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Abstract

Minimizing the toxicity of radiotherapy is challenging. We investigated the effects of a phos-

phodiesterase type-5 inhibitor (PDE5I) on the urinary bladder after pelvic radiotherapy.

Eight rats were assigned to each group (group 1: control; group 2: radiation; group 3: radia-

tion plus PDE5I). Radiation dose was 10 Gy/one fraction. Udenafil (20 mg/kg, daily for 4

weeks) was administered in group 3. Cystometry was performed 4 weeks after treatment,

followed by real-time PCR for PDE5, vascular endothelial growth factor (VEGF), and endo-

thelial nitric oxide synthase (eNOS) mRNA, western blotting for PDE5, cyclic GMP-depen-

dent protein kinase (PRKG), VEGF164, Akt, eNOS and NADPH oxidase (NOX)-2 proteins,

and immunohistochemistry for eNOS. The expression of both VEGF mRNA and eNOS

mRNA was higher in group 3 than in group 2. VEGF and eNOS protein expression improved

with PDE5I treatment. Akt protein phosphorylation was higher in group 3 than in group 2, but

NOX-2 protein expression was lower in group 3 than in group 2. Immunohistochemistry

showed that the mean density of arterioles expressing eNOS was higher in group 3 than in

group 2. Cystometry revealed that the intercontraction interval was remarkably longer in

group 3 than in group 2 but that the maximal voiding pressure was higher in group 2 than in

group 3. Daily treatment with a PDE5I after radiotherapy may prevent bladder storage dys-

function, potentially due to its effects on vasodilation and angiogenesis and through minimiz-

ing tissue oxidative damage by means of the VEGF/Akt/eNOS pathway.

Introduction

Radiotherapy is essential for the nonsurgical curative treatment of cancer. However, in the

case of pelvic radiotherapy, a decrease in urinary function due to the toxicity of radiotherapy

should be considered [1]. Over 20 years, hypofractionated external beam radiotherapy has

been used to treat prostate cancer [2]; however, urinary toxicity remains a bothersome compli-

cation after radiotherapy [3]. Radiotherapy-induced genitourinary adverse effects are scaled

from 0 to 5 according to the Radiation Therapy Oncology Group (RTOG) criteria [4],
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including symptoms and signs such as frequency, dysuria, haematuria, and telangiectasia. In a

previous study investigating the effect of radiotherapy on localized prostate cancer with over 5

years of follow-up, less than 3% of cases had an RTOG grade of 3 or more; however, acute low-

grade (grade 1 or 2) genitourinary morbidity was over 80%, and late low-grade morbidity was

over 60% regardless of radiation dosage [5]. Underlying the pathophysiology of radiation-

induced cystitis includes progressive endarteritis that leads to poor tissue oxygenation, for

which hyperbaric oxygenation is indicated to treat bladder complications [6].

Meanwhile, phosphodiesterase type-5 inhibitors (PDE5Is) have been a first-line treatment

option for erectile dysfunction. Among the beneficial actions of PDE5Is on tissues, neovascu-

larization is expected to contribute to tissue survival by minimizing tissue damage to stress [7].

Nomiya et al. suggested that PDE5Is could be prophylactic drugs for bladder dysfunction by

preventing chronic bladder ischaemia [8]. However, there is a lack of evidence for the effect of

PDE5Is on urinary bladder function after pelvic radiation therapy. Therefore, we aimed to

identify how PDE5Is affect the urinary bladder after pelvic irradiation in an animal model.

The primary objective of the study was to observe molecular changes, including endothelial

nitric oxide synthase (eNOS) activity and relevant protein activity, and the secondary objective

was to examine the cystometric effects of PDE5Is. We hypothesized that eNOS and relevant

protein activity would deteriorate after radiotherapy and that PDE5I treatment could amelio-

rate hypoxic tissue damage via an eNOS-related molecular pathway.

Materials and methods

Ethical approval

All experimental protocols were approved by the Institutional Animal Care and Use Commit-

tee at St. Vincent’s Hospital, The Catholic University of Korea (approval no. 17–01; date: Jan

26, 2017). All experiments were performed in the Laboratory at St. Vincent’s Hospital under

standard conditions. The experiment adhered to the Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines [9]. All surgery was performed under sodium pentobarbital

anesthesia, and all efforts were made to minimize suffering.

Experimental setting preparation

Twenty-four male Wistar rats (14~15 weeks old, 300~350 g, KOATECK, Pyeongtaek, Korea)

were used. The animals were housed in standard polypropylene cages in a temperature-con-

trolled room (25˚C ± 1˚C) with a 12:12-h light/dark cycle (lights on at 7 AM) and were allowed

free access to food and water for 1 week of acclimation. Eight rats were assigned to each group

(group 1 as the control group, group 2 as the radiation group, and group 3 as the radiation

plus PDE5I group). We checked animal well-being state twice in a day (during feeding animals

and cleaning of cages at am 8:00, and during medication via nasogastric tube at pm 1:00). The

recommended radiation dosage for prostate cancer (for both primary treatment and salvage

treatment) is 70~80 Gy [10]. To translate this dosage to the experimental setting, we used the

biological effective dose and alpha-to-beta ratio. We intended one fraction exposure, and the

alpha-to-beta ratio for prostate cancer is known to be 1.5 [11]; therefore, the biological effective

dose can calculated as ‘d2/1.5+d’ (d means dose per fraction). Using this logic, we applied 10.0

Gy/one fraction (biological effective dose of 76.7 Gy) to the prostate and urinary bladder in

groups 2 and 3. Before pelvic irradiation, 30 mg/kg pentobarbital was administered via intra-

peritoneal injection. Each anaesthetized rat was placed in a plastic enclosure made to the size

of the rats (Fig 1). Then, radiation was targeted to the prostate and bladder. Rats in group 1

were anaesthetized but not exposed to radiotherapy.

PLOS ONE PDE5I in remodeling rat bladder after radiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0242006 November 9, 2020 2 / 12

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: This study was funded by

Dong-a ST Co., Ltd, who had had no role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. This

does not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0242006


In group 3, 20 mg/kg udenafil (Zydena, Dong-A, Seoul, Korea) was administered daily via

nasogastric tube for 4 weeks beginning one day after radiation treatment. Instead of udenafil,

saline was administered daily for 4 weeks in groups 1 and 2.

Cystometry

Four weeks after radiation exposure, all rats were anaesthetized with intraperitoneal pentobar-

bital (30 mg/kg). A 24-gauge needle connected to a polyethylene catheter was inserted into the

dome of the urinary bladder after laparotomy. Saline was continuously infused (0.1 ml/min)

into the bladder with a KD Scientific syringe pump (KD Scientific Inc., Holliston, MA, USA),

and the intravesical pressure was checked with a pressure transducer (Harvard Apparatus,

Holliston, MA, USA). The intercontraction interval (ICI), maximum voiding pressure (MVP),

and baseline pressure were measured.

Immunohistochemistry (IHC)

After cystometry, bladder tissues were obtained for IHC, RNA extraction, and western blot-

ting. Then all rats were sacrificed using CO2 inhalation. The urinary bladder was equally

divided by sagittal incision after total cystectomy; half of the bladder was cryoprotected for

measurements of mRNA and protein expression, and the other half of the bladder was imme-

diately fixed with 10% formalin. Fixed tissues were embedded in paraffin, cut into 4-μm-thick

sections, and placed on glass slides treated with poly-L-lysine. The specimens were incubated

at 58˚C, deparaffinized with xylene, and sequentially rehydrated in 100%, 90%, 80%, and 70%

alcohol solutions. To evaluate endothelial function and discriminate the vascular structure

from the surrounding structures, we used a primary antibody targeting endothelial nitric

Fig 1. Preparation for radiation treatment. Before radiation treatment, a rat was anaesthetized in a plastic cage of the appropriate size. After

simulation using computed tomography, the alignment was confirmed using laser beam as shown in the figure. The irradiation source was 6

MV photon without filter, and dose rate was 300 monitor unit per minute.

https://doi.org/10.1371/journal.pone.0242006.g001
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oxide synthase (eNOS; 1:100; Thermo Fisher Scientific, Waltham, MA, USA). Heat-induced

antigen retrieval was applied, where tissues were boiled in a citrate buffer solution by heating

in a microwave for 2 min [12]. The ImmPress kit (Vector Laboratories, Burlingame, CA, USA)

was used for secondary antibodies where Tris-buffered saline was used to wash out the speci-

men. A 3,3-diaminobenzidine tetrahydrochloride (DAB) kit was used for visualisation. Three

sections from each rat were analysed. Three sections from each rat were randomly chosen and

analyzed using 400x magnification by a pathologist who was blinded to the groups. Therefore,

24 samples for each group and total 72 samples were investigated. A semiquantitative evalua-

tion of eNOS expression was performed by measuring staining intensity (0, 1+, 2+, 3+, or 4+)

in a fixed field. A semiquantitative evaluation for submucosal venous engorgement (0, 1+, 2+,

3+, or 4+) was also performed in a fixed field: no venule as ‘0’; venules having comparable size

with adjacent arterioles as ‘1+’; 1~2 venules larger than adjacent arterioles as ‘2+’; 3~4 venules

larger than adjacent arterioles as ‘3+’; numerous venules larger than adjacent arterioles as ‘4+’.

RNA extraction

RNA was extracted using TRIzol solution (Ambion; Thermo Fischer Scientific), and RT-PCR

was performed using the conditions described in the S1 Table. We used the glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) gene as a housekeeping gene (National Center for Bio-

technology Information accession no. NG 028301).

Western blot analysis of protein expression

The procedure used for western blotting was similar to the method reported in a previously

published study [13]. A portion of each bladder was frozen and homogenized in protein

extraction buffer (Intron, Seongnam, Korea) containing protease inhibitors (Sigma, MO,

USA). The homogenates were centrifuged at 12,000 rpm for 20 min. The total protein concen-

tration in the supernatant was measured using the Bradford assay (Bio-Rad, CA, USA). Equal

amounts of protein (10 μg) were electrophoretically separated on 10% SDS-PAGE gels and

transferred to a PVDF membrane (Bio-Rad, CA, USA). The membrane was blocked with 5%

skim milk (Bio-Rad, CA, USA) containing 0.1% Tween 20 for 1 h and incubated with antibod-

ies against PDE5 (1:1000, Abcam, Cambridge, UK), cyclic GMP-dependent protein kinase

(1:1000, PRKG; LifeSpan BioSciences, WA, USA), vascular endothelial growth factor 164

(VEGF164; 1:1000, Abcam, Cambridge, UK), Akt (1:1000, Cell Signaling, Massachusetts, USA),

phosphorylated (p-) Akt (1:1000, Cell Signaling, Massachusetts, USA), eNOS (1:1000, Abcam,

Cambridge, UK), and β-actin (1:1000, Abcam, Cambridge, UK) overnight. The secondary

antibody was incubated with the membrane at room temperature for 1 hour. The expression

of each protein was finally confirmed using enhanced chemiluminescence (ECL; Bio-Rad, CA,

USA). The results of the ECL reaction were measured using a LAS-4000 mini luminescent

image analyser (GE Healthcare, IL, USA). The results were quantified using densitometry.

Statistical analysis

SPSS (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk,

NY: IBM Corp.) was used for the statistical analysis. The number of experimental animal

needed (total twenty-four, eight for each group) was determined based on the ‘resource equa-

tion’ approach because of the exploratory nature of the current study [14]. The Kruskal-Wallis

test was performed to compare the 3 groups, and the Mann-Whitney test with Bonferroni’s

correction was performed as the post hoc test. Statistically analysed data are presented as the

means ± standard errors. Values of p< 0.05 are considered statistically significant.
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Results

mRNA expression

The mean PDE5, VEGF and eNOS mRNA expression differed among the three groups

(p = 0.001, p<0.001 and p = 0.016, respectively) (Fig 2A). PDE5 mRNA expression tended to

be lower in the group administered PDE5I for 4 weeks after radiation (group 3) than in radia-

tion treatment groups (group 2 vs. group 3, p = 0.084 after post hoc test). Radiation treatment

significantly reduced the expression of VEGF mRNA expression; however, VEGF mRNA

expression was maintained when daily PDE5I treatment was applied (Fig 2B). The radiation

treatment group (group 2) showed a trend towards lower eNOS mRNA expression than the

control group (group 1 vs group 2, p = 0.063 after post hoc test), but daily PDE5I treatment

lessened this decrease (group 2 vs. group 3, p = 0.063 after post hoc test) (Fig 2C).

Western blot analysis

The mean expression of PDE5 protein was lower in the radiation treatment group (group 2)

than in the control group (group 1), but continuous PDE5I treatment elevated the mean

expression of PDE5 (group 2 vs. group 3, p = 0.015 after post hoc test) (Fig 3A). PRKG expres-

sion also tended to be lower in the radiation treatment group (group 2) than in the control

group (group 1); however, daily administration of the PDE5I significantly increased PRKG

expression (group 2 vs. group 3, p = 0.021 after post hoc test; Fig 3B). Furthermore, radiation

exposure significantly reduced VEGF protein expression, but PDE5I treatment reversed the

Fig 2. RT-PCR for evaluating mRNA expression in the urinary bladder. Daily PDE5I administration further

decreased PDE5 mRNA expression (p = 0.084, group 2 vs. group 3), although the difference did not reach statistical

significance (A). Daily PDE5I administration ameliorated the decrease in VEGF mRNA expression (B) and it tended

to lessen the decrease in eNOS mRNA expression (C). The p-value in each box was calculated by the Kruskal-Wallis

test to compare the three groups. The asterisk (�) indicates p<0.05 after the post hoc test; the triangle symbol (Δ)

indicates 0.05< p< .10 after the post hoc test. C (group 1): control, R (group 2): radiation, R+U (group 3): radiation

plus udenafil.

https://doi.org/10.1371/journal.pone.0242006.g002
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effects of radiation on VEGF protein expression (group 2 vs. group 3, p = 0.030 after post hoc

test; Fig 3B) (Fig 3C). NOX-2 levels were higher in the radiation group (group 2) than in the

control group (group 1) but tended to decrease after PDE5I treatment (p = 0.063 after post hoc

test). (Fig 3D). The mean ratio of p-Akt to total Akt expression was significantly higher in the

group treated with the PDE5I (group 3) than in the radiation treatment group (group 2)

(group 2 vs. group 3, p = 0.015 after post hoc test) (Fig 3E). Finally, eNOS expression was also

higher in group 3 than in group 2 (p = 0.001 after post hoc test) (Fig 3F).

Histology and IHC

At a glance (Fig 4A–4C, x40), we found differences in submucosal thickness among the three

groups. Upon higher magnification (Fig 4D–4F, x400), the mean density of eNOS in the sub-

mucosal arterioles was lower in group 2 than in groups 1 and 3. Semiquantitative analysis

revealed that eNOS density was the lowest in group 2 (p<0.001) and that eNOS density higher

in group 3 than in group 2 (p = 0.008 after post hoc test) (Fig 4G). Compared to the control

group, groups 2 and 3 more frequently exhibited engorged submucosal veins, but this engorge-

ment was more noticeable in group 2 than in group 3 (Fig 4D–4F and 4H).

Cystometry

The mean duration of the ICI in groups 1, 2, and 3 was 130.0 s, 76.9 s, and 113.8 s, respectively

(p = 0.001; Fig 5), revealing that daily PDE5I treatment elongated the ICI after radiation ther-

apy (p = 0.005 after post hoc test). Finally, the MVP was the highest in group 2 but was reduced

by PDE5I treatment (p = 0.015 after post hoc test).

Fig 3. Western blotting analysis of PDE5, PRKG, VEGF, NOX2, Akt, and eNOS protein expression. Daily PDE5I

administration after radiation therapy ameliorated the decrease in PDE5 (A), PRKG (B), VEGF (C), p-Akt to Akt ratio

(E), and eNOS (F). PDE5I administration tended to lessen the level of NOX-2 after radiation therapy (D). The p-value

at the top of each box was calculated by the Kruskal-Wallis test to compare the three groups. The asterisk (�) indicates

p< 0.05 after the post hoc test; the triangle symbol (Δ) indicates 0.05< p< 0.10 after the post hoc test. C (group 1):

control, R (group 2): radiation, R+U (group 3): radiation plus udenafil.

https://doi.org/10.1371/journal.pone.0242006.g003
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Fig 4. IHC for eNOS and overall histology. A, B, and C show group 1, group 2, and group 3, respectively, at 40x magnification (A-C). Scale bar

at the corner of A-C: 200 μm. Arteries in each group were further magnified within the box (D-F). Scale bar at the corner of D-F: 20 μm. In

group 2 (E), a thick oedematous submucosal layer and many engorged veins (blue arrow) were observed. PDE5I administration ameliorated the

decrease in eNOS staining density of arterioles (red arrow) (G), as well as the increase in submucosal venous engorgement (H). The p-value in

each box was calculated by the Kruskal-Wallis test to compare the three groups. The asterisk (�) indicates p< 0.05 after the post hoc test. Blue

arrow: venule, Red arrow: arteriole. C (group 1): control, R (group 2): radiation, R+U (group 3): radiation plus udenafil.

https://doi.org/10.1371/journal.pone.0242006.g004

Fig 5. Cystometry. The ICI was shorter in group 2 than in group 1 but was improved with PDE5I administration.

MVP was the highest in group 2, but PDE5I administration ameliorated the pressure. The p-value at the top of each

box was calculated by the Kruskal-Wallis test. The asterisk (�) indicates p< 0.05 after the post hoc test. C (group 1):

control, R (group 2): radiation, R+U (group 3): radiation plus udenafil.

https://doi.org/10.1371/journal.pone.0242006.g005
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Discussion

PDE5 is expressed in many tissues, including the corpus cavernosum, urinary bladder, and

prostate [15]. PDE5 breaks cyclic guanosine monophosphate (cGMP); therefore, PDE5Is block

the degradative action of the cGMP-specific PDE5 in the smooth muscle cells lining the vessels

supplying relevant tissues [16], thereby prolonging the action of cGMP and relaxing the

smooth vasculature. Moreover, previous studies have shown that PDE5Is activate eNOS and

generate nitric oxide (NO) [17, 18]. NO regulates the degree of vascular smooth muscle cell

contraction, mainly by stimulating soluble guanylyl cyclase () to produce cGMP. Vasodilation,

a beneficial action of PDE5Is, is therefore a focus of research on the function of PDE5Is. The

activated NOS pathway not only contributes to vasodilation but also maintains adenosine tri-

phosphate (ATP) synthase and calcium homeostasis via the PRKG pathway, which eventually

contributes to cell survival [19]. In addition, many studies have demonstrated that PDE5Is

stimulate angiogenesis by upregulating VEGF expression [20].

As described previously, endarteritis and decreased tissue oxygenation are key pathophysio-

logical features of radiation toxicity that increase superoxide formation, resulting in tissue

inflammation and fibrosis [6, 21]. A previous animal study emphasized that nicotinamide ade-

nine dinucleotide phosphate (NADPH) oxidase activation is closely associated with radiation

toxicity [22].

Based on the aforementioned evidence, we investigated the effects of a PDE5I on the uri-

nary bladder after radiation exposure. Despite radiation lowering the expression of PDE5

mRNA in the present study, chronic PDE5I treatment caused an accumulation of PDE5 pro-

tein, resulting in lower PDE5 mRNA expression in group 3 than in group 2. In contrast,

PRKG expression was significantly higher in group 3 than in group 2.

VEGF mRNA expression was greatly upregulated in response to PDE5I treatment. As a

result, VEGF protein expression in radiation-exposed bladder tissue was significantly higher

in the group given PDE5I treatment. Among the various isoforms of VEGF, we examined

VEGF164. In the myocardium, the absence of VEGF164 impaired myocardial angiogenesis,

leading to ischaemic cardiomyopathy [23]. Furthermore, VEGF164 is essential to glomerular

angiogenesis and renal arteriogenesis in postnatal mice [24]. However, VEGF expression is

not always favourable. In a rat model of cyclophosphamide-induced cystitis, VEGF164 seems to

be overexpressed [25]; thus, several researchers have investigated the effects of anti-VEGF

treatment on bladder pain and voiding function in a rat model of cyclophosphamide-induced

cystitis. Lai et al. emphasized that systemic anti-VEGF treatment was not effective in normaliz-

ing the increased urinary frequency or small voided volumes that developed after cyclophos-

phamide-induced cystitis but may be effective for pelvic pain [26]. In another study

investigating the effect of low-intensity shock wave therapy on erectile dysfunction, the authors

concluded that upregulated VEGF and eNOS expression were key therapeutic mechanisms

(angiogenesis) for enhancing erectile function [27]. Therefore, although isoforms of VEGF

may act differently in different circumstances, VEGF164 is associated with angiogenesis and

may be involved in tissue remodelling. These issues regarding the effect of VEGF expression

on the urinary bladder require further investigation. In the present study, radiation treatment

of the urinary bladder decreased VEGF164 expression at 4 weeks after radiation exposure, but

daily PDE5I treatment upregulated VEGF164 expression.

In the present study, PDE5I treatment tended to upregulate eNOS mRNA expression. Both

IHC and western blotting revealed that eNOS protein expression was significantly increased

with PDE5I treatment (Figs 2C, 3F and 4). As mentioned before, activation of eNOS releases

NO, which is essential to PRKG activation. However, superoxide free radicals decrease NO

bioavailability [28]. In the present study, NOX-2 (gp91-PHOX, an isoform of NADPH oxidase
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that is known to participate in an enzyme complex generating superoxide anion) was signifi-

cantly elevated after radiation exposure, but PDE5I treatment ameliorated the increase in its

expression. PDE5I treatment has been shown to have the same effect on superoxide levels in

erectile tissue in the radiation setting [22]. The Akt signalling pathway is also crucial to this dis-

cussion. Akt, named protein kinase B, can be activated by VEGF in endothelial cells, and phos-

phorylation of Akt activates eNOS, through which NO is released, contributing to vasodilation

[29]. Thus, the Akt pathway is strongly entangled with the eNOS and VEGF pathways.

Thickening of the lamina propria and telangiectasia are typical histologic findings in radia-

tion-induced cysts [21]. An obvious submucosal thickening was observed after radiation ther-

apy in the present study (Fig 4), where numerous engorged veins were identified in the

radiation-exposed tissue. Daily PDE5I treatment lessened this thickening and engorgement. A

previous study demonstrated that a PDE5I was effective at preserving urinary bladder function

after chronic ischaemia [8]. Similarly, PDE5Is may be able to rescue bladder tissue from radia-

tion toxicity by remodelling the bladder by means of vasodilation and angiogenesis, thereby

preserving bladder compliance and/or capacity. Indeed, the cystometry results of the present

study provide support for this possibility.

The authors want to note the limitations of this study. Due to animal ethical issues, only a

minimal number of animals (8 in each group) were sacrificed. Therefore, the standard errors

were relatively large in several items, which might lead to a post hoc p-value higher than 0.05.

Furthermore, the inclusion of another group treated with a different signalling inhibitor, such

as a VEGF inhibitor, may further our understanding of the signalling connection among

VEGF, Akt, and eNOS. Although eNOS has been known as a bio-marker responding to

PDE5I, the concomitant use of phosphorylated eNOS with eNOS during western blot in the

future study could show clearer results.

Conclusions

Avoiding radiation-induced bladder toxicity is still challenging. Based on the previous litera-

ture and the present study, treatment with a PDE5I may upregulate the expression of VEGF

Fig 6. Proposed mechanism of the effect of PDE5Is on the radiation-exposed urinary bladder. Radiation damages

micro-vessels in urinary bladder which subsequently leads chronic tissue ischemia resulting in bladder dysfunction.

Chronic use of phosphodiesterase type 5 inhibitors could enhance angiogenesis and facilitate vasodilation via

VEGF-Akt-eNOS pathway which, in turn, could reduce tissue ischemia and may induce bladder remodelling resulting

in maintenance of end-organ function. Bold arrow: positive effect; dotted arrow: negative effect.

https://doi.org/10.1371/journal.pone.0242006.g006
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mRNA, subsequently increasing VEGF protein expression and stimulating angiogenesis.

Increased VEGF secretion in response to PDE5I treatment may increase phosphorylation of

Akt, which may in turn upregulate eNOS expression, resulting in the release of NO from the

endothelium and an acceleration of vasodilation though PRKG activation. Therefore, PDE5I

treatment may elicit bladder remodelling after radiation exposure through angiogenesis, vaso-

dilation, and reductions in superoxide levels, finally preserving bladder function (Fig 6).
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