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distinction of membranous nephropathy: a
new approach through hyperspectral
imagery
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Abstract

Background: Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic
membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the
morphologic differences are not visible under the light microscope in certain renal biopsy tissues.

Methods: We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy
tissue to define the difference between IMN and HBV-MN based on the component of their immune complex
deposition.

Results: The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to
better performance than support vector machine (SVM)-based algorithms.

Conclusion: IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral
imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis
of MN.

Keywords: Membranous nephropathy, Idiopathic membranous nephropathy, Hepatitis B virus, Hyperspectral
imagery, Deep learning

Background
Membranous nephropathy (MN) is one of the most
common causes of nephrotic syndrome in adult patients
across all ethnicities. It often leads to end-stage renal
disease [1–3]. Current data confirmed that MN makes
up approximately 20–40% of all patients with nephrotic
syndrome worldwide [4, 5]. Most cases of MN are

idiopathic membranous nephropathy (IMN), and the
rest are secondary membranous nephropathy (SMN) at-
tributed to various causes including systemic lupus ery-
thematosus (SLE), malignancy, and hepatitis B virus
infection [6]. More than 257 million individuals world-
wide are estimated to suffer from chronic HBV infection,
leading to nearly 1 million deaths annually [7]. HBV in-
fection is common in China; approximately 20% of pa-
tients with HBV infection develop extrahepatic
manifestations [8]. Among the extrahepatic manifesta-
tions related to HBV infection, HBV-related membran-
ous nephropathy is a common outcome of HBV
infection. The most crucial part of MN diagnosis is to
distinguish between idiopathic or secondary disease
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based on the patients’ laboratory examination and renal
biopsy outcome. These values determine the specific
treatment decisions of the two and guide the long-term
prognosis.
Conventional approaches to detecting glomerular

hepatitis antigen/antibody include positive immuno-
fluorescence outcomes and specific pathological features
found in renal biopsy tissue using light and electron mi-
croscopy. In theory, IMN patients were associated with
only immune complex deposition under the epithelial
tissue and the thickening glomerular basement mem-
brane (GBM). HBV-MN patients were characterized by
immune complex deposited in multiple locations and
podocyte proliferation besides the GBM lesions [1].
However, in our previous laboratory practice, we noticed
that methods based on immunochemistry have a high
number of false positives. Pathological features between
IMN and HBV-MN on conventional bidimensional im-
ages obtained via light microscope are highly identical.
The morphological distinction between IMN and

HBV-MN is subtle, and an alternative method is needed.
Here, we propose a computer-based automatic identifi-
cation method using a hyperspectral microscopy system.
This is a sufficient supplementary approach to separate
IMN and HBV-MN.
Hyperspectral imagery (HSI) is an advanced imaging

technique capable of obtaining both spatial and spectral
information of the target material; it is better than clas-
sic imaging techniques that only provide spatial

information such as shape, size, and texture [9, 10]. Fig-
ure 1 shows the concept of hyperspectral data captured
by HS imager. Each hyperspectral image can be visual-
ized as a three-dimensional (3D) data cube consists of
several two-dimensional (2D) grayscale images stacked
together because of its intrinsic features. Every pixel of a
hyperspectral image carries a specific value called a spec-
tral signature that is determined by the material being
observed. These features can then be extracted by deep
learning algorithms for analysis. HS images contain
more spatial information than traditional spectrometry
method; it has incredible potential in pathology, cyto-
genetics, oncology, and clinical diagnosis [11–13].
According to the electromagnetic theory, different bio-

chemical constituents usually have different spectral sig-
natures [14]. IMN is a single-organ autoimmune disease,
and the component of its immune complex (IC) depos-
ition is connected to IgG4 initiation in pathogenesis
[15], where the components of HBV-MN deposition are
intimately related to the hepatitis B virion. The different
pathological changes of IMN and HBV-MN lead to dif-
ferent spectral signatures, allows us to identify their dis-
tinction using HSI. Since its first introduction into
biomedical use in the 1990s, HSI has shown excellent
potential for noninvasive disease diagnosis and surgical
guidance [9].
This is the first study using hyperspectral characteris-

tics to discriminate between different IMN from HBV-
MN in adult patients with membranous nephropathy.

Fig. 1 Example of a hyperspectral data cube from glomeruli. Each data cube contains two spatial dimensions and one spectral dimension
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The hyperspectral image makes patient distinction
straight forward.

Methods
Patient recruitment
We retrieved 20 patients diagnosed with membranous
nephropathy by clinical data and renal biopsy in the
China-Japan Friendship Hospital from July 2019 and
September 2019, including 10 IMN patients and 10
HBV-MN patients. The inclusion criteria of the IMN
group were MN patients with unclear etiology and
glomerular lesions limited to the immune complex de-
posited under the epithelial and thickening glomerular
basement membrane. The HBV-MN group had the fol-
lowing criteria: (1) serum HBV markers positive; (2) ex-
cluded other causes attributed to secondary renal disease
(SLE, drugs, toxins, other infections, or malignancy); and
(3) presence of detectable HBV-related antigen or anti-
body in renal biopsy tissue. This last criterion is the
most fundamental and indispensable rule of all of those
listed above. In all of the cases, MN was accompanied by
other pathological patterns, and diabetic nephropathy
and IgA nephropathy were ruled out. Demographic and
clinical parameters of the MN patients are shown in
Table 1.

Sample description
We collected glomerular characteristics for hyperspectral
analysis with routinely processed renal biopsy tissue.
Each sample was stained with hematoxylin-eosin (HE),
periodic acid-Schiff (PAS), Masson’s trichrome, and
Jones’s silver. All renal tissue samples were observed by
light and immunofluorescence microscopy beforehand,
and all of the patients’ diagnosis was confirmed based on
current criteria. Later an experienced expert re-
examined these biopsies, and all of the patients were eli-
gible for consideration.

Hyperspectral image collection
We performed hyperspectral imaging using a compound
microscope system, where a pushbroom (line-scanning)
imager SOC-710VP (Surface Optics Inc.) is employed
combining with a microscope (Olympus CX31RTSF).
The imaging system captures spatial size 696 × 520 with
128 spectral bands, covering the spectral range from
400 nm to 1000 nm with a spectral resolution of 4.69
nm. The heart of the HS imager consists of a spectral
dispersion element and a 2-dimensional focal plane array
(FPA) detector. In our system, the dispersive spectrom-
eter is a diffraction grating where the incoming light
produced from the microscope is separated into discrete
wavelengths before being projected onto the detector.
Next, the charge-coupled device (CCD) detector is acti-
vated to capture the intensity of the light at each pixel of
the image using the HyperSpect™ operating software. For
each patient, we randomly selected 2–3 glomeruli per
slide, and then manually marked out every immune
complex in the subepithelial area using the ENVI 14.0
software before exporting the data for further analysis.

Image De-noising
Unprocessed HSI data usually contains high spectral
noise generated by the imaging system. This noise can
lead to undesirable effects. In order to remove the noise
in the data, a mean filter was applied. Figure 2 shows the
concept of mean filtering is to replace the center pixel
with the average value of all of the pixels inside the local
window, reducing the amount of intensity variation be-
tween one pixel and its neighbors. Here, the de-noising
process is achieved via the following eq. (1). Where D(i,
j) is the value of the center pixel in the filtering window,
S(m, n) is the value of pixels in the window (i = 0,1 … H-
1; j = 0,1 … W-1), and W and H represent the width and
height of the filtering window, respectively.

D i; jð Þ ¼
X

m;nð Þ∈Ri; j
S m; nð Þ=HW ð1Þ

Figure 3 shows a glomerulus from the 10th channel of
an HBV-MN patients’ HS image before and after de-
noising, the wavelength corresponds to the 10th channel
is 442 nm. The remarkable improvement confirms the
effect of reducing the system noise of HSI data.

Projection transformation
HSI data has hundreds of spectral information channels;
hence, an essential step for utilizing HSI data is to re-
duce the redundant information in its spectral signature.
Projection transformation is an advanced method for ac-
quiring the maximum reduced subspace of a target with-
out losing its essential information. Current projection
transformation techniques include principal component

Table 1 Demographic and clinical parameters of the 20
patients

Characteristic IMN (n = 10) HBV-MN (n = 10)

Age (years) 47.6 ± 14.6 50.3 ± 11.0

Men, n (%) 6 (60%) 7 (70%)

Proteinuria (g/24 h) 4.88(2.00, 6.95) 3.74(3.03, 5.36)

Albumin (g/L) 30(25, 39) 30(25, 31)

Serum creatine (μmol/l) 66.5(52.2, 83.6) 75.5(55.2, 98.7)

BUN (mmol/l) 4.67(3.34, 5.66) 4.85(3.73, 6.63)

Cholesterol (mg/dl) 6.34(5.13, 8.50) 7.46(6.23, 8.94)

PLA2R-ab (Ru/ml) 29.9(18.0, 56.8) 7.6(4.8, 15.9)

Abbreviations: IMN idiopathic membranous nephropathy, HBV-MN hepatitis B
virus-related membranous nephropathy, BUN blood urea nitrogen, PLA2R M-
type phospholipase A2 receptor
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analysis (PCA), independent component analysis (ICA),
and Fisher’s linear discriminant analysis (LDA). How-
ever, a significant drawback of those techniques is
that they all are only legitimate when the target data
has a Gaussian distribution. In this study, we devel-
oped an alternative method named local Fisher’s dis-
criminant analysis (LFDA). The typical LFDA
projection is calculated by maximizing Fisher’s ratio
and using these local scatter matrices. The biggest
benefit of LFDA is that it can obtain good between-

class separation in the feature subspace while preserv-
ing the within-class local structure [16]. It also inte-
grates the advantages of both Fisher’s linear
discriminant analysis (LDA) and locality-preserving
projections (LPP) while bypassing the requirement for
a Gaussian distribution [17–20]. Figure 4a and b are
the before and after projection transformation feature
distribution of one testing sample. The results exhibit
the effectiveness of LFDA for seeking a subspace with
maximum separability for features.

Fig. 2 Concept of mean filtering. The value of each center pixel is replaced with the average value of all pixels inside the filtering window

Fig. 3 Panels (a) and (b) are before and after image de-noising of an HBV-MN patient’s glomeruli, the wavelength corresponds to the 10th
channel is 442 nm
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Proposed deep learning framework
Following the image de-noising and projection trans-
formation procedures mentioned above, we constructed
a deep neural network (DNN) to extract and classify the
intrinsic and high-level features of the different glomeru-
lar images [21]. More specifically, support vector ma-
chine (SVM), extreme learning machine (ELM) [22],
Alexnet [23], Resnet20 [24], and VGG19 [25] were im-
plied on the MN database with and without the pre-
processing procedures to achieve the ultimate goal of
formulating an MN identification architecture that can
automatically distinguish HBV-MN from IMN. For the
deep learning models: First, Leaky ReLU activation func-
tion is applied after each convolutional layer to solve the
problem of gradient vanishing and accelerate the fitting
speed; second, batch normalization (BN) strategy behind
some convolutional layers is used as a regularizer to sim-
plify the tuning process and lower initialization require-
ment; third, dropout technique is employed to avoid the
over-fitting issue, and the dropout rate is set to 0.5. The

proposed DL models were designed and developed using
PyTorch.
The validation of the proposed DL framework was per-

formed using leave-one-out cross-validation (LOOCV),
where samples of the patients to be tested were extracted
from the database before training the algorithm. This
methodology guarantees the database for the training and
testing process are strictly separated; it also proves the eli-
gibility and consistency of comparing the performance be-
tween each method.
Here, we applied DNN to identify glomerular disease

in microscopic hyperspectral images for the first time,
and then verified and supplemented the outcome of im-
munofluorescence or light microscopy.

Results
We used the LDFA-DNN method mentioned above for
a comparative evaluation of the hyperspectral image data
of HBV-MN with IMN from renal biopsy tissue. We col-
lected 30 HBV-MN images and 24 IMN images from 10

Fig. 4 Panels (a) and (b) show the distribution of samples’ intrinsic features before and after the projection procedure

Fig. 5 Panels (a) and (c) are images of an HBV-MN and IMN glomeruli; (b) and (d) are the corresponding ground truth maps with white pixels
representing the marked out immune complexes
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patients in each case of the MN database. Figure 5a and
c shows an HBV-MN and an IMN sample under the
light microscope; panels (b) and (d) highlight their im-
mune complexes in the foreground, respectively. Figure 6
presents the corresponding immune complex deposition
under an electron microscope. The side-by-side images
of HBV-MN and IMN showed a high similarity of their
biological features whether under light or electron
microscope. Hence, we proceed with the pre-processing
chain of de-noising and projection transformation to ex-
tract the intrinsic features for further classification.
After de-noising all of the original hyperspectral im-

ages, LFDA is applied to convert the massive HSI data
into a reduced subspace (Fig. 4). Then, we conducted ex-
periments to investigate the performance of VGG net-
works under different dimensions of the reduced
subspace. Table 2 shows that LFDA obtains optimal
classification performance for VGG networks when the
dimension is 9.
We also verified several patch sizes for the VGG net-

work because of the significant impact it has on the
DNNs performance. Table 3 suggests that 11 × 11 is the
optimal size for the patches.
Table 4 shows the resulting accuracies of HBV-MN and

IMN obtained by various approaches: SVM, ELM, Alex-
net, Resnet20, VGG19 are implemented without prepro-
cessing; LFDA-SVM, LFDA-ELM, LFDA-Alexnet, LFDA-
Resnet20, and LFDA-VGG19 are implemented using fea-
tures with filtering and reduced subspace. Accuracy is de-
fined via the following eq. (2), where P is positive, N is
negative, TP is true positive, and TN is true negative. The
overall accuracy (OA), average accuracy (AA), and Kappa

coefficient were computed to assess the result of different
algorithms. The proposed framework LFDA-VGG19
achieved 94.45% accuracy for IMN and 95.67% accuracy
for HBV-MN in binary classification, which improves the
overall accuracy to 95.04% (12% more than the overall ac-
curacy obtained by algorithms without pre-processing
chain). Figure 7 shows the complete performance results
obtained by each approach. Compared with conventional
machine learning algorithms, deep learning models offer
better performance in distinguishing HBV-MN from
IMN. Furthermore, adding the de-noising and projection
transformation significantly boosts LFDA-DNN’s per-
formance; this validates the necessity of the pre-
processing chain.

Accuracy ¼ TP þ TN
P þ N

ð2Þ

Figure 8 shows that LFDA-VGG19 achieves outstand-
ing performance for separate HBV-MN from IMN. Its
overall accuracy improves by 3.85 and 5.50% higher than
LFDA-SVM and LFDA-ELM, respectively. While LFDA-
Resnet20 maintains the best one-on-one classification
result for HBV-MN and LFDA-Alexnet for IMN, LFDA-
VGG19 presents a more stable and balanced perform-
ance to identify and distinguish the two. Therefore
LFDA-VGG19 is an ideal deep learning framework for
this study.
For further research purposes, we also added 10 HBV-

MN patients with negative serum HBV markers into the
framework to compare with previous HBV-MN patients,
and the sorting result came back as low separability be-
tween serum HBV markers positive HBV-MN patients

Fig. 6 Panels (a) and (b) are pictures of an HBV-MN and an IMN immune complex deposition under 20,000× electron microscopy

Table 2 Comparison of overall accuracy (OA) and Kappa
coefficients with different dimensions of reduced subspace for
LFDA

Metrics 5 9 13 17 21

OA (%) 93.17 95.04 91.87 92.27 92.95

Kappa 0.8629 0.9006 0.8367 0.8458 0.8590

Table 3 The classification performance of various patch sizes

Metrics 9 × 9 11 × 11 13 × 13 15 × 15

OA (%) 93.13 95.04 92.43 94.36

Kappa 0.8629 0.9006 0.8485 0.8872
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and those without serum antigens/antibodies. This sug-
gests that the hepatitis B virus could cause extrahepatic
immune complex formation/deposition without sero-
logical evidence.

Discussion
The WHO estimates that more than 257 million persons
or 3.5% of the world population is living with chronic
HBV infection [26]. Hepatitis B virus infection is a signifi-
cant health problem in China. Previous case reports have
associated chronic hepatitis B virus (HBV) infection with
several types of glomerulonephritis (GN). Almost all of
the morphological forms of renal disease, including mem-
branoproliferative GN (MPGN) [27], mesangial prolifera-
tive GN, minimal change disease, focal glomerulosclerosis,
and IgA nephropathy (IgAN) have been described [28].
The most common type of GN is membranous nephropa-
thy, and the natural history of this condition is not clear
[29]. By employing a hyperspectral imaging-based

architecture consists of filtering, projection transform-
ation, high-level feature extractor, and Softmax classifica-
tion, we could identify HBV-MN and IMN cases using a
novel and accurate technique.
Compared with conventional bidimensional images

obtained by light microscopy, the hyperspectral imaging
system provides superior resolution and sensitivity as
well as the capability to simultaneously process multidi-
mensional images [30, 31]. HSI was initially applied to
fields such as remote sensing [32], archeology [33, 34],
and drug identification [35, 36]. In recent years, the ex-
tension of HSI to the biomedical field has started to
achieve promising results. In theory, compositions of dif-
ferent materials will present significant discrepancies in
spectral curves [10]; therefore, curves of IMN and HBV-
MN would be ready to distinguish due to their different
immune complex components led by diverse pathogen-
esis. The hyperspectral analysis method we describe here
demonstrates a wide spectral range and a high spectral
resolution. The implement of LFDA for dimension re-
duction creates a subset of new features by seeking the
best projection transformation using all the original
spectral bands, this ensures the reduced feature space re-
tains the useful information from the original data space
without the useless information, such as spectral redun-
dancy. These features, in combination with the de-
noising procedures, ensure accuracy and reproducible
imaging spectroscopy and spectrometry [9].
Medical hyperspectral imaging has been employed in

several different areas such as blood vessel visualization
enhancement [37], estimation of cholesterol levels [38],
histopathological tissue analysis [11, 39], and identification
of glioblastoma [40]. There are no studies regarding mem-
branous nephropathy nor the distinction between IMN
and HBV-MN. Potentially, the use of HSI in renal

Table 4 The classification performance of the LFDA-DNN using
the MN dataset

Comparisons HBV-MN IMN OA (%) AA (%) Kappa

SVM 65.20 68.27 66.80 66.74 0.3347

ELM 61.85 71.62 66.94 66.74 0.3356

Alexnet 65.16 69.01 67.16 67.09 0.3418

Resnet20 80.17 68.31 73.99 74.24 0.4819

VGG19 79.70 85.72 82.84 82.71 0.6554

LFDA-SVM 94.28 88.35 91.19 91.31 0.8239

LFDA-ELM 94.92 84.58 89.54 89.75 0.7913

LFDA-Alexnet 92.00 96.00 94.09 94.00 0.8814

LFDA-Resnet20 96.88 91.72 94.19 94.30 0.8839

LFDA-VGG19 95.67 94.45 95.04 95.06 0.9006

Fig. 7 Comparison of the performance obtained from each approach
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pathology field can improve the current situation in three
ways: (1) HSI can extract the intrinsic features of target
material in real-time, therefore rapid detection of HBV-
MN and IMN on unstained slides could enhance the re-
sult of immunoelectron microscopy by binding the HBV
antigen/antibody before fixation and embedding of the
renal tissue; (2) With the refinement of current DL algo-
rithms and the development of new frameworks, different
glomerular diseases with immune complex formation such
as IgA nephropathy (IgAN), membranoproliferative glom-
erulonephritis (MPGN), and dense deposit disease (DDD)
can be diagnosed using HSI; (3) In traditional histological
techniques, the degree of staining reaction between dye
and tissue could be determined by several conditions such
as the room temperature, pH of the solution, or the reac-
tion time. Consequently, pathological images acquired
from different facilities may vary depending on the cir-
cumstances. Meanwhile, visual assessment of these patho-
logical images usually relies heavily on physicians’
experience level. HSI avoids the uncontrollable factors
and the limitation of subjective judgment; it may also con-
tribute to standardize the diagnosis criteria of certain dis-
eases in the near future.
It is worth mentioning that our approach achieves

over 95% accuracy in classification. The result demon-
strates the ability of the proposed framework to achieve
high performance in the correct detection of renal dis-
eases with immune complex formation, which is ideal in
the design of a decision support system for pathological
diagnosis.
We recognize several limitations to this study. First,

given the relatively small number of patients enrolled in
the MN dataset, larger scale studies are warranted in the
future to prospectively validate the effectiveness of the
deep learning framework. Also, multi-class classification

should be performed on different pathological types of
glomerular disease to fully develop the computer-aided
diagnosis system. Second, there are no standard proto-
cols for image calibration, data formation/validation,
etc., to make the proposed framework compatible. Fi-
nally, the analysis mechanism identifies what property of
immune complex deposition related to the spectral sig-
natures is not clear [9]. Further experiments should be
performed to interpret the implications of these spectral
features and their association with the pathogenesis of
the disease.

Conclusion
In this study, we propose hyperspectral analysis as a new
method for the characterization and distinction of HBV-
MN from IMN, especially for cases where the discrimin-
ation is not ideal with light microscopy. The outcomes
in this preliminary work demonstrate the feasibility of
using hyperspectral imaging-based LFDA-DNN architec-
ture as an alternative method for the identification of
HBV-MN and its potential use as a supplementary tool
for renal pathology.
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