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Background: At present, clinical use of MRI in Alzheimer's disease (AD) is mostly focused on the assessment of
brain atrophy, namely in the hippocampal region. Despite this, multiple biomarkers reflecting structural and
functional brain connectivity changes have shown promising results in the assessment of AD. To help identify the
most relevant ones that may stand a chance of being used in clinical practice, we compared multiple biomarker in
terms of their value to discriminate AD from healthy controls and analyzed their age dependency.
Methods: 20 AD patients and 20 matched controls underwent MRI-scanning (3T GE), including T1-weighted,
diffusion-MRI, and resting-state-fMRI (rsfMRI). Whole brain, white matter, gray matter, cortical gray matter
and hippocampi volumes were measured using icobrain. rsfMRI between regions of the default-mode-network
(DMN) was assessed using group independent-component-analysis. Median diffusivity and kurtosis were deter-
mined in gray and white-matter. DTI data was used to evaluate pairwise structural connectivity between lobar
regions and the hippocampi.
Logistic-Regression and Random-Forest models were trained to classify AD-status based on, respectively different
isolated features and age, and feature-groups combined with age.
Results: Hippocampal features, features reflecting the functional connectivity between the medial-Pre-Frontal-
Cortex (mPFC) and the posterior regions of the DMN, and structural interhemispheric frontal connectivity
showed the strongest differences between AD-patients and controls. Structural interhemispheric parietal con-
nectivity, structural connectivity between the parietal lobe and hippocampus in the right hemisphere, and mPFC-
DMN-features, showed only an association with AD-status (p < 0.05) but not with age. Hippocampi volumes
showed an association both with age and AD-status (p < 0.05).
Smallest-hippocampus-volume was the most discriminative feature. The best performance (accuracy:0.74,
sensitivity:0.74, specificity:0.74) was obtained with an RF-model combining the best feature from each feature-
group (smallest hippocampus volume, WM volume, median GM MD, lTPJ-mPFC connectivity and structural
interhemispheric frontal connectivity) and age.
Conclusions: Brain connectivity changes caused by AD are reflected in multiple MRI-biomarkers. Decline in both
the functional DMN-connectivity and the parietal interhemispheric structural connectivity may assist sepparating
healthy-aging driven changes from AD, complementing hippocampal volumes which are affected by both aging
and AD.
(A. Ribbens).
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Table 1. Demographics for the AD and Control groups. P-values comparing age
and sex between groups were determined, respectively, using a Welch two-
sample t-test and Pearson's Chi-squared test.

AD Control p-val

Nr. 20 20

Age (mean � SD; range) 66.7 � 11.1;
(43–77) years

62.4 � 8.6;
(48–77) years

0.18

Sex (Nr. Males
(%Male))

12 (60%) 12 (60%) 1.00
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1. Introduction

In clinical practice, Magnetic Resonance Imaging (MRI) helps in the
decision making for the diagnosis of Alzheimer's disease (AD). Structural
changes, more specifically hippocampal atrophy, are currently the main
imaging criteria for supporting the diagnosis of AD, as recommended by
the 2011 National Institute on Aging – Alzheimer Association criteria for
Alzheimer's disease (AD) [1, 2]. However, due to the limited specificity of
hippocampal atrophy for AD [3], many more structural and functional
brain measures have been explored as potential biomarkers for AD
diagnosis.

Functional and structural changes in the connection between
different brain regions have been observed in Alzheimer's disease (AD),
supporting the idea of a disconnection syndrome [4]. It is hypothesized
that these alterations result, at least partially, from the progressive
impairment of fiber tract connectivity and integrity [5, 6, 7]. Structural
and functional brain connectivity have been studied using advanced MRI
techniques and have provided better insights for understanding the
biological and functional processes related to AD.

One particular field of interest is white matter (WM) integrity, which
is mainly assessed through diffusion tensor imaging (DTI), a technique
that provides directional information of the diffusion of water. In healthy
WM, water diffuses preferentially anisotropically along the WM tracts,
i.e. diffusion is mostly determined by the bundles of axons and their
orientation. Consequently, damage to the integrity of the fiber tracts
leads to changes in the diffusivity of water in the brain, making DTI an
interesting tool to assess the integrity of WM fibers [8, 9, 10, 11]. In AD, it
has been shown that the mean diffusivity of the water molecules in-
creases, while the directionality of the water diffusivity (measured by
fractional anisotropy) decreases, especially in the temporal and parietal
lobes [12, 13, 14, 15, 16]. This is confirmed by the more sensitive
diffusion kurtosis imaging (DKI) technique, which assesses the
non-gaussian component of water diffusion [17, 18, 19].

Decreased WM integrity is hypothesized to be associated with WM
degeneration. Indeed, WM volume loss in AD has been reported, with
changes being associated with memory loss and increased risk of pro-
gression from mild cognitive impairment to AD dementia [20, 21, 22,
23].

Another key research field is resting-state functional imaging
(rsfMRI), which extracts information regarding functional connectivity
between parts of the brain during spontaneous neural activity (in absence
of stimuli). The brain has several low-frequency resting-state networks,
such as the default mode network (DMN), which is an interconnected and
anatomically defined brain system preferentially active during the focus
on internal tasks such as daydreaming [24, 25]. Multiple studies reported
decreased DMN connectivity, especially in the precuneus and posterior
cingulate cortex, in the AD continuum [26, 27, 28, 29, 30].

The clinical benefits of structural and functional connectivity bio-
markers in measuring changes in AD have been well demonstrated [31,
32, 33, 34, 35]. Although the connectivity-based features were compared
with the conventional structural changes (e.g. hippocampal volumetry)
[36, 37, 38], it is still unclear which are the most relevant ones among
this multitude of features to be used as additional MR biomarkers for the
clinical evaluation of AD. In this work, we aim to determine the most
relevant MRI features that could be used in clinical practice. First, we
analyzed how the different features from T1, DTI, DKI and rsfMRI change
due to the presence of AD as well as due to normal aging in order to
validate previous findings on an independent dataset. To support the
implementation of diffusion and rsfMRI biomarkers into clinical practice,
the analysis was complemented by a comparative study of the AD/con-
trol classification performance obtained with machine learning models
trained with different sets of features as well as each feature individually.
In particular, we want to evaluate if combining diffusion and functional
features with hippocampal volumetry can help in increasing the diag-
nostic certainty of AD.
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2. Methods

2.1. Data

Cross-sectional brain MRI scans (i.e. single time point) including 3D
T1, diffusion MRI (dMRI), and rsfMRI series were obtained from 40
subjects, including 20 AD patients and 20 cognitively healthy controls
(Table 1). Controls were selected to match the AD group in terms of age
and sex distribution. All datasets were acquired in King Faisal Specialist
Hospital& Research Centre, on a 3T GEMEDICAL SYSTEMS DISCOVERY
MR750 scanner, using a 32 channels head coil.

Diffusion data was acquired usingmulti-shell HARDI (8 x b¼ 0, 25 x b
¼ 700, 45 x b ¼ 1200, 75 x b ¼ 2800, TR 7800 ms, TE 100 ms, flip angle
90�) with phase encoding along the AP (Anterior-Posterior) direction.
Datasets were complemented by 3 b ¼ 0 images and 6 b ¼ 2800 images
acquired with phase encoding along the PA (Posterior-Anterior) direc-
tion. The voxel size of diffusion data was 2.4 � 2.4 � 2.4 mm.

The rsfMRI series contained 300 volumes, acquired with a TR of 2 s,
TE 30 ms, and a flip angle of 77�. The data matrix for each volume had an
isotropic resolution of 3 mm and dimensions 64 � 64 � 42 voxels.

Finally, 3D T1 MRI series were acquired with TR 7.9 ms, TE 3.06 ms,
TI 450 ms, and flip angle 12�. The typical resolution of T1 images was
1.00 � 0.94 � 0.94 mm.

This study was approved by the ethical standards of the institutional
and/or national research ethics committee of King Faisal Specialist
Hospital& Research Centre (REF:C380/1100/41). All subjects had given
informed consent according to the declaration of Helsinki.
2.2. Clinical and neuropsychological assessment

All patients were diagnosed according to strictly applied clinical
diagnostic criteria and by consensus by at least two neurologists, expe-
rienced in neurodegenerative disorders. Diagnosis of probable AD was
based on NINCDS/ADRDA criteria, with all patients fulfilling the DSM-
IV-TR criteria as well [39, 40].

Cognition and behavior were assessed at inclusion, covering a period
of 2 weeks prior to inclusion and using a battery of assessment scales
including the Mini-Mental State Examination (MMSE) [41], Verbal
Fluency Test [42], Neuropsychiatric Inventory [43] and Geriatric
Depression Scale [44].
2.3. Brain volumetry

Normalized white matter (WM), gray matter (GM), cortical gray
matter (CGM), and left and right hippocampal volumes were obtained
from the cross-sectional icobrain dm pipeline, previously termed
MSmetrix [45] (www.icometrix.com). The method takes a T1-weighted
image as an input.

Tissue class segmentation was performed on the skull stripped T1-
weighted image using an expectation-maximization algorithm. The al-
gorithm optimizes a Gaussian mixture model on the image intensities
while correcting for field inhomogeneities, guided by the probabilistic
tissue priors. A spatial consistency model based on a Markov Random

http://www.icometrix.com


Figure 1. The z-transformed default mode network component from group-ICA in a) controls and b) patients separately. The blue ROIs indicate the core of the main
DMN clusters, obtained by region growing starting from the local maximum.
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Field is also included in the algorithm. Finally, the volumes for whole
brain (WM þ GM), GM, CGM, and WM were extracted from these
segmentations.

A fully automated algorithm was used to segment the hippocampus
by utilizing information about the anatomical shape and hippocampus
image intensities based on multiple atlases registration and label fusion
approach [46, 47]. The hippocampus segmentation was further refined
with post-processing steps using localized intensity information from the
image.

Quality control was performed for all segmentations. All volumes
were normalized to the same head size using a common reference atlas in
MNI (Montreal Neurological Institute) space [48] with an intracranial
volume of 1990 ml.

Finally, the volumes of the following structures were determined for
each subject: CGM, GM, WM, Whole Brain (WB), left and right hippo-
campi. Moreover, given the importance of the hippocampal volumes, the
following additional features were calculated, the volume of the smallest
and largest hippocampus, total hippocampi volume, and relative hippo-
campal asymmetry determined as:

rel: hippoc: asymmetry ð%Þ¼ 200�

�
�
�vLHippoc: � vRHippoc:

�
�
�

vLHippoc: þ vRHippoc:

where vLHippoc: and vRHippoc: are respectively the volumes of the left and right
hippocampi.
2.4. Diffusion data processing

DTI/DKI data were pre-processed at icometrix using an in-house
developed pipeline based on previous publications [49, 50]. This pipe-
line performs the following steps: denoising, Gibbs ringing artifacts
removal, bias field correction, motion and eddy current-induced distor-
tion correction, and correction for susceptibility-induced artifacts. In all
registrations, the reorientation of the B-matrix was taken into account,
and the resolution was optimally preserved through a single interpola-
tion step. Next, the DTI and DKI tensors were estimated using an itera-
tively reweighted linear least square fitting routine, robust for outliers.
From the DTI tensor, fractional anisotropy (FA), mean diffusivity (MD),
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radial diffusivity (RD), and axial diffusivity (AxD) were calculated. From
the kurtosis tensor, axial kurtosis (AK), radial kurtosis (RK), and mean
kurtosis (MK) were obtained.

The median values of the collected diffusion parameter images were
determined for WM and GM. For this, the WM and GMmasks, previously
obtained from the structural T1 data, were registered to the preprocessed
DWI datasets and median values in WM and GMwere determined for DTI
and DKI parameters. Given that diffusion is more isotropic in GM, the
determination of the principal diffusion direction is suboptimal, leading
to errors in axial and radial diffusion measures. Despite this, given that
median values were determined across the whole GM and CGM, these
measures are expected to be reliable. Nevertheless, in GM the main focus
should be on MD and MK.

In order to extract structural connectivity features, whole brain
tractograms were built using probabilistic tractography based on fiber
orientation distribution obtained with constrained spherical deconvolu-
tion [51]. The total count of streamlines (n ¼ 1 million) for whole brain
reconstruction was the same in all subjects. Anatomical constraints [52]
and spherical-deconvolution informed filtering [53] were also applied to
obtain more biologically accurate tract reconstructions. Connectomes
were then constructed by counting the number of streamlines linking
pairs of regions of interest: the four major lobes and the hippocampi in
both hemispheres. The number of streamlines linking pairs of regions
were used as structural connectivity features (i.e., Struct. Connect. region
1 – region 2). The Brain Connectivity toolbox was used to extract four
structural network features: global efficiency, characteristic path length,
transitivity and mean clustering coefficient [54].

2.5. Resting-state fMRI data processing

rsfMRI data were corrected for motion artifacts by rigid realignment
of the 4D time series, including slice timing correction. Each subject's
corrected rsfMRI data were then co-registered with their anatomical
data through affine registration of the mean fMRI image and the T1
weighted image. For normalization to MNI space, first, a population-
specific template was constructed from the anatomical T1 data. This
ensures a better registration with the MNI template. The template was
created based on the data from 5 patients and 5 controls, considering
the proper representation of age and gender of the whole population.



Table 2. Combined table of the results of the Welch's t-tests and ANOVA (with group and age as covariates). All p-values were adjusted for 80 multiple comparisons
using the Benjamin-Hochberg approach [56]. Significant results (p< 0.05) are marked in bold. Only significant results for the ANOVA test are shown. Full results can be
found in appendix.

Welch's t-test ANOVA

Group (AD/Control) Age

t-statistic p-val
(adjusted)

f-statistic p-val
(adjusted)

f-statistic p-val
(adjusted)

rsfMRI PCC-mPFC 3.60 0.012 11.06 0.023 0.58 0.643

lTPJ-mPFC 3.25 0.018 9.22 0.035 0.21 0.789

rTPJ-mPFC 3.91 0.010 12.66 0.023 1.99 0.345

avg. DMN connectivity 3.55 0.012 11.36 0.023 0.06 0.848

Brain volumes vol. WB 2.99 0.021 6.58 0.053 7.19 0.039

vol. WM 3.05 0.021 7.11 0.050 3.94 0.132

Hippoc. vol. left hippoc. 3.57 0.012 10.21 0.029 10.26 0.018

vol. right hippoc. 3.72 0.011 11.24 0.023 10.19 0.018

vol. smallest hippoc. 4.12 0.009 14.67 0.019 12.83 0.010

vol. largest hippoc. 3.36 0.017 8.76 0.039 9.25 0.023

total vol. hippocampi 3.83 0.011 12.15 0.023 11.57 0.012

hippoc. rel. asymmetry -2.61 0.037 5.09 0.080 2.38 0.284

dMRI median WM FA 2.50 0.045 4.33 0.111 4.89 0.091

median WM MD -2.77 0.028 5.39 0.077 14.07 0.007

median WM RD -2.76 0.028 5.30 0.077 11.89 0.011

median WM AxD -2.73 0.028 5.22 0.078 17.47 0.003

median WM MK 3.08 0.021 7.17 0.050 16.04 0.003

median WM RK 2.98 0.021 6.59 0.053 16.46 0.003

median WM AK 3.10 0.021 7.22 0.053 12.05 0.011

median GM MD -2.95 0.021 6.54 0.053 21.00 0.002

median GM RD -2.88 0.023 6.12 0.058 20.32 0.002

median GM AxD -3.05 0.021 7.23 0.050 21.21 0.002

median GM MK 2.37 0.055 3.63 0.144 7.46 0.036

median GM RK 2.15 0.082 2.80 0.206 7.95 0.032

median GM AK 2.97 0.021 6.44 0.053 9.56 0.022

Struct. network global efficiency 3.10 0.021 7.15 0.050 7.81 0.033

charact. Length path 2.55 0.040 4.37 0.111 8.01 0.032

mean clustering coef. -2.99 0.021 6.58 0.053 6.38 0.051

transitivity 2.15 0.082 2.84 0.205 6.73 0.045

Struct. connect.

temporal L – frontal L 1.75 0.156 1.53 0.343 8.48 0.030

temporal L – frontal R 2.46 0.047 4.20 0.115 4.44 0.105

temporal R – frontal R 1.34 0.284 0.71 0.549 6.77 0.045

temporal R – parietal L 3.15 0.021 7.66 0.050 3.56 0.153

temporal R – hippoc. R 2.94 0.021 6.37 0.053 5.56 0.073

parietal L – parietal R 3.36 0.016 9.49 0.035 0.72 0.584

parietal L – frontal R 2.59 0.037 5.56 0.073 0.56 0.643

parietal R – hippoc. R 2.84 0.023 8.08 0.048 0.23 0.789

frontal L – frontal R 4.27 0.009 15.42 0.019 8.26 0.031
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The affine and nonrigid registrations from anatomical data to the pop-
ulation template and from the population template to the MNI template
were then applied to the corrected rsfMRI data. Finally, the rsfMRI data
were smoothed using a Gaussian kernel with a full width at half
maximum of 6 mm.

After data pre-processing, group independent component analysis
[55] was run on the group of patients and the group of controls sepa-
rately, with various number of components. Based on visual inspection,
the results obtained with 15 components were selected considering their
ability to extract the DMN in both groups (Figure 1).

Intensity values of the DMN component were Z-transformed and a z-
threshold of 2.8 was used in both groups to optimally separate the main
clusters composing the DMN. The position of the local maximum was
defined for the four typical DMN clusters: posterior cingulate cortex
(PCC), left temporoparietal junction (lTPJ), right temporoparietal junc-
tion (rTPJ), and the medial prefrontal cortex (mPFC). Centered on these
4

local maxima, a region growing approach was applied, resulting in
equally sized regions-of-interest (ROIs) of 120 voxels. Compared to
spherical ROIs, this approach ensures the ROIs represent the center of
DMN functional activity more accurately, as illustrated in Figure 1.
Within each ROI the participant-specific functional activity (i.e. voxel
time series) was averaged, considering a band-pass filter allowing signal
fluctuations between 0.01 Hz and 0.1 Hz, i.e. the typical frequencies of
resting-state activity.

Functional connectivity was obtained by correlating the filtered
functional time-series between each two out of four ROIs and Z-trans-
forming the resulting Pearson correlation coefficients using the Fisher Z-
transformation. As such, for each connection of each participant, a Z-
score was obtained, representing the strength of connectivity. A subject's
average DMN connectivity was determined as the average absolute Z-
score across connections. In summary, the following DMN connectivity
features were extracted for each subject: avg. DMN connectivity, and



Figure 2. Scatter plots showing brain volumetry features as a function of age, grouped by status (AD/Control). Regression lines for each group are also included, with
the gray area showing the 95% confidence intervals. This figure includes the plots for the volumes of a) whole brain (WB), b) white matter (WM), c) cortical gray
matter (CGM) and d) gray matter (GM). All volumes were normalized to the same head size, using a reference atlas with an intracranial volume of 1990 ml. Features
with significant associations with the subject's group (AD/Control) are marked with an asterisk (see ANOVA results from Table 2).
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connectivity between all region pairs, i.e. PCC-lTPJ, PCC-mPFC, PCC-
rTPJ, lTPJ-mPFC, lTPJ-rTPJ and rTPJ-mPFC.

2.6. Statistical analysis

In a first step, all biomarkers were analysed separately and statistical
analysis was conducted to understand: 1) which biomarkers show the
strongest differences between AD and controls; and 2) the relative in-
fluence of aging and AD status on biomarker values. More precisely,
Welch's two-sample t-tests were used to compare differences between
groups. Secondly, a General Linear Model with age and group (i.e. AD-
status) as factors was used to analyze the associations between each
biomarker and these factors. No associations were detected between sex
and any of the collected features, and therefore sex was not included in
the generalized linear model (GLM) analysis. P-values associated with
the GLM were determined using ANOVA.

All p-values were adjusted for multiple comparisons (80 features)
using the Benjamin-Hochberg approach [56]. The described analysis was
conducted in R (version 3.6) [57].

2.7. Classification performance

On the second step, the value of each biomarker separately and in
groups to differentiate AD patients from controls was evaluated.
5

Moreover, considering that hippocampal volumes are the main imaging
criteria used in the diagnosis of AD, we aimed at understanding whether
including additional features could assist the differentiation between AD
subjects and healthy controls.

To assess the classification performance of each biomarker individ-
ually, multiple logistic regression classifiers were trained using each 2-
input features: the biomarker being tested and age. For the analysis of
biomarker groups, random forest (RF) [58] classifiers were trained with
different sets of features: brain volume features, hippocampal features,
diffusion features, structural connectivity features, rsfMRI features, and
all features combined. Age was also included in all feature groups. Here,
we refer the “structural connectivity features” as the structural connec-
tivity between lobes and hippocampi, and “rsfMRI features” as the
functional connectivity in the DMN. We chose a higher spatial resolution
of the networks compared with connectomics from the literature, in
order to limit the number of features (n ¼ 80) due to small sample size.

Training and Testing of the classifiers were performed following a
nested cross-validation scheme where the dataset was divided into 10
subsets with 4 examples each. Then at each time, one of those subsets was
excluded and the performance evaluated using the remaining dataset,
following 9-fold cross-validation. This allowed assessing not only the
mean performance of each classifier but its variability.

Besides the sets of features mentioned above, an additional subset of
features was tested containing age and the best feature from each group



Figure 3. Scatter plots showing hippocampal volumetric features as a function of age, grouped by status (AD/Control). Regression lines for each group are also
included, with the gray area showing the 95% confidence intervals. This figure includes the plots for a) the total hippocampal volume, the volumes of the b) smallest
and c) largest hippocampus, d) the relative hippocampal asymmetry and the volumes of e) the left and f) right hippocampus in each patient. All volumes were
normalized to the same head size, using a reference atlas with an intracranial volume of 1990 ml. Features with significant associations with the subject's group (AD/
Control) are marked with an asterisk (see ANOVA results from Table 2).
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(hippocampal, brain volumes, diffusion, structural connectivity and
rsfMRI). The selection of the best feature per group was made based on
the feature importance ranking provided by the “Mean Decrease in Ac-
curacy” metric. This metric is intrinsic to the random forest algorithm
and uses the Out-Of-Bag sample of each tree for assessing the perfor-
mance drop that occurs when the values of the feature being tested are
shuffled between examples. The more important features are, the more
they are used in the different nodes of a tree and, therefore, the greater
the accuracy drop when their values change.

3. Results

3.1. Statistical analysis

Welch's t-test and ANOVA results are included in Table 2, where only
features with significant results were included. These results are sup-
ported by Figures 2, 3, 4, 5, 6, and 7, showing the scatter plots of each
feature as a function of age. Due to the large number of structural con-
nectivity features, only the scatter plot for the most relevant feature was
included and a representative plot showing the significantly affected
connections is shown to summarize the results. The ANOVA results of
Table 2 for each feature include, as factors, the age and the disease status
(AD/Control) of each subject. Sex was not included in the GLM since no
feature showed a significant association with sex.

Overall, the results show that 33 out of the 80 tested features showed
a significant difference between AD and Controls or an association with
AD-status. From all the features analyzed, the ones derived from the
hippocampi volumes, structural connectivity between left and right
6

frontal lobes (frontal CGM L-frontal CGM R), as well as the rsfMRI fea-
tures that include the mPFC and the average DMN functional connec-
tivity, showed the strongest differences between AD and the age-matched
healthy controls.

Some of the features tested showed only an association with disease
status. This is the case for the functional connectivity features that
include the mPFC and structural connectivity between the left and right
parietal lobes, as well as between the parietal lobe and hippocampus in
the right hemisphere. Features related to hippocampal volume showing
significant differences between AD subjects and controls were also
significantly affected by aging. In these features, where both disease
status and age are significant factors, we see that the presence of Alz-
heimer's accentuates the changes associated with aging.

Regarding the hippocampal features, the results indicate that in AD
the left and right hippocampi are affected differently. In most cases, the
left hippocampus is the most affected structure. However, this is not
always the case, and therefore the volume of the smallest hippocampus
is the feature showing the most pronounced differences between AD
and controls. Regarding the other structural features analyzed, the re-
sults seem to indicate that AD mainly affects the WM. The volume of
GM and CGM was not significantly different between AD patients and
controls.

Finally, the diffusion features were the ones that had the greatest
association with the age of the subjects, namely the diffusivity in GM
(MD, RD, AxD). Furthermore, 5 features showed only an association with
age and no group differences: median MK and RK in GM, structural
network transitivity and intra-hemispheric structural connectivity be-
tween the frontal and temporal lobes.



Figure 4. Scatter plots showing each feature as a function of age, grouped by status (AD/Control). Regression lines for each group are also included, with the gray area
showing the 95% confidence intervals. This figure includes the plots for the median values in white matter (WM) of a) Mean Diffusivity (MD), b) Axial Diffusivity
(AxD), c) Radial Diffusivity (RD), and g) Fractional Anisotropy (FA) and in gray matter (GM) of d) MD, e) AxD, f) RD and h) FA. Features with significant associations
with the subject's group (AD/Control) are marked with an asterisk (see ANOVA results from Table 2).
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Due to the intrinsic differences of the two statistical tests used some
features have what might seem to be discrepant results between ANOVA
and Welch's t-test in terms of significance. This can be explained by
several factors, namely: the additional degrees of freedom of the GLM,
the discrete vs continuous nature of age and AD-status, the hard signifi-
cance threshold and the non-linear aspect of the Benjamin-Hochberg
correction for multiple comparisons.

3.2. Automatic classification

Figure 8 shows the classification performance obtained using logistic
regression classifiers trained with each feature together with age, and
random forests trained with different subsets of features (all features,
brain volumes, hippocampal, rsfMRI, and diffusion features). The results
7

show that the hippocampal features are the features that best discrimi-
nate AD patients from controls, confirming their importance in AD
diagnosis. From those, the highest discriminative power was obtained by
the volume of the smallest hippocampus (mean accuracy: 0.74, mean
sensitivity: 0.69, mean specificity: 0.78). The best overall performance
was obtained when combining the best features from each group, i.e.
smallest hippocampus volume, WM volume, median GM AxD, lTPJ-
mPFC functional connectivity, and structural connectivity between
frontal CGM L-frontal CGM R. This feature combination achieved a mean
accuracy of 0.74, mean sensitivity of 0.74, and specificity of 0.74. For the
models trained with all features, the performance was not as high (mean
accuracy: 0.68, mean sensitivity: 0.64, mean specificity: 0.72), which
might be explained by the noise introduced by the non-informative fea-
tures combined with the limited size of the dataset used.



Figure 5. Scatter plots showing diffusion kurtosis features as a function of age, grouped by status (AD/Control). Regression lines for each group are also included, with
the gray area showing the 95% confidence intervals. This figure includes the plots for the median values in white-matter (WM), of a) Mean Kurtosis (MK), b) Axial
Kurtosis (AK), and c) Radial Kurtosis (RK) and in gray matter (GM) of d) MK, e) AK and f) RK. Features with significant associations with the subject's group (AD/
Control) are marked with an asterisk (see ANOVA results from Table 2).
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Besides the hippocampal features, the WM volume was also an
important biomarker to identify AD patients (mean accuracy: 0.68, mean
sensitivity: 0.64, mean specificity: 0.71) but not the GM or CGM volumes.

In terms of rsfMRI connectivity features, the lTPJ-mPFC connectivity
was the most important feature (mean accuracy: 0.64, mean sensitivity:
0.61, mean specificity: 0.68).

The most discriminative structural connectivity feature was the
interhemispheric frontal connectivity (mean accuracy: 0.69, mean
sensitivity: 0.70, mean specificity: 0.68) and came just after the hippo-
campal features in terms of ranking. From the subgroup of network
features, the global network efficiency provided the best results but only
a mean accuracy of 0.62 was obtained with this feature.

Finally, regarding the global diffusion features, the best performance
was obtained with the median GM MD with a mean accuracy of 0.64.

4. Discussion

In this work, we replicated previous findings on volumetric and
connectivity features for measuring changes due to AD on an indepen-
dent dataset. Structural and functional brain changes caused by AD seem
to be reflected in many of the biomarkers analyzed. Our contribution was
to provide a clear overview of the value of multiple structural and con-
nectivity features for diagnosing AD and differentiating AD from healthy
aging. In this context, our results showed that differences in structural
connectivity (between left and right temporal lobes and between the
right hippocampus and right temporal lobe) and functional connectivity
(in the DMN) seem to be related only to the disease status and not the age
8

of the subjects, in contrast to the hippocampal features. Then, feature
ranking analysis demonstrated that the most promising biomarkers seem
to be: the volume of the smallest hippocampus, WM volume, median GM
AxD, structural interhemispheric frontal connectivity and functional
lTPJ-mPFC connectivity.

At present, clinical use of MRI in AD is mostly focused on the
assessment of brain atrophy, namely in the hippocampus [5, 6]. How-
ever, brain changes in AD extend well beyond the hippocampal region.
Overall, compared to healthy controls, AD patients showed reduced
functional brain connectivity, namely between mPFC and the posterior
regions of the DMN, reduced interhemispheric connectivity specially in
the frontal lobe, reduced WM volume, smaller and more asymmetric
hippocampi, higher diffusivity in WM and GM and reduced diffusion
kurtosis in both WM and GM.

In terms of structural differences, this study confirms the importance
of the hippocampal volumes in AD, a well-established biomarker of this
disorder [1, 2]. Interestingly, among the different evaluated features,
hippocampal asymmetry was the least relevant. As indicated by the
meta-analyses performed by Feng Shi et al. [59], hippocampal asym-
metry is observed in a similar extent for healthy controls and AD, while it
is more accentuated in Mild Cognitive Impairment (MCI). This seems to
suggest that in the prodromal state of AD, atrophy is mostly lateralized
but as the disease progresses both the left and right hippocampi are
affected, although our results showed increased hippocampal asymmetry
over age.

Regarding WM and GM volume differences in AD, previous studies
[60] showed as well that the differences in WM volume between AD and



Figure 6. Scatter plots showing functional connectivity features as a function of age, grouped by status (AD/Control). Regression lines for each group are also
included, with the gray area showing the 95% confidence intervals. This figure includes the plots for the connectivity between pairs of regions: a) left Temporo-Parietal
Junction (lTPJ) and medial Prefrontal Cortex (mPFC), b) right Temporo-Parietal Junction (rTPJ) and mPFC, c) Posterior Cingulate Cortex (PCC) and mPFC, d) lTPJ and
rTPJ, e) PCC and lTPJ, f) PCC and rTPJ. The plots of g) the average default mode network (DMN) connectivity and h) a glass-brain representation of the DMN nodes
highlighting the connections significantly different between AD and controls are also included. In plots a) to g), features with significant associations with the subject's
group (AD/Control) are marked with an asterisk (see ANOVA results from Table 2).
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controls are more accentuated than GM volume differences. Neverthe-
less, in the work of Guo et al. significant total GM volume differences
were measured. Moreover, VBM analysis showed GM atrophy is mostly
localized in the middle and superior temporal gyrus, superior frontal
gyrus, inferior parietal lobule, parahippocampal gyrus, insula, caudate
head, and thalamus. This suggests that CGM parcellation together with
the segmentation of deep gray matter structures may be essential to
retrieve discriminant GM atrophy features.

The results obtained with the DMN connectivity biomarkers derived
from rsfMRI are in line with previous studies [26, 27, 28, 29, 30, 61],
supporting the idea that AD is a disconnection syndrome [4]. However,
9

for introduction of rsfMRI in clinical practice, different challenges in
terms of physiological noise reduction, standardization and training need
to be addressed [62].

In terms of the diffusion biomarker, the elevated Gaussian diffusivity
(MD, AxD, RD) and decreased Kurtosis (MK, AK, RK) seen inWM, indicate
a loss of structure in WM and reflect neurodegeneration compatible with
AD. Despite the differences in diffusivity parameters, WM FA was less
pronounced relative to the other diffusivity parameters. These results are
in agreement with the previous literature [63, 64] and reflect the fact that
both axial and radial diffusivity show increased values in AD. Moreover,
the reduced kurtosis values in AD patients, although not specific, may



Figure 7. Scatter plots showing structural network features and the most important structural connectivity feature as a function of age, grouped by status (AD/
Control). Regression lines for each group are also included, with the gray area showing the 95% confidence intervals. This figure includes a) the global efficiency, b)
mean clustering coefficient, c) transitivity, d) characteristic path length, e) structural connectivity between frontal cortical gray matter in the left and right hemisphere
(frontal CGM L – frontal CGM R) and f) the representative plot showing the structural connectivity features with significant associations with the subject's AD-status
(blue lines) and significant associations with age (green lines) (see ANOVA results from Table 2).
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reflect reduced compartmentalization (i.e. tissue complexity) as a result of
myelin breakdown and/or axonal degeneration.

In terms of structural connectivity, our results showed reduced
connectivity between left and right lobes in frontal and parietal regions.
This is in line with a previous study also showing left and right dys-
connectivity in patients with AD compared with healthy controls [35].
Disconnection of frontal and parietal areas has been shown to
contribute to impaired attention in early AD [65]. Reduced efficiency of
the structural network has been demonstrated in patients with AD,
which we could reproduce in our study. The reduced global efficiency
has been linked to performance in both memory and executive tasks
[66, 67].

In terms of classification performance, the results obtained are in line
with the literature [68] and show the importance of feature selection,
namely in situations where the number of features is in the same order as
the number of examples [69]. A higher classification performance would
be expected with a larger training dataset and possibly if additionally
FDG-PET biomarkers would be used [68]. For this particular dataset, only
a very small improvement in performance was obtained when combining
multiple features from different modalities in comparison to the classifier
trained just with the volume of the smallest hippocampus and age.
Nevertheless, the use of additional biomarkers from rsfMRI and DTI may
not only be important to discriminate AD from healthy aging but also to
differentiate AD from other types of dementia, such as frontotemporal
dementia [70] or vascular dementia [71].

One of the main limitations of the current study is the small sample
size. This had an impact on the number of connectivity features that
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could be explored. More precisely, rsfMRI features were restricted to the
DMN and the structural network analysis used a coarse CGM parcellation.
In addition, only a minor increase in performance was obtained when
comparing the use of hippocampus volume alone with the combination
of the best features from each group. Similarly to the poor performance
obtained with the Random Forest trained with all features, this should
come mainly as a result of the limited size of the dataset used here. We
believe however that our results on a small sample size are still valid as
we could reproduce previous findings from the literature, especially
those obtained on large datasets such as ADNI on brain connectivity [32,
33, 34, 35]. Another limitation is that sex distribution of our AD group
(40% female subjects) is not representative of the distribution found in
the general AD population (around 2/3 of the AD population are
women). This, in combination with the sample size, could explain why
we did not find any associations between sex and any of the collected
features. Finally, we limited our study in the discrimination between
patients with AD and healthy controls, without including MCI patients.
Previous studies have already demonstrated that DTI and rsfMRI features
helped also in detecting patients with MCI [72]. Nevertheless, neuro-
imaging is currently used in clinical practice to confirm the diagnosis of
AD in patients with suspected neurodegenerative disorders. Because our
motivation was to determine if DTI and rsfMRI biomarkers would be
relevant for clinical use, we did not validate their relevance for patients
with MCI. Future research could perform similar analysis as ours on a
larger dataset, including MCI patients, for early diagnosis applications
that would become essential once disease-modifying treatment will be
available.



Figure 8. Classification performance for distinguishing AD patients from healthy controls obtained for each feature using univariate logistic regression and for
different subsets of features using random forests. Bars show the mean performance values þ - SD. Features used in the subset “Best from each group” are marked with
an asterisk.
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5. Conclusion

Clinical use of MRI in AD is currently restricted to the assessment of
brain atrophy. However, inclusion of structural and functional connec-
tivity biomarkers might contribute to a higher diagnostic accuracy and
may provide a more complete picture of the clinical status of each pa-
tient. From the biomarkers evaluated, some of the most promising to be
used together with hippocampal atrophy are: WM volume, structural
interhemispheric frontal connectivity, median GM AxD and functional
lTPJ-mPFC connectivity.
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