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Abstract 

Rationale: Previous studies have implicated the functions of stromal interaction molecule 1 (STIM1) in 
immunity and malignancy, however, the specificity and effects of STIM1 expression in malignant and 
non-malignant cells in the tumor microenvironment are unclear. 
Methods: In the current study, we posed two central questions: (1) does STIM1 expression elicit 
different cellular programs in cell types within the melanoma tumor microenvironment (2) whether the 
expression of STIM1 and STIM1-coexpressed genes (SCGs) serve as prognostic indicators of patient’s 
outcomes? To answer these questions, we dissected cell-specific STIM1-associated cellular programs in 
diverse cell types within the melanoma tumor microenvironment by measuring cell-type specificity of 
STIM1 expression and SCGs. 
Results: A distinct set of SCGs was highly affected in malignant melanoma cells, but not in the other cell 
types, suggesting the existence of malignant-cell-specific cellular programs reflected by STIM1 expression. 
In contrast to malignant cells, STIM1 expression appeared to trigger universal and non-specific biological 
functions in non-malignant cell types, as exemplified by the transcriptomes of macrophages and CD4+ T 
regulatory cells. Results from bioinformatic analyses indicated that SCGs in malignant cells may alter 
cell-cell interactions through cytokine/chemokine signaling and/or orchestrate immune infiltration into 
the tumor. Moreover, a prognostic association between SCGs in CD4+ T regulatory cells and patient’s 
outcomes was identified. However, we didn’t find any correlation between SCGs and responsiveness of 
immunotherapy. 
Conclusions: Overall, our results provide an integrated biological framework for understanding the 
functional and clinical consequences of cell-specific STIM1 expression in melanoma. 

Key words: single-cell transcriptomic analysis, stromal interaction molecule 1 (STIM1) melanoma tumor 
microenvironment, immune landscape. 

Introduction 
Melanomas are considered as curable if patients 

are diagnosed early then the tumor can be surgically 
resected [1]. Transformation of melanoma cells 
associated with somatic mutations in the 

proto-oncogenes, B-Raf (BRAF) and Neuroblastoma 
RAS (NRAS), allowing tyrosine kinase inhibitors (e.g., 
vemurafenib, dabrafenib, and trametinib) to be 
successfully applied as melanoma treatments [2, 3]. 
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Nevertheless, the prognosis of melanoma patients 
with regional metastasis remains poor. The clinical 
phenotype of melanoma patients depends on the 
combined effects of intricate molecular interactions 
within and between malignant and non-malignant 
cells inside the tumor tissue. Moreover, large-scale 
genomic profiling on melanoma specimens have 
revealed high levels of intra- and inter-tumor 
heterogeneity. This heterogeneity and molecular 
complexity are likely to enhance cancer progression 
and limit the efficacies of current melanoma 
treatments [4, 5]. 

Physiological and pathological processes are 
dysregulated in melanoma tumors, including cell 
proliferation, invasion, migration, and apoptosis. 
These processes are tightly linked with known cellular 
and molecular signaling pathways in malignant cells. 
In melanoma and other cancers, calcium signaling 
plays a vital role in the regulation of tumorigenic 
pathways [6-12]. Stromal interaction molecule 1 
(STIM1), an endoplasmic reticular (ER) calcium 
sensor, involves in cancer-related pathological 
signaling via its interaction with Orai1, a pore-forming 
unit of the Ca2+ release-activated channel (CRAC) [11, 
12]. In addition to the role in calcium signaling in 
tumor cells, STIM1 is an important modulator of a 
wide variety of cellular programs in non-tumor cells 
within the tumor microenvironment, such as 
cancer-associated fibroblasts (CAFs), endothelial cells 
and immune cells. For example, STIM1-dependent 
signaling in non-tumor cells has been proposed to 
affect the outcomes of melanoma patients [13-15], 
therefore, the biological roles and functional impacts 
of STIM1 status in non-malignant cell types within the 
tumor microenvironment should be examined 
alongside ectopic STIM1 expression within malignant 
cells. However, intra-tumor heterogeneity in bulky 
tumor specimens has limited the definition of 
STIM1-mediated clinical consequences additionally, 
the functional consequences of STIM1 expression (i.e., 
associated transcriptional landscape) in non-tumor 
cells within the melanoma tumor microenvironment 
(TME) remain largely unknown. Whether cell-specific 
STIM1 overexpression occurs in primary and/or 
metastatic malignant tissues is still unclear.  

STIM1 is known to express highly in several cell 
types (e.g. fibroblasts [16]) that may exist within 
cancer tissues [17] Recent technical and analytical 
advances allow us to dissect STIM1 expression and 
enables a detailed examination of cell-specific cellular 
programs within the tumor microenvironment [5]. 
Herein, we developed a computational pipeline to 
determine cell-specific transcriptional profiles that 
associated with STIM1 expression in human 
melanoma. By leveraging single-cell melanoma 

expression data, we firstly identified gene profiles that 
are significantly co-expressed with STIM1 in different 
cell types, defining module genes as those ranked as 
most significant for each cell type. Validation was 
carried out by analyzing gene expression of laser 
capture microdissection (LCM)-processed tissue to 
confirm the robustness of our pipeline. Functional 
enrichment analysis of the top-ranked genes from 
each cell type allowed us to define the cell-specific 
roles of STIM1 expression in the tumor 
microenvironment. Finally, we investigated whether 
STIM1-coexpressed genes (SCGs) in each cell type 
could serve as prognostic indicators for melanoma 
patients. Our results indicated that SCGs have 
cell-type-specific effects in the tumor 
microenvironment. The SCGs developed from this 
study may serve as a prognostic indicator for 
melanoma. 

Methods 
Querying a single-cell expression dataset 

Single-cell messenger (m)RNA-Seq (scRNA-Seq) 
melanoma data (GSE72056) [5] were acquired from the 
Gene Expression Omnibus (GEO) with expression 
values quantified as one-tenth of transcripts per 
million (TPM) and then logarithmically transformed. 
This dataset (comprising 19 melanoma patients) was 
compiled of scRNA-Seq profiles of metastatic 
melanoma malignant cells and other cells from the 
TME, including CAFs, endothelial cells, and several 
immune cell types (CD45+ cells). Information 
regarding cell types was directly acquired from 
annotations in the downloaded data, with putative 
normal adjacent cells being defined as those not 
annotated as malignant or as any other different type 
of cell. 

Processing of scRNA-Seq data 

Quality control 
For the downloaded data, we first removed 

duplicate genes and corrected the gene symbols to 
standard Human Gene Nomenclature Committee 
(HGNC) human gene symbols using the HGNChelper 
package. We next defined pooled expression 
(including both malignant and non-malignant cells) as 
Epooled = log2(TPM + 1), and performed gene-based 
filtering by excluding genes with an Epooled value of < 3. 
For cells annotated as T cells, we further classified 
them into CD4+ T helper (Th) cells, CD4+ regulatory T 
(Treg) cells, CD8+ T cells, and the remaining as “other 
T cells” using cell type-specific surface markers. 

False negativity correction 
To diminish the drop-off effect, we performed a 
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false-negativity correction for expression values using 
a set of housekeeping genes. A list of 96 (gene symbol 
checked) housekeeping genes were acquired from 
supplement of GSE72056. The aim of performing false 
negativity correction was to down-weight the 
expression value of transcripts with less reliable 
measurement, and therefore taking quality of library 
preparation and cell integrity into account. Since the 
probability (for a transcript) of being detected is 
depended on relative abundance of the transcript and 
total amount of RNA, we thus utilized the 
housekeeping genes to construct expression curve for 
each cell. Since housekeeping genes were considered 
to be expressed constitutively across cells, and thus 
the only reason for undetectable housekeeping genes 
was technical errors. The detailed algorithm aa well as 
analytical steps for performing false-negativity 
correction has been described elsewhere [18]. 

Clustering 
We performed clustering using the t-distributed 

stochastic neighbor embedding (t-SNE) algorithm 
implemented in the Rtsne package with the following 
parameters: dims = 2, pca = TRUE, pca_center = 
FALSE, pca_scale = FALSE, perplexity = 50, max_iter 
= 2500, and theta = 0.0. 

Identification of SCGs 
For each cell type, we defined SCGs (a.k.a. 

STIM1-associated genes) as genes that were positively 
and significantly associated with the expression level 
of the STIM1 gene in each particular cell type. To do 
this, we fitted an exponential dispersion model (EDM; 
i.e., generalized linear regression with Tweedie 
distribution) as follows: (1) A dispersion parameter of 
1.1; (2) The effect direction of a gene expression to the 
STIM1 expression was assessed by beta (β)-coefficient 
(β > 0 as positively associated, while β < 0 as 
negatively associated); (3) The statistical robustness of 
a gene expression to the STIM1 expression was 
assessed by p-value; and (4) In each cell type, genes 
with a β-coefficient of > 0 and an false discovery rates 
(FDR) of < 0.05 were considered to be SCGs. Notably, 
FDRs were calculated for multiple testing corrections 
(MTCs). For malignant cells, cells from different 
individuals (patients) were separated for an 
association analysis, and finally the results were 
meta-analyzed to identify malignant-derived SCGs 
using a fixed-effect model implemented in the meta 
package. 

Construction of STIM1 scores 
For each cell type, we calculated a STIM1 score 

by the following method to minimize negative 
impacts caused by a wide variety of quality and 
complexity across cells. First, all genes were binned 

into 25 groups based on their pooled expression 
values. For each SCG, we next randomly sampled 100 
genes from the same bin and calculated an average 
control value. Then, the expression of each SCG was 
centralized using the corresponding mean control 
value. Finally, centralized values of the top 100 SCGs 
were averaged to become the STIM1 score. In contrast, 
for bulk data, we directly averaged the top SCGs to 
generate the STIM1 score. 

Pathway enrichment analysis of SCGs 
The Reactome pathway database was utilized for 

an over-representation analysis (ORA) as 
implemented in the ReactomePA package [19]. For each 
cell type, the HGNC symbols of the top 100 SCGs were 
first converted to Entrez Gene identifiers [20] using the 
clusterProfiler package [21] before performing the 
ORA. q-values were calculated for the MTCs, and 
Reactome pathways with a q-value of < 0.05 were 
considered to be significantly enriched. 

Additional melanoma expression datasets for 
validation and downstream analyses 

We used the GEOquery package to query 
normalized human melanoma datasets (microarrays), 
which included GSE3189 [22], GSE65041 [23], 
GSE78220 [24], GSE4587 [25] and GSE4570 [26]. 
Logarithmic transformation was applied to the 
downloaded expression values that had not 
previously been log-transformed. Moreover, two 
melanoma datasets (GSE7929 [27], GSE1845 [28]) with 
cell line data were further downloaded. For each 
dataset, we performed gene-based mean-centering of 
expression levels for the downstream analysis. Gene 
expression values were mean-aggregated from 
probes, and further corrected for standard HGNC 
human gene symbols. Additionally, 471 skin 
cutaneous melanoma expression profiles from The 
Cancer Genome Atlas (TCGA) database and 974 
normal skin tissue expression profiles from The 
Genotype-Tissue Expression (GTEx) project were 
acquired from the recount2 website [29]. Downloaded 
count data were scaled by considering the samples’ 
total coverage. After gene-based summarization by 
taking an average across the same genes, we used 
log2(Ei + 1) to represent the expression value of each 
gene i. Expression values were further adjusted for 
latent covariates using the sva package and corrected 
for standard HGNC human gene symbols. In 
addition, 4 melanoma datasets (including GSE22155 
[30], GSE65904 [31, 32], GSE19234 [33] and GSE53118 
[34, 35]) with available gene expression and clinical 
prognostic outcome (survival endpoints: overall 
survival (OS) or disease specific survival (DSS)) were 
downloaded for survival analysis using Cox 
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regression test. 

Transcriptome-wide gene-association and 
pathway-enrichment tests for 
malignant-derived STIM1 scores in TCGA 
melanoma data 

We conducted association tests to identify genes 
that were significantly associated with malignant- 
derived STIM1 scores. Since the malignant-derived 
STIM1 scores were calculated from expression values 
of the top 100 SCGs, we adopted the following 
rigorous jackstraw [36] permutation approach to 
prevent inflation of the statistical significance with 
several modifications: (i) for each resampling iteration, 
we permuted all genes; and (ii) we used 
Z-transformed malignant-derived STIM1 scores to 
calculate the null-association statistics. For each gene, 
the significance of the association was determined by 
the p value calculated from the above method, and the 
direction of the association was determined using 
Pearson’s product-moment correlation between gene 
expression values and malignant-derived STIM1 
scores across samples. Genes with a positive Pearson’s 
product-moment correlation coefficient and 
Bonferroni-adjusted p value of < 0.05 were then 
subjected to the Reactome pathway ORA. 

Immune metagene analysis 
To identify genes that were specifically 

expressed in diverse cell types in the TME, we utilized 
non-malignant single-cell profiles from GSE72056 
(including CAFs, endothelial cells, and immune cells). 
Immune cells were further classified into B cells, T 
cells, natural killer (NK) cells, and macrophages based 
on annotations from downloaded data. We further 
distinguished T cells into CD8+ T cells (with average 
expressions of CD8A and CD8B of > 3.0), CD4+ Treg 
cells (with average expressions of FOXP3 and CD25 of 
> 3.5) and CD4+ Th cells (with an average expression 
of CD4 of > 3.0 as well as expressions of FOXP3 and 
CD25 of < 2.5) using well-established cell type 
markers. We next identified genes that were 
specifically expressed in diverse cell types per three 
criteria as described elsewhere [37]. In addition, we 
also adopted an immune-related cell type-specific 
marker gene list from a study by Bindea et al.[38]. For 
those non-malignant cell type-specific marker genes, 
we then averaged expression values of these genes to 
construct immune metagenes. 

Statistical analyses 
All statistical association tests and enrichment 

analyses that were conducted in this study were 
performed using R (http://www.r-project.org/ and 
http://cran.r-project.org/) or Bioconductor (http:// 

www.bioconductor.org/). 

Results 
Single-cell resolution of STIM1 expression in 
human metastatic melanoma tumors 

Single-cell transcriptomic data provides a better 
resolution across cell types Here we captured gene set 
reflected by STIM1 in a cell specific profiling (Figure 
1A). Malignant cells and non-malignant cells within 
the tumor microenvironment, including endothelial 
cells, CAFs and several immune cell types (B cells, 
macrophages, NK cells and T cells) (Supplementary 
Figure S1) were analyzed. Based on the T cell 
expression profiles, we further categorized the 
populations into subtypes: CD4+ T-helper cells 
(CD4Th), CD4+ T regulatory cells (CD4Treg), CD8+ T 
cells (CD8T), and other T cells (Supplementary Figure 
S2). 

In the analysis of bulky RNA-seq, frequent 
false-negatives in single-cell RNA-seq experiments 
may adversely impact downstream analyses. Thus, a 
correction to expression profiles is performed to 
diminish the dropout effect by down-weighting genes 
that have a higher probability of being false-negatives 
[18]. We then conducted a t-distributed stochastic 
neighbor embedding (t-SNE) analysis to cluster cells 
based on weighted expression. For malignant cells, a 
remarkable pattern of inter-tumor heterogeneity was 
observed (Figure 1B); whereas non-malignant cells 
tended to cluster together regardless of their cellular 
identity (Supplementary Figure S3). Accordingly, we 
analyzed malignant cells separately (by sample) and 
grouped non-malignant cells by the cellular identities. 
Based on the corrected expression profiles, the 
distributions of STIM1 expression in different cell 
types (Supplementary Figure S4) reveal a consistent 
pattern of low STIM1 expression across multiple cell 
types. For malignant cells, CD4+ Treg and fibroblasts, 
less than 50% cells with STIM1 gene expression of > 0; 
while for the remaining cell types, less than 25% cells 
with STIM1 gene expression of > 0. 

We postulated that the effects of STIM1 may 
coordinate with other genes. The interrelated profiles 
triggered by STIM1 may differ across cell types. We 
employed a stepwise bottom-up approach to: 1) 
identify STIM1-coexpressed genes (SCGs; a.k.a. 
STIM1-associated genes) in different cell types, 
including malignant cells in the tumor and 
non-malignant cells from the tumor 
microenvironment; 2) characterize the functional 
impact of SCGs in specific cell types; and 3) determine 
the prognostic value of SCGs derived from different 
cell types. 
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Cell-specific identification of STIM1 
co-expression profiles in melanoma tumors 

Instead of analyzing cell-specific STIM1 
expression, we integrated SCGs profiles to overcome 
limitations of dropout in single-cell expression 
profiles. Co-expression was defined as a positive and 
significant association with STIM1 expression in a 
particular cell type. We firstly delineated 
transcriptome-wide associations with STIM1 
expression using an exponential dispersion model 
(EDM). For malignant cells, we fitted the same model 

in each sample and then performed a meta-analysis to 
pool the statistics and acquire malignant-cell-derived 
SCGs. Regarding to the remaining cell types, SCGs 
were derived independently for each cell type. 
Subsequently, we selected the top 100 SCGs from each 
cell type to construct a “STIM1 score” (Supplementary 
Table S1), which could be considered as a robust 
estimate of STIM1 expression from single-cell 
transcriptomic profiles. Then this score was applied to 
replace STIM1 gene expression in the following 
analyses. 

 
 
 

 
Figure 1. Profiling of STIM1 expression and its co-expressed genes in melanoma expression profiles. (A) Schematic depicting our study design. Single-cell malignant 
melanoma data were utilized to identify STIM1-coexpressed genes (SCGs) in diverse cell types. The top 100 SCGs for each cell type were then adopted to construct STIM1 scores 
in bulk melanoma data. (B) The t-Distributed stochastic neighbor embedding (t-SNE) clustering of single-cell transcriptomic profiles from 19 metastatic melanoma patients. The 
numbers (and colors) indicating different cell types, including 1) CD4+ Treg cell; 2) Endothelial cell; 3) NK cell; 4) CD4+ Th cell; 5) Malignant cell; 6) Macrophage; 7) B cell; 8) CD8+ 
T cell; and 9) Other T cell. (C) Distributions of malignant-derived STIM1 scores in diverse cell types including malignant cells, cancer-associated fibroblasts (CAFs), endothelial 
cells, and several types of immune cells (GSE72056; single-cell transcriptomic data). Median values of malignant-derived STIM1 scores are shown, with blue indicating malignant 
cells and red indicating non-malignant cell types. (D) Pearson’s product-moment correlation coefficients of malignant-derived STIM1 scores calculated using the top 25, 50, 100, 
150, and SCGs derived from malignant single-cell profiles. (E) Malignant-derived STIM1 scores from bulk malignant melanoma tissues were significantly higher than those from 
normal skin tissues (GSE3189; microarray data; p value < 10-5). 
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To examine whether the SCGs are cell-type 
specific, we focused on the top 100 
malignant-cell-derived SCGs. The profile was used to 
calculate malignant-cell-derived STIM1 scores in 
different cell types (Figure 1C). In malignant cells, we 
found significant differences between the 
malignant-cell-derived STIM1 scores across 
individuals. Most patients expressed high values 
(median > 0; 6 of 8 individuals), and the remaining 
patients exhibited low expression values (median < 0; 
2 of 8 individuals), suggesting a high level of variation 
in SCGs across melanomas. Moreover, we observed 
relatively low malignant-cell-derived STIM1 scores in 
non-malignant cells (all median < 0), suggesting 
higher expression levels of malignant-cell-derived 
SCGs in malignant cells (Kruskal-Wallis rank-sum test 
p-value = 0.0041). However, a considerable 
subpopulation with higher STIM1 score in CAFs, 
macrophages and CD4+ Tregs was observed (25% ~ 
33.6% of cells with high STIM1 score; Supplementary 
Figure S5). Previous study suggested the roles of 
STIM1 in normal melanocytes, including cell 
proliferation, melanogenesis and pigmentation [39]. 
Therefore, levels of malignant-derived STIM1 score in 
melanoma, nevi (benign) and melanocytes (normal) 
were compared by using several melanoma 
expression datasets (including GSE4587, GSE4570 and 
GSE3189; Supplementary Figure S6). However, we 
didn’t observe significant difference in 
malignant-cell-derived STIM1 score level between 
melanomas and normal melanocytes (Mann-Whitney 
test p-values > 0.05; from GSE4587 and GSE4570). In 
addition, malignant-cell-derived STIM1 score level 
was significantly different across melanomas and 
benign nevi tissue (Mann-Whitney test p-values < 
0.05; from GSE4587 and GSE3189). 

Pairwise comparisons between cell types of the 
same patients revealed a higher proportion of 
inter-class significance than intra-class significance 
(Supplementary Figure S7), suggesting a relatively 
homogeneous distribution of malignant-cell-derived 
STIM1 scores from malignant or non-malignant cells. 
Notably, these results not only showed that malignant 
cells possess higher malignant-cell-derived STIM1 
scores than non-malignant cells, but the specificity of 
malignant-cell-derived STIM1 scores were validated 
in malignant cells. Furthermore, the identification of 
SCGs in each cell type was accomplished by fitting the 
EDM with a power parameter of 1.1. We selected this 
power parameter based on the distribution pattern of 
STIM1 expression in single-cell profiles 
(Supplementary Figure S4). To examine whether the 
results are consistent for different power parameter 
thresholds, we repeated the analysis using only 
malignant cells and various power parameters 

thresholds of 1.0, 1.2, 1.5 and 1.9 (Supplementary 
Figure S8). The associations were restricted to each 
patient and then samples were meta-analyzed across 
for the final statistical comparison. We observed a 
high consistency between the EDM results by different 
power parameters (Pearson’s r of Z statistics ranged 
from 0.9361 to 0.9994; all p-values < 0.001), suggesting 
the robustness of statistical tests for SCGs 
identification. 

In addition, the reliability of our analysis may 
depend on the number of top SCGs (i.e. 100 SCGs in 
this study) used for STIM1 score construction. We 
thus applied the data from malignant cells and 
re-computed malignant-cell-derived STIM1 scores 
using the top 25, 50, 150 and 200 SCGs. A strikingly 
high correlation between malignant-cell-derived 
STIM1 scores derived from different numbers of genes 
were observed (Pearson’s r: 0.96 ~ 1; Figure 1D). After 
validating the robustness of scoring paradigm, we 
sought to biologically validate the co-expression of 
genes using single-cell transcriptomic profiles. Using a 
group of prominent standard reference genes (AXL- 
and MITF-program genes that are negatively 
correlated with each other) to exhibit pairwise 
relationships, we confirmed the performance of our 
pipeline. As shown in Table 1, MITF was significantly 
co-expressed with predefined “MITF-program genes” 
including TYR, PMEL, PLP1, and GPR143, while a 
negative correlation was clearly seen between MITF 
expression and “AXL-program genes”, including 
ANGPTL4 and FSTL3. Overall, these results 
substantiated the robustness of our pipeline for the 
STIM1 score construction. 

 

Table 1. Validating the pipeline by comparing genes that were 
positively (MITF-co-expressed genes) and negatively associated 
with MITF to genes implicated in the MITF- and AXL-programs. 

 Gene Ranka Beta 
coeff.b 

Std. 
err.c 

Z-value p value FDRd 

Top ranked genes to 
the MITF-program 

MITF 1 0.366 0.005 76.984 < 10-20 < 10-20 
TYR 2 0.126 0.014 9.204 3.45×10-20 8.50×10-19 
PMEL 3 0.058 0.009 6.495 8.29×10-11 4.30×10-10 
PLP1 4 0.095 0.010 9.053 1.39×10-19 3.08×10-18 
GPR143 5 0.097 0.009 10.332 5.03×10-25 2.70×10-23 

Top ranked genes to 
the AXL-program 

ANGPTL4 1 -0.077 0.011 -6.894 5.43×10-12 3.46×10-11 
FSTL3 2 -0.046 0.012 -4.027 5.66×10-5 1.08×10-4 

aThe rank of genes in each cellular program (AXL-program or MITF-program) was 
adopted from Tirosh et al. bBeta coefficient of the association test. cStandard error. d 

False discovery rate. 
 

Apply malignant-cell-derived SCGs for the 
deconvolution of bulky melanoma profiles 

In bulky malignant melanoma tissues, the 
expression of STIM1 in malignant cells is likely to be 
masked by other cell types (e.g., immune cells). Thus, 
how to systematically characterize the cellular 
functions associated with STIM1 expression in 
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malignant melanoma cells remains challenging. Due 
to the established gene profiles that reflect the 
specificity (Figure 1C and Supplementary Figure S7), 
we hypothesized that malignant-cell-derived STIM1 
score may capture more information to reflect the 
STIM1-associated cellular programs in bulky tumors. 
The hypothesis was assessed by following aspects: (1) 
First, a published dataset from laser captured 
micro-dissection (LCM)-processed melanoma tumors 
(only included malignant cells) was analyzed 
(GSE65041). We considered these data to be a 
malignant-cell-only profile and created a ranked list 
on the basis of the Pearson’s product-moment 
correlations of all genes associated with STIM1 
expression. The enrichment of the top SCGs derived 
from the single-cell malignant profiles in the ranked 
gene list was examined. As expected, a significant 
enrichment in the first 20-40% observations (Table 2; 
all minimum hypergeometric (mHG) test p-values < 
0.05) with using the top 25, 50, 150 and 200 SCGs 
yielded higher degrees of enrichment was observed. 
(2) We asked whether the trend could be observed in 
data from non-malignant cells. Comparing of normal 
skin tissues acquired from Genotype-Tissue 
Expression (GTEx; 974 specimens) revealed the loss of 
significance of enrichment after including higher 
numbers of top SCGs (Supplementary Figure S9). (3) 
To identify whether constructed STIM1 score is 
affected by infiltrating immune cells, we utilized 471 
bulk melanoma data (103 primary and 368 metastatic 
samples) from The Cancer Genome Atlas (TCGA) 
project. STIM1 score was calculated by averaging the 
expression values of the top 100 malignant-derived 
SCGs. A low correlation between malignant-derived 
STIM1 score and 4 tumor purity indices [40] 
(ESTIMATE [Estimation of STromal and Immune cells 
in MAlignant Tumours using Expression data], 
LUMP [leukocytes unmethylation for purity], IHC 
[immunohistochemistry] and CPE [consensus 
measurement of purity estimations]) were observed 
(Pearson’s r: -0.05 ~ +0.12; Supplementary Figure S10). 

 

Table 2. Enrichment results of STIM1-coexpressed genes (SCGs) 
in a ranked gene list calculated from laser-captured 
micro-dissected melanoma tissues (n = 11). 

First Nmax partition Top 25 Top 50 Top 100 Top 150 Top 200 
20% 0.009277* 0.02065* 0.03515* 0.001123* 1.827×10-5* 
30% 0.01066* 0.02368* 0.04029* 0.001299* 2.141×10-5* 
40% 0.01194* 0.02631* 0.04459* 0.001449* 2.411×10-5* 

*P < 0.05. Nmax, the number of genes considered in deriving the statistic of mHG test. 
 
To directly compare the malignant-cell-derived 

STIM1 scores from malignant tissue and normal 
counterparts, we next interrogated an expression 
dataset that comprised 45 bulky primary melanoma 
tumors and 7 normal skin lesions (GSE3189). The 

malignant-cell-derived STIM1 scores for the bulky 
tumor data were computed by simply taking an 
average across the top 100 SCGs derived from the 
malignant single-cell data. The malignant-cell-derived 
STIM1 scores of melanoma tissues were significantly 
higher than those for normal skin tissues 
(approximative Fisher-Pitman permutation p-value < 
0.00001; Figure 1E), which was in line with previous 
evidence that melanoma biopsies exhibit higher 
STIM1 expression than control biopsies [12]. Together, 
our observations confirmed that the 
malignant-cell-derived STIM1 scores obtained from 
single-cell malignant profiles achieved great results in 
capturing information about malignant-cell-specific 
SCGs in bulk expression data. 

We next examined the specificity of SCGs 
calculated from non-malignant cell types. However, 
the STIM1 scores derived from non-malignant cell 
types were not specific when compared the difference 
among the non-malignant cell types (Figure 2 and 
Supplementary Figure S11). For example, across 
non-malignant cells, the expression of STIM1 is 
co-regulated with similar group of SCGs which may 
share pathophysiological pathways. Therefore, we 
may not simply deduce the specificity property of 
SCGs (and STIM1 score) that derived from 
non-malignant cells, considering the ubiquitous 
expression of these genes in non-malignant (even in 
malignant) cell types. 

Functional enrichment analysis implicates 
calcium elevation and immune-related 
pathways in STIM1 expressing malignant cells  

To evaluate the functional similarity of SCGs 
among different cell types, we conducted an 
over-representation analysis (ORA) on single-cell data 
using the Reactome Pathway Database (Figure 3A). 
We first performed enrichment tests for the top 100 
malignant-cell-derived SCGs. A significant 
enrichment (q-value < 0.05) for pathways related to 
Ca2+ signaling was found including elevation of 
cytosolic calcium levels, platelet calcium homeostasis, 
and ion homeostasis. The identified SCGs are 
consistent with the known functions of STIM1 in 
calcium signaling. Since functionally enriched genes 
were associated with the expression level of STIM1 in 
malignant melanoma cells, these results imply STIM1 
expression is positively associated with particular 
calcium-mediated biological functions, including cell 
cycle regulation and cell migration [11, 12]. 
Furthermore, we also observed enrichment of 
malignant-cell-derived SGCs for immune-related 
pathways, such as chemokine signaling, implying that 
malignant cells may stimulate immune cell responses 
via STIM1-mediated calcium signaling. Subsequently, 
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we probed the enrichment of SCGs from 
non-malignant cell types in melanoma. Strikingly, 
only a few over-represented pathways were 
identified. Taken together, these results indicated that 
STIM1 expression is associated with a unique cellular 
program in malignant cells, in contrast to its role in 
non-malignant cell types. 

To validate the functions of malignant-cell- 
derived SCGs in a larger sample size, an independent 
dataset from TCGA were subjected for pathway 
enrichment analysis. To do so, we constructed a 
malignant-cell-derived STIM1 score from 277 
melanoma specimens with tumor purity (IHC) > 80% 
(44 primary and 233 metastatic) by averaging the top 
100 malignant-cell-derived STIM1-coexpressed 
profiles. According to previous results, these genes 
were highly expressed in malignant cells but not in 
another cell types. We, thus, postulated that the 
malignant-derived STIM1 score (i.e. average value in 
bulky tissues) can be utilized as a surrogate for 

malignant-cell-specific functional activation of STIM1 
expression in bulky cancer specimens (Supplementary 
Figure S12). Here, a total of 195 genes that positively 
associated with STIM1 score were identified 
(Bonferroni-adjusted p-value < 0.05). 21 significantly 
enriched Reactome pathways (false discovery rate 
(FDR) < 0.1; Supplementary Figure S13) were further 
identified [36]. As expected, we found that candidate 
genes were enriched in the “calnexin/calreticulin 
cycle” pathway (FDR = 2.14×10-3) and several 
immune-related pathways, including the “antigen 
presentation: folding, assembly and peptide loading 
of class I MHC” pathway (FDR = 0.067). Furthermore, 
enrichment in COPI system or XBP1, IRE1-α, insulin 
receptor and mTORC1 signaling was also identified. 
These results thus provide an independent line of 
evidence that STIM1-mediated pathway enrichment 
may not necessarily tie with SOCE signaling, because 
STIM1 score is able to capture SOCE-independent 
biological functions. 

 

 
Figure 2. Distributions of non-malignant cell types-derived STIM1 scores in 9 cell types. The numbers on the top of each panel indicate median value of 
corresponding cell-type derived STIM1 score. The STIM1 scores were median-scaled by the cell type (scaled to 0 and highlighted in grey color) used for score construction. In 
contrast to malignant-derived STIM1 score (Figure 1C), non-malignant cells-derived STIM1 score showed less specificity in the cell type that it derived from, suggesting the 
pervasive expression of non-malignant cell types’ SCGs in another cell types. 
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Orchestration of STIM1-mediated cell-to-cell 
interactions in melanoma through 
ligand-receptor binding and cell infiltration 

In contrast to immune cell types, the correlation 
between STIM1 expression and immune-related 
pathways in malignant cells remains undefined. 
Given that the communications between malignant 
cells and immune cells by secreting cytokines/ 
chemokines were widely observed, we delineated 
potential STIM1-mediated malignant-to-immune cell 
interactions by identifying cytokines/chemokines that 
were positively associated with STIM1 expression in 
malignant cells. A curated list of ligand-receptor 
interactions [41] was adopted to pinpoint receptor 

gene(s) that correspond to STIM1-coexpressed 
cytokines/chemokines (i.e., ligands secreted from 
malignant melanoma cells). In total of 9 ligands 
(including TNFSF13, CCL5, IL16, IL1B, CCL18, IL6, 
CCL3, CXCL2 and CXCL12) as malignant-cell-derived 
SCGs were identified (Supplementary Figure S14). By 
leveraging two additional melanoma cell line (i.e. 
malignant cell) expression datasets (GSE7929 [n = 11] 
and GSE1845 [n = 5]), the positive correlation (i.e., 
Pearson’s product-moment correlation coefficient > 0) 
of STIM1 to 3 (of 9) ligands was successfully validated 
including CXCL12, IL16 and CCL5 (Supplementary 
Figure S15). 

 

 
Figure 3. Reactome pathway enrichment analysis of the top 100 SCGs and the distributions of expression levels of receptor genes in diverse 
non-malignant cell types. (A) Table showing the number of significant over-represented (green arrow) and under-represented (red arrow) genes among the top 100 SCGs 
in Reactome pathways for different cell types (over-representation analysis (ORA); q-value < 0.05). Significant over-represented (green arrow) and under-represented (red 
arrow) Reactome pathways for each cell type are listed. (B) Only the distributions of receptor genes (but not ligand genes) are illustrated using single-cell malignant melanoma 
transcriptomes (GSE72056). In the header, receptor genes (left: CXCR4; middle: CCR5; right: CCR3) are colored blue, while corresponding ligand genes (co-expressed with the 
STIM1 gene in malignant melanoma cells; left: CXCL12; middle: IL16; right: CCL5) are colored black. 
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We next leveraged ligand-receptor binding 
information to identify plausible STIM1-mediated 
crosstalk between malignant cells and immune cells in 
TME. We imply that immune crosstalk in melanoma 
tissues is presented when immune cells in TME 
possess receptors complemented with ligands 
secreted from STIM1-mediated cytokine genes. The 
expression of receptor genes corresponding to 3 SCGs 
(ligands) in non-malignant cell types were further 
taken into consideration. Representative examples of 
ligand-receptor interactions were shown in Figure 3B. 
CXCR4, a chemokine receptor, was expressed in 
malignant cells, while its ligand (CXCL12) was 
expressed in T cells (including CD4Treg, CD4Th, and 
CD8T) and NK cells. Another STIM1-associated 
ligand-receptor pairs were further demonstrated by 
IL16-CCR5 and CCL5-CXCR3 (Figure 3B). 

Genes that were specifically expressed in diverse 
immune cell types have been used as gene signatures 
to construct metagenes for quantifying the abundance 
of infiltrated cells in bulk tumor specimens [42]. 
Accordingly, we investigated potential STIM1- 

mediated cell-cell interactions by associating 
malignant-derived STIM1 scores with metagenes from 
277 bulk TCGA melanoma transcriptomes with tumor 
purity (IHC) > 80%. Cell type-specific genes for 
metagenes calculation were adopted from previous 
work [38] (denoted as “Metagenes (1)”) and ours [43] 
(denoted as “metagenes (2)”). We quantified the 
correlations between malignant-cell-derived STIM1 
score and metagenes using Pearson’s 
product-moment correlation coefficient (Figure 4). A 
significant positive association was observed between 
the malignant-cell-derived STIM1 score and CD4+ 
T-helper 17 (CD4Th17) cell, CD56+ NK 
(NK.CD56bright) and mast cell. Additionally, 
negative associations were found between the 
malignant-cell-derived STIM1 score and CD4+ 
T-helper 2 (CD4Th2) cell, CD8+ T (CD8T) cell, CAF 
and CD4+ Tregs (CD4Treg). Although association 
analysis can’t determine causality, the results at least 
indicated a functional role of STIM1-mediated 
modulation in cell-cell interactions within the tumor 
microenvironment (TME). 

 

 
Figure 4. Forest plot showing the statistics of correlations between cell-type metagenes and malignant-derived STIM1 scores in bulk melanoma data. 
Pearson’s product-moment correlation coefficients between malignant-derived STIM1 scores from specimens of The Cancer Genome Atlas (TCGA) skin cutaneous melanoma 
(SKCM) dataset and cell type metagenes (as well as their 95% confidence intervals (CIs)) are shown. Significant metagenes (with p < 0.05) with positive (Pearson’s r > 0) and 
negative (Pearson’s r < 0) associations are colored red and green, respectively. Genes that were used to construct cell type metagenes (2) were respectively adopted from (1) 
Bindea et al. [38] and (2) our previous study [37]. 
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Figure 5. Survival analysis of STIM1 scores derived from non-malignant cell types. (A) Clinical correlations of non-malignant cell-derived STIM1 scores. (B) 
Kaplan-Meier plots (x-axis: time in day) showing survival curves of The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) patients with high (above the median) 
and low (below the median) STIM1 scores derived from B cells (left), macrophages (middle), and CD4+ T regulatory cells (right). Hazard ratios and corresponding p values were 
calculated using the Cox-proportional hazard model by adjusting for gender, age at diagnosis, and immune metagenes. (C) Venn diagram showing the number of intersections 
between the top 100 SCGs derived from CD4+ T regulatory cells and macrophages. (D) Correlation (logistic regression test) between STIM1 gene and STIM1 score and the 
PD-L1 status (positive or negative; adjusted by gender and tumor status [primary or metastatic]) and responsiveness to anti-PD1 therapy (responsive [partial response and 
complete response] and non-responsive [progressive disease]; adjusted by gender and age) in melanoma patients. 

 

SCGs derived from immune cells indicate 
patient prognosis in melanoma 

While previous studies have revealed the 
associations between immune infiltration and the 
prognosis of melanoma patients [15, 44-46], specific 
cellular programs that predict survival have not been 
reported. We tested whether STIM1-mediated cellular 
programs are associated with overall survival (OS) of 
melanoma patients. Correlation of clinical outcomes 
from the TCGA melanoma dataset with 
malignant-cell-derived STIM1 scores were conducted. 
To prevent confounding from cell types with potential 
high STIM1 score, we further restricted the bulk 
sample with tumor purity of > 80% (based on 
immunohistochemistry (IHC)), resulting in 277 (of 
471, 58.8%) patients. After adjusting for gender and 
age at diagnosis, we detected no significant 
association between malignant-cell-derived STIM1 
scores and stage of cancer, depth of invasion, lymph 

node metastasis, distant metastasis, or OS (all p-values 
> 0.05; Supplementary Figure S16). These findings 
were further supported by 4 independent melanoma 
expression datasets (GSE22155 [survival endpoint: 
OS], GSE65904 [survival endpoint: disease specific 
survival (DSS)], GSE19234 [survival endpoint: OS] 
and GSE53118 [survival endpoint: OS]; 
Cox-proportional hazard model p-values > 0.05; 
Supplementary Figure S17). 

We conducted similar regression tests for STIM1 
scores derived from diverse non-malignant cell types, 
while using TCGA samples without filtering for 
tumor purity (sample no. = 471; Figure 5A). A 
prognosis-favorable association (p-value = 0.00299, 
hazard ratio (HR) = 0.756) were identified in CD4+ 
Treg-derived STIM1 score. Moreover, borderline 
prognosis-favorable associations were identified in B 
cell-derived STIM1 score (HR = 0.85; p-value = 0.0964) 
and the macrophage-derived STIM1 score (HR = 
0.843; p-value = 0.0713; Figure 5B). We noted that the 
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significance of CD4+ Treg-derived STIM1 score should 
be interpreted with caution since both CD4+ Treg cells 
and macrophages exhibit high basal STIM1 scores. 
Finally, a low specificity of CD4+ Treg-derived STIM1 
score were observed, which is suggested by 
significant enrichment of overlapping genes between 
the top 100 CD4+ Treg-derived SCGs and 
macrophage-derived SCGs (permutation p-value = 
3×10-4; Figure 5C). Therefore, we observed the 
presence of STIM1-asociated clinical impact in 
immune cells (especially CD4+ Tregs) which is 
absence in malignant cells, suggesting functional 
versatility of STIM1 in TME. 

Immunotherapeutic implications of TME 
immune cell types had been characterized [47], given 
the prognostic significance of STIM1 score in immune 
cell types based on the above results, it is valuable to 
ask whether STIM1 correlates to immune checkpoint 
therapeutic outcomes. Regretfully, we detected 
neither significant association between STIM1 gene 
expression (and STIM1 score) to the PD-L1 expression 
status (positive vs. negative; GSE65041; n = 11) nor 
responsiveness to anti-PD1 (responsive [complete or 
partial response] vs. non-responsive [progressive 
disease]; GSE78220; n = 27) therapy in melanoma 
patients (all logistic regression test p > 0.05; Figure 
5D). 

Discussion 
Our analyses offer a single-cell-based 

transcriptomic metric that can be used to dissect 
multiple pathophysiological roles of STIM1 
expression in diverse cell types from melanoma- 
derived samples, while at the same time, providing an 
integrated view of STIM1-mediated alterations in 
cellular programs as well as prognostic correlations 
across different cell types in tumors. Utilizing a 
bottom-up approach starting with STIM1 expression 
status, we identified genes that are co-expressed 
(positively and significantly associated) with STIM1 in 
diverse cell types in melanoma and constructed 
STIM1 scores to explore the biological relevance 
(Figure 1A). Further integration of SCGs from diverse 
cell types to the expression of bulky tumors links the 
functions of STIM1 to patient prognosis and illustrates 
the cellular ecosystem in melanoma. In light of the fact 
that STIM1 plays a critical role in immunity and has 
been linked with many cancers, our findings depicted 
its potential mechanisms in human melanomas. 

The results from current study imply that STIM1 
expression in melanoma affects cellular physiology in 
a cell-specific manner. Specifically, malignant-cell- 
derived SCGs exhibit pathway convergence, whereas 
SCGs in non-malignant cell types do not (Figure 3). 
Therefore, malignant cell types may be a good starting 

point to investigate the functional versatility of STIM1 
expression in melanoma. In this study, we utilize 
STIM1 score as a surrogate of STIM1 expression in 
order to gain four advantages: 1) reduction in false 
negatives; 2) addition of information regarding 
STIM1-mediated cellular programs, which may not be 
reflected by STIM1 expression alone (Supplementary 
Figure S12); 3) production of superior scoring in 
human melanoma tissues when compared to cell lines 
[17]; and 4) delineation of malignant STIM1 
expression in bulky melanoma data by diminishing 
confounding effects from non-malignant cell types [5] 
(Figures 1C and E). Notably, the fourth advantage 
cannot be extended to non-malignant cell types 
because of the low specificity of STIM1 scores derived 
from these cell types (Figure 2). Furthermore, we 
cannot distinguish whether the SCGs were located in 
the up- or down-stream of STIM1-mediated signaling. 
Here, we also simply ruled out the possibility of some 
SGCs as STIM1-unrelated genes and identified by 
coincidence in association, which is one of the pitfalls 
of this study. Given the result in Figure 1C, we can’t 
simply rule out the contributions of some immune cell 
types (CAFs, macrophages and CD4+ Treg cells) to the 
final STIM1 score, especially use these SCGs for bulk 
melanoma tissues. One way to correct the bias is 
filtering for tumor purity (e.g., > 80% as in this study). 

We thus provide a method to dissect 
malignant-cell-specific STIM1-dependent cellular 
programs in bulky melanoma tissues, which is 
difficult to accomplish without single-cell level data. 
Integration of malignant-cell-derived SCGs with data 
from bulk melanoma specimens and Reactome 
pathways further connects STIM1 to alterations in 
calcium signaling, cell cycle regulation, and 
unexpectedly, immune-related cellular pathways in 
malignant melanoma cells (Figure 3A and 
Supplementary Figure S13). Since the store-operated 
Ca2+ entry (SOCE) pathway has been shown to be 
important in calcium signaling in non-excitable cells 
(such as malignant cells), our results couple STIM1 
expression with aberrant Ca2+ signaling, an idea which 
is supported by previous studies that indicate STIM1 
overexpression modulates SOCE in melanomas [11, 
48-50] and other cancer types [9, 10, 51]. In the present 
study, we focused on STIM1 (not including ORAI1) 
only. One possible drawback is STIM1 gene alone 
may not fully capture the calcium-dependent cellular 
process (especially SOCE), with previous study had 
suggested the role of Orai1-to-STIM1 ratio in 
determining the activation of CRAC current (ICRAC) 
[52]. Therefore, the SOCE amplitude will be 
determined by relative expression between ORAI1 
and STIM1 (and also other STIM1 isoforms and ORAI 
isoforms) rather than the absolute level of STIM1 
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alone. Here, since the major aim of this study is to 
characterize the STIM1-associated cellular programs 
in TME of melanoma, we selected to deliberate on 
SCGs (and STIM1 score), which may capture both 
Ca2+-dependent and Ca2+-independent pathways 
across diverse cell types. Hence, these SCGs not only 
implicate in calcium signaling, but also may implicate 
in Ca2+-independent pathway(s) as illustrated in 
Supplementary Figure S13. Regarding SOCE 
amplitude, previous studies had revealed several 
gain-of-function mutations in STIM1 (e.g., D76A and 
E87A [53], L74P [54] and R304W [55]), which may lead 
to constitutively Ca2+ influx and thus increase the 
basal Ca2+ level. Therefore, whether more 
gain-of-function mutations of STIM1 in melanoma 
tumors is worth for investigation in the future. 

In this study, we make the first connection 
between malignant STIM1 expression and immune 
regulation in melanoma tissues. An illustrative 
example was shown in Figure 3B. The co-expression 
of STIM1 with CXCL12 (a.k.a. SDF1) was detected in 
malignant cells. CXCL12 may bind to the chemokine 
receptor, CXCR4, on CD8+ T cells, CD4+ T regulatory 
cells, CD4+ T helper cells, NK cells and macrophages, 
triggering downstream immune signaling pathways 
[56]. Our analysis further links STIM1 score to the 
abundance of immune cells in melanoma tissues 
(Figure 4), providing another mechanistic link 
between STIM1 and immune-related pathways. 
Although the causality between malignant-cell- 
derived STIM1 score and immune abundance cannot 
be absolutely delineated, our study, at least provided 
important clues for further investigations of 
STIM1-mediated malignant-immune cell interactions. 
Moreover, we gave an integrated view of how 
malignant-cell-expressed STIM1 exerts its biological 
functions and mediates downstream cellular 
programs in diverse non-malignant cell types in the 
tumor microenvironment. 

In addition to demonstrating the biological and 
clinical features of malignant-cell-derived STIM1 
score, this study also revealed STIM1-associated 
cellular programs in non-malignant cell types. 
Construction of a STIM1 score (derived from 
non-malignant cells) in bulky melanoma tissues with 
available clinical data allowed us to examine the 
correlation between patient survival and STIM1- 
mediated cellular programs from non-malignant cell 
types (Figure 5A). For example, a significant favorable 
prognostic association of CD4+ T regulatory 
cell-derived STIM1 score, as well as two borderline 
prognostic associations with B cell and 
macrophage-derived STIM1 scores were established. 
In contrast, we failed to identify the association 
between malignant-cell-derived STIM1 score and 

patient’s prognosis. That may due to the diverse 
cellular functions elicited by STIM1. 

Cancer cellular ecosystem is defined by an 
intricate network of cellular interactions that elicit 
downstream physiological interactions. By using 
single-cell transcriptomic profiles to define the role of 
STIM1 expression in specific cells, we provide a 
systems-level view of STIM1-mediated cellular 
programs in TME of melanoma. Since calcium 
signaling is crucial for communication between 
malignant and stromal cells, maintaining growth and 
expansion in the cancer stroma [57], our study 
highlights the importance of integrated signaling 
between diverse cell types, including malignant cells, 
CAFs, endothelial cells, and immune cells, by 
revealing STIM1-associated cellular and clinicopatho-
logical features. In summary, this study advances the 
understanding of cell-specific STIM1-dependent 
biological alterations in human melanoma. 
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