynylbenzene-functionalized (6,5) SWNTs to PL-PEG₅₀₀₀


Supplementary Fig. 16. | Surfactant exchange to PL-PEG₅₀₀₀. a Normalized absorption spectrum before and after transfer to PL-PEG₅₀₀₀ with zoom-in on the E_{11} transition. b Normalized PL spectra before and after transfer to PL-PEG₅₀₀. c Zoom-in on E_{11} PL peak. Source data are provided as a Source Data file.

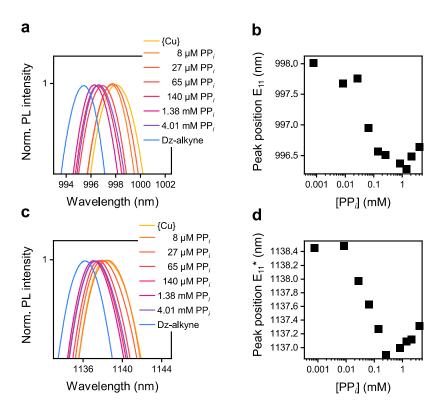
Suppl. Fig. 17 | Cu²⁺ ion induced quenching for DOC-coated (6,5) SWNTs


Supplementary Fig. 17. | Copper induced quenching for DOC-coated (6,5) SWNTs. PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs dispersed in DOC before and after addition of 15 μ M {Cu}. Source data are provided as a Source Data file.

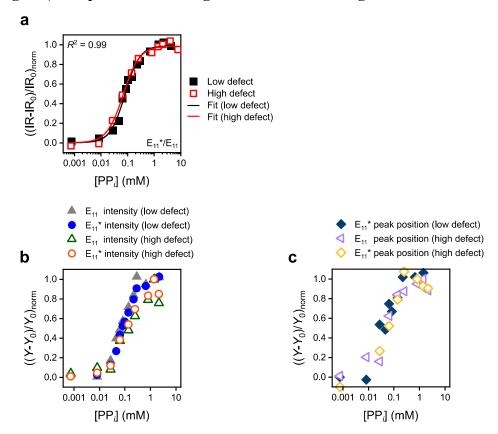
Suppl. Fig. 18 Effect of PP_i on the PL of functionalized PL-PEG₅₀₀₀-coated (6,5) SWNTs


Supplementary Fig. 18. | Effect of PP_i on PL-PEG₅₀₀₀ dispersed (6,5) SWNTs. Absolute (a) and normalized (b) PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs dispersed in PL-PEG₅₀₀₀ before and after the addition of various concentrations of PP_i. Source data are provided as a Source Data file.

Suppl. Fig. 19 | Detection of PP_i in PL-PEG₅₀₀₀ and buffer system


Supplementary Fig. 19. | **Detection of PP**_i in **buffer system. a,d** PP_i concentration dependent changes of E₁₁ PL intensities (**a**) and PL area ratios (**d**). Initial E₁₁*/E₁₁ PL area ratio before and after the addition of {Cu} is indicated by blue and yellow dotted lines, respectively. Red line shows the fitted curve for $Y = [PP_i]^n/(K_d^n + [PP_i]^n)$. The coefficient of determination (R^2) of the fit is given in the plot. **b,e** Zoom-in on the normalized E₁₁ (**b**) and E₁₁* (**e**) peak at various concentrations of PP_i. **c,f** E₁₁ (**c**) and E₁₁* (**f**) peak position vs. PP_i concentration. Source data are provided as a Source Data file.

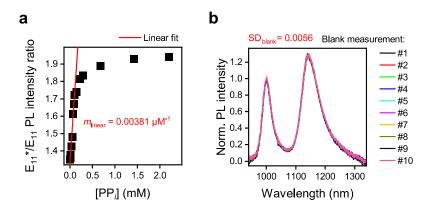
Suppl. Fig. 20 | Detection of PP_i at high defect density


Supplementary Fig. 20. | Detection of PP_i at high defec density. a,b Absolute (a) and normalized (b) PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs in PL-PEG₅₀₀₀ and 10 mM MOPS buffer at various concentrations of PP_i. c PL intensity ratio vs. PP_i concentration. d PL area ratio vs. PP_i concentration. e E₁₁ PL intensity vs. PP_i concentration. f E₁₁* PL intensity vs. PP_i concentration. Initial E₁₁*/E₁₁ PL intensity and area ratios before and after the addition of {Cu} are indicated by blue and yellow dotted lines, respectively. Source data are provided as a Source Data file.

Suppl. Fig. 21 | Shift of PL peak positions at high defect density

Supplementary Fig. 21. | Shift of PL peak position. a,c Zoom-in on the normalized E_{11} and E_{11} * peak at various concentrations of PP_i . b,d E_{11} and E_{11} * peak position vs. PP_i concentration. Source data are provided as a Source Data file.

Suppl. Fig. 22 | Comparison of sensing metrics at low and high defect densities


Supplementary Fig. 22. | **Comparisson of sensing metrics. a** PP_i concentration dependent changes of the normalized $E_{11}*/E_{11}$ PL intensity ratio for high and low sp^3 defect densities. Lines show the fitted curves for $Y = [PP_i]^n/(K_d^n + [PP_i]^n)$, with IR - normalized $E_{11}*/E_{11}$ intensity ratio and IR₀ - normalized $E_{11}*/E_{11}$ intensity ratio after the addition of {Cu}. **b,c** PP_i concentration dependent changes of the normalized $E_{11}*$ and E_{11} PL intensities (**b**) and $E_{11}*$ and E_{11} peak positions (**c**) for high and low and high sp^3 defect densities, with Y - normalized PL intensity and peak position after the addition of {Cu}. For changes in E_{11} peak position at low defect density please see Fig. S13c. Source data are provided as a Source Data file.

Suppl. Table 4 | Extracted dissociation constants and Hill-parameters

Supplementary Table 4. | **Extracted parameters from Hill-model.** Dissociation constant (K_d) and Hill-parameter (n) for normalized $E_{11}*/E_{11}$ PL intensity ratios fit with the Hill-model.

Sample	$K_{\rm d}(10^{-6} \mathrm{M})$	n
low sp ³ defect concentration	79.3	1.57
high sp^3 defect concentration	68.4	1.42

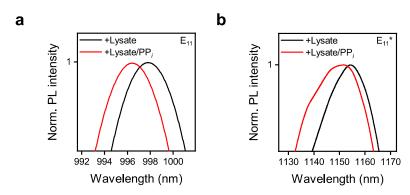
Suppl. Fig. 23 | Determination of the limit of detection

Supplementary Fig. 23. | **Determination of the LOD.** a PP_i concentration dependent changes of the E₁₁*/E₁₁ PL intensity ratio with linear fit to data at low concentrations of PP_i ($m_{\text{linear}} = 0.00381 \, \mu\text{M}^{-1}$). b Normalized PL spectra of 4-ethynylbenzene-functionalized (6,5) SWNTs dispersed in PL-PEG₅₀₀₀ and 10 mM MOPS buffer after addition of {Cu} with a standard deviation of the E₁₁*/E₁₁ PL intensity ratio of SD_{blank} = 0.0056 (number of blank measurements, n = 10). The displayed data correspond to the data set shown in Fig. 5. Source data are provided as a Source Data file.

Suppl. Note 6 | Determination of the limit of detection

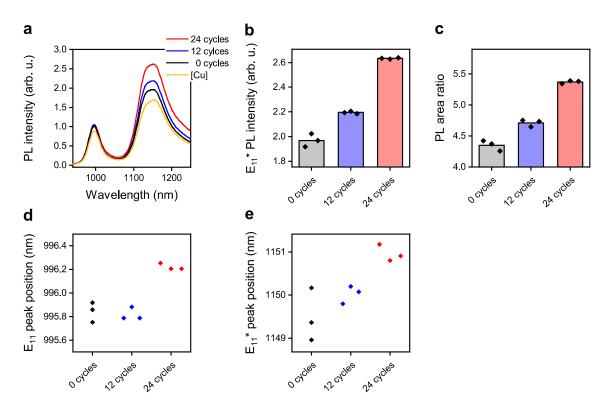
The limit of detection (LOD) was calculated based on the standard deviation of the response upon addition of {Cu} to the SWNT sensor (SD_{blank}; n = 10) and the slope m_{linear} from a linear fit of the calibration curve at low PP_i concentrations. The values for m_{linear} and SD_{blank} were extracted and measured from the same sample as shown in Fig.5.

$$LOD = (3 \cdot SD_{blank}) / m_{linear}$$
 (2)


This analysis yielded a LOD for the different parameters of:

- E_{11} intensity: LOD = 5.2 μ M

- E_{11} * intensity: LOD = 12.5 μ M


- $E_{11}*/E_{11}$ PL ratio: LOD = 4.4 μ M

Suppl. Fig. 24 | Spiking experiment – shift in peak position

Supplementary Fig. 24. | Shift in PL peak position. a,b E_{11} (a) and E_{11}^* (b) peak position of 4-ethynylbenzene-functionalized (6,5) SWNTs in PL-PEG₅₀₀₀ quenched by {Cu} after addition of 0.5 μ L cell-lysate which was subsequently spiked with 188 μ M of PP_i. Source data are provided as a Source Data file.

Suppl. Fig. 25| Sensing of PP_i released in PCR

Supplementary Fig. 25. | Sensing of PP_i released in PCR. a-e PL spectra (a, averaged over 3 measurements), absolute E_{11} * PL intensities (b), E_{11} */ E_{11} PL area ratios (c), E_{11} peak positions (d) and E_{11} * peak positions (e) of 4-ethynylbenzene-functionalized (6,5) SWNTs dispersed in PL-PEG₅₀₀₀ after the addition of 5 μ L of PCR product after 0 (black/grey), 12 (blue) and 24 (red) cycles. One biologically independent sample was examined over n = 3 independent measurements with the SWNT sensor, and should represent the spread in the response of the sensor. Individual data points are indicated as diamonds. The height of the bar represents the average of the three measurements. Source data are provided as a Source Data file.

Suppl. Fig. 26 | Synthesis of arenediazonium tetrafluoroborates

Arenediazonium tetrafluoroborates were synthesized as described in the Methods sections. A similar procedure can be found in reference 11.¹¹

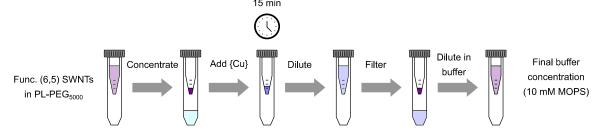
Supplementary Fig. 26 | **Synthesis of diazonium salts. a** Reaction scheme for the synthesis of diazonium salts. Preparation and obtained yield of 4-ethynylbenzene diazonium tetrafluoroborate (**b**) 2-ethynylbenzene diazonium tetrafluoroborate (**c**) and Benzene diazonium tetrafluoroborate (**d**). Source data of ¹H NMR are provided as a Source Data file.

Suppl. Note 7 | Synthesis of arenediazonium tetrafluoroborates

¹H NMR of arenediazonium tetrafluoroborates

4-ethynylbenzene diazonium tetrafluoroborate:

¹H NMR (400 MHz, CD₃CN): $\delta = 8.45$ (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 4.23 (s, 1H) ppm. The data are consistent with the previous literature. ¹²


2-ethynylbenzene diazonium tetrafluoroborate:

¹H NMR (400 MHz, (CD₃)₂SO): δ = 8.81 (dd, J = 8.4, 1.1 Hz, 1H), 8.28 (td, J = 7.8, 1.2 Hz, 1H), 8.16 (dd, J = 7.9, 1.0 Hz, 1H), 8.05-8.00 (m, 1H), 5.61 (s, 1 H) ppm. The data are consistent with the previous literature.¹³

Benzene diazonium tetrafluoroborate:

¹H NMR (400 MHz, (CD₃)₂SO): δ = 8.67 (d, J = 8.8, 1.2 Hz, 2H), 8.26 (t, J = 7.7 Hz, 1H), 7.98 (dd, J = 8.7, 7.7 Hz, 2H) ppm. The data are consistent with the previous literature. ¹⁴

Suppl. Fig. 27 | Workflow sample preparation of functionalized (6,5) SWNTs dispersed in PL-PEG $_{5000}$ ready for PP $_i$ sensing

Supplementary Fig. 27 | Worflow of sample preparation. Sample preparation of functionalized (6,5) SWNTs dispersed in PL-PEG₅₀₀₀. After an initial concentration step via spin-filtration the dispersion is incubated with {Cu} for 15 min. After incubation the dispersion is diluted with ultra-pure water, filtered and re-dispersed in 10 mM MOPS buffer.

Supplementary References

- Niyogi, S. et al. Selective Aggregation of Single-Walled Carbon Nanotubes via Salt Addition. *J. Am. Chem. Soc.* **129**, 1898-1899 (2007).
- 2 Koh, B. & Cheng, W. Mechanisms of Carbon Nanotube Aggregation and the Reversion of Carbon Nanotube Aggregates in Aqueous Medium. *Langmuir* **30**, 10899-10909 (2014).
- Yang, W., Chen, X., Su, H., Fang, W. & Zhang, Y. The fluorescence regulation mechanism of the paramagnetic metal in a biological HNO sensor. *Chem. Commun.* **51**, 9616-9619 (2015).
- 4 Rosenthal, J. & Lippard, S. J. Direct Detection of Nitroxyl in Aqueous Solution Using a Tripodal Copper(II) BODIPY Complex. *J. Am. Chem. Soc.* **132**, 5536-5537 (2010).
- 5 Su, H., Chen, X. & Fang, W. ON-OFF Mechanism of a Fluorescent Sensor for the Detection of Zn(II), Cd(II), and Cu(II)Transition Metal Ions. *Anal. Chem.* **86**, 891-899 (2014).
- 6 Shiraishi, T., Shiraki, T. & Nakashima, N. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry. *Nanoscale* **9**, 16900-16907 (2017).
- Pratsch, S. G. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K. *J. Phys. Chem. Ref.* **18**, 1-21 (1989).
- 8 Chan, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. *Org. Lett.* **6**, 2853-2855 (2004).
- 9 Miller, J. R., Calcaterra, L. T. & Closs, G. L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. *J. Am. Chem. Soc.* **106**, 3047-3049 (1984).
- Wulf, V. et al. Multicomponent System of Single-Walled Carbon Nanotubes Functionalized with a Melanin-Inspired Material for Optical Detection and Scavenging of Metals. *Adv. Funct. Mater.* **32**, 2209688 (2022).
- Zhang, K., Xu, X.-H. & Qing, F.-L. Copper-Promoted Ritter-Type Trifluoroethoxylation of (Hetero)arenediazonium Tetrafluoroborates: A Method for the Preparation of Trifluoroethyl Imidates. *Eur. J. Org.* **2016**, 5088-5090 (2016).
- Evrard, D., Lambert, F., Policar, C., Balland, V. & Limoges, B. Electrochemical Functionalization of Carbon Surfaces by Aromatic Azide or Alkyne Molecules: A Versatile Platform for Click Chemistry. *Chem. Eur. J.* 14, 9286-9291 (2008).
- Yu, B. et al. ortho-Substituted Aryldiazonium Design for the Defect Configuration-Controlled Photoluminescent Functionalization of Chiral Single-Walled Carbon Nanotubes. *ACS Nano* **16**, 21452-21461 (2022).
- Schroll, P., Hari, D. P. & König, B. Photocatalytic Arylation of Alkenes, Alkynes and Enones with Diazonium Salts. *ChemistryOpen* 1, 130-133 (2012).