
sensors

Article

A Systematic Approach for Evaluating Artificial Intelligence
Models in Industrial Settings

Paul-Lou Benedick 1,* , Jérémy Robert 2 and Yves Le Traon 1

����������
�������

Citation: Benedick, P.-L.; Robert, J.;

Le Traon, Y. A Systematic Approach

for Evaluating Artificial Intelligence

Models in Industrial Settings. Sensors

2021, 21, 6195. https://doi.org/

10.3390/s21186195

Received: 25 August 2021

Accepted: 11 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 6 Rue Richard
Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg; Yves.LeTraon@uni.lu

2 Cebi Luxembourg S.A, 30 rue J.F. Kennedy, L-7327 Steinsel, Luxembourg; jeremy.robert@cebi.com
* Correspondence: paul-lou.benedick@uni.lu; Tel.: +352-46-66-44-5413

Abstract: Artificial Intelligence (AI) is one of the hottest topics in our society, especially when it comes
to solving data-analysis problems. Industry are conducting their digital shifts, and AI is becoming
a cornerstone technology for making decisions out of the huge amount of (sensors-based) data
available in the production floor. However, such technology may be disappointing when deployed
in real conditions. Despite good theoretical performances and high accuracy when trained and
tested in isolation, a Machine-Learning (M-L) model may provide degraded performances in real
conditions. One reason may be fragility in treating properly unexpected or perturbed data. The
objective of the paper is therefore to study the robustness of seven M-L and Deep-Learning (D-L)
algorithms, when classifying univariate time-series under perturbations. A systematic approach
is proposed for artificially injecting perturbations in the data and for evaluating the robustness
of the models. This approach focuses on two perturbations that are likely to happen during data
collection. Our experimental study, conducted on twenty sensors’ datasets from the public University
of California Riverside (UCR) repository, shows a great disparity of the models’ robustness under
data quality degradation. Those results are used to analyse whether the impact of such robustness
can be predictable—thanks to decision trees—which would prevent us from testing all perturbations
scenarios. Our study shows that building such a predictor is not straightforward and suggests that
such a systematic approach needs to be used for evaluating AI models’ robustness.

Keywords: time series classification; artificial intelligence robustness; industrial internet of
things; adversarial

1. Introduction

Nowadays, with the advent of the Internet of Things (IoT) and Industrial IoT (IIoT),
public and industrial actors are leveraging these technologies to enhance their systems
while satisfying new requirements entailed by such a social revolution [1–6]. Focusing on
the industrial context, with the industry 4.0 (r)evolution, companies want to meet new
business goals by increasing the Overall Equipment Effectiveness (OEE). In the meantime,
their customers are increasingly demanding better quality, flexibility or even security. In
order to tackle these new challenges, industrial actors are looking at exploiting unused
data coming from their production’s systems. The amount of data is unprecedentedly
huge, making it difficult for humans to analyse and make decisions quickly and efficiently.
That is the reason why Artificial Intelligence (AI) is being increasingly used for solving a
large range of problems and applications, e.g., the Time Series Classification (TSC) problem,
which is one of the most common in the industry and also recognised as one of the ten
listed problems in data-mining researches [7].

Using AI requires good data quality whatever the applications. Although data-quality
consideration strongly depends on the end-users or use-cases needs, it should be specifically
considered for each data-driven system [8–10] to avoid regrettable experiences, e.g., a
pedestrian killed by a self-driving car in Arizona [11]. Indeed, by learning from inaccurate

Sensors 2021, 21, 6195. https://doi.org/10.3390/s21186195 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7319-3921
https://doi.org/10.3390/s21186195
https://doi.org/10.3390/s21186195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186195
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186195?type=check_update&version=2


Sensors 2021, 21, 6195 2 of 17

or inadequate datasets, the downstream results can be flawed and lead to an inaccurate
analysis of the data, resulting in inappropriate actions from the different actors [12–14].
In industry, there is a lot of situations where data quality can be degraded throughout
the production system’s entire lifetime. Beyond the ageing of the sensors, the whole data
collection infrastructure may introduce some perturbations. This is all the more true for
companies with decades of existence that rely on legacy industrial architectures where data
producers (i.e., sensors, Programmable Logic Controllers (PLCs), etc.) are heterogeneous,
requiring middleware to access and standardise data, while providing an interface between
the business and industrial worlds [15]. Such data collection infrastructure may have
sparse performance, in particular in terms of network metrics such as losses, delays or
traffic-load [16,17], resulting in data quality degradation.

Unfortunately, most of the studies—tackling the TSC problem using AI—do not
consider such data quality degradation scenarios when evaluating their algorithms. Re-
searchers are indeed focusing on improving the algorithms performance especially in
terms of accuracy or even response time [18]. Performances are evaluated on public bench-
mark datasets such as the UCR datasets ([19] (https://www.cs.ucr.edu/%7Eeamonn/time_
series_data_2018/, accessed on July 2021)). Such datasets are then considered as clean
and without any biases. Although these evaluations are needed, this is not sufficient to be
confident in the robustness of these algorithms/models in case of perturbations (that may
happen temporarily or gradually over time).

The objective of the paper is therefore threefold: (i) to propose a systematic approach,
inspired by mutation testing techniques, for artificially injecting two types of perturbations
in benchmarking datasets, (ii) to evaluate the impact of such perturbations on 7 state-of-
the-art algorithms and 20 sensor-based datasets and (iii) to analyse whether such impact
can be predictable or not without testing all perturbations scenarios.

The paper is organised as follows: Section 2 presents the related work regarding AI
that consider perturbations. In Section 3, a systematic approach for evaluating AI models
under perturbations is developed. Then, in Section 4, the systematic approach is therefore
assessed by experiments on two realistic perturbations, called hereafter swapping and
dropping perturbations. Section 5 aims at trying to predict the robustness of models by
using decision trees. Finally, Section 6 presents the conclusion of the paper.

2. Background and Related Work

AI is a domain that includes a lot of techniques to tackle a large range of problems and
applications. Focusing on the Time Series Classification problem, Machine-Learning (M-L)
techniques are beginning to be the new standard in recent industrial systems, and Deep-
Learning (D-L) also tends to be adopted in certain cases ([12,20–22]). Looking at the
definition of a time-series (TS) in the literature, authors use different ones depending on the
context [18,23,24] while being quite similar. It is worth mentioning that it is, nonetheless,
important to define it, as pointed out in [25]. In this paper, we define it as follows:

A time series TS is an ensemble E representing a sequence of N data-points en, assumed as
equally distributed: E = [e1, · · · , eN ].

Our literature review is intended to analyse to what extent research work (in M-
L and D-L) are evaluating “the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions”, defined
as robustness in IEEE standard glossary of software engineering terminology [26]. In the
AI context, “robustness (therefore) measures the resilience of an M-L system’s correctness
in the presence of perturbations” [27]. Based on these definitions and the aforementioned
literature review objective, we applied the following three-step methodology for selecting
papers to analyse: (i) keep only papers dealing with the TSC problem. Our corpus consists
of 1417 papers collected in seven main library databases: IEEE Xplore, ACM Digital Library,
Springer, ScienceDirect, MDPI, Taylor and Francis and Wiley; (ii) filter papers mentioning
perturbations (or related terms, e.g., robustness, adversarial, data inconsistency). Only

https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/


Sensors 2021, 21, 6195 3 of 17

35 papers were remaining, and (iii) they were filtered through a careful reading. Finally,
14 papers are presented and listed in Table 1, while summing up (as in Table 1 footer) with:

• column “Approach”: the approach (M-L or D-L) used in the research work;
• column “Method”: the methods/algorithms used or analysed;
• column “TS Type”: the type of time-series (TS), i.e., either Univariate Time Series

(UTS) or Multivariate Time Series (MTS);
• column “Perturb. Model”: the type of perturbations model;
• column “Reproducible?”: if such analysis is reproducible (can we recreate ourselves

datasets with perturbations according to predefined parameters);
• column “Public repo?”: if such datasets before/after perturbations are publicly available.

Table 1. Related work.

Paper Approach Method TS Type Perturb. Model Reproducible? Public Repo?

M-L D-L UTS MTS Initial Modified

[28] 7 3 CNN 3 7 Random Noise 7 7 7

[29] 3 7 SVM,1-NN, DT, RF 7 3 Data Loss 3 3 7

[30] 3 7 XG-Boost 3 7 Missing Data 7 7 7

[31] 3 3 SVM, DT, RF, NN, CNN 3 7 Random Missing Data 7 7 7

[32] 7 3 ResNet, FCN 3 7 Noise 3 3 7

[33] 7 3 CNN 3 3 Missing Data w 3 7

[34] 3 7 ARM-SONS 3 7 Missing Data 7 3 7

[35] 3 7 BPSO, IBPSO, IN-
SIGHT

3 7 Random Noise 7 3 7

[36] 3 7 DTW 3 7 Missing data and Noise w 3 7

[37] 3 7 ANN, SVM, SSL 7 3 Noise w 3 7

[38] 3 3 OSVM, DNN 7 3 Colour Perturbations 7 3 7

[39] 3 3 STRiD, NN, SVM, ID3 7 3 Missing Data w 3 7

[40] 3 7 1-NN 3 3 Missing Data 3 3 7

[41] 3 7 BoW+SVM 3 7 Noise and Artifacts w 3 7

3: yes, 7: no, w: original dataset contains the perturbation, “Approach”: the approach (M-L or D-L) used in the research work,
“Method”: the methods/algorithms used or analysed, “TS Type”: the type of time-series (TS), i.e., either Univariate Time
Series (UTS) or Multivariate Time Series (MTS), “Perturb. Model”: the type of perturbations model, “Reproducible?”: if
such analysis is reproducible (can we recreate ourselves datasets with perturbations according to predefined parameters),
“Public repo?”: if such datasets before/after perturbations are publicly available, CNN: Convolutional Neural Network,
SVM: Support Vector Machine, 1-NN: 1- Nearest Neighbors, DT: Decision-Tree, RF: Random Forest, XG-Boost: eXtreme
Gradient Boosting , NN: Neural Network, ARM-SONS: Sparse Online Newton Step for AR with Missing Data, BPSO: Binary
Particle Swarm Optimization, IBPSO: Immune Binary Particle Swarm Optimization, DTW: Dynamic Time Warping, ANN:
Artificial Neural Network, OSVM: One-class Support Vector Machine, SSL: Semi-Supervised Learning, DNN: Deep Neural
Network, STRiD: Statistical Tolerance Rough Set induced Decision tree, ID3: Iterative Dichotomiser 3, BoW: Bag of Words.

This highlights that there are only a few works that evaluate the robustness of mod-
els by providing a reproducible model of their (natural) perturbations or a (artificially)
perturbed dataset that is publicly available. Only 3 studies (i.e., [29,32,40]) out of 14 (ar-
tificially) generated perturbations to modify the datasets and then perform experiments
on the models. Other listed studies do not provide a fault model that is reproducible,
or they use datasets that are known as containing some perturbations (noise or missing
data) but without identifying the characteristics of these perturbations (making it difficult
to reproduce on other datasets for comparison purposes). Concerning the studies in which
perturbations’ models aim at modifying the data, the experiments are focused on the
perturbations models and evaluating few algorithms, but they do not analyse to what
extent the perturbations impact the performance of the model itself. Moreover, even if
research solving some adversarial robustness problems exists, adversarial robustness can
lead to a decrease in accuracy when no perturbations are present ([42]).



Sensors 2021, 21, 6195 4 of 17

Based on those facts, we decided to study the robustness of M-L/D-L models under
perturbations, which we defined in Section 3 and allows anybody to reproduce them for
benchmarking purposes. To do so, we selected two different works as the baseline:

• The algorithm presented in [18], called The Word ExtrAction for time SEries cLassifi-
cation (WEASEL)—as an M-L solution, which obtains the best accuracy of the former
algorithm on most of the public UCR datasets,

• The framework/algorithms presented in [24], which can be used as a black-box in the
D-L category and showed great performance on UCR datasets.

In addition, as we focused on industrial scenarios, only sensor-based datasets (UTS)
were used for our experiments (20 in total, presented in the following section).

3. A Systematic Approach for Evaluating AI Models under Perturbations

In this section, we intended to define a systematic approach for evaluating AI models
under perturbations that could appear over the AI models’ lifetime. In that sense, we
assume that the AI models are trained in “normal conditions”—it does not mean that
the data are clean and without any biases but reflects the normal behaviour of the data
collection infrastructure at a time of the model training. Usually, test datasets are also
collected in the same conditions—even if it is not clearly mentioned, the characteristics
of the training and testing datasets are similar. There is an important literature in ML
that demonstrates that trained models may not be robust to corner cases (e.g., adversarial
cases) despite a high accuracy. We thus believe that trained models shall be tested against
perturbation to assess and improve their robustness in situations that may occur in a
realistic setting. It also important to include potential derivations in the data that could
appear over time or in “degraded conditions”, so as to evaluate their robustness. Our
objective is therefore to generate perturbations (on test datasets) that are not too far from
the reality and more importantly reproducible—either on the same datasets or in a similar
way on other datasets—so as to be able to benchmark/compare the robustness of AI models
under such perturbations. In this approach, we define two kinds of perturbations:

• The swapping perturbation: the sequence of the N data points en is altered/not respected.
It is a realistic situation in several settings, e.g., when using User Datagram Protocol
(UDP) as transport protocol for data exchanging between sensors and controller,
since UDP does not enable re-ordering of the packets in the network and/or if the
timestamping of the data can only be performed on the controller side (sensors usually
do not have the capacity of timestamping).

• Dropping perturbation: some data points in the time-series are missing. As for the
swapping perturbations, this is realistic as a network protocol such as UDP does not
enable packet retransmission in the case of loss, or when software processing data
reception has memory overflow (especially when processing a huge amount of sensors
data in constrained devices, such as raspberry-like devices), which can also lead to
such losses.

Since every (industrial) environment is different, it is usually difficult to identify the
perturbations existing in such environment. That is the reason why our perturbations
require to be parameterised using a suitable mathematical and systematic form. It enables,
in particular, varying the parameters so as to identify the limits of the robustness of
the AI models in the experimental analysis. As a matter of fact, let us formally define
the perturbations:

• The swapping perturbation: Let us first reiterate that a time series TS is an ensemble
E representing a sequence of N data-points en, assumed as equally distributed: E =
[e1, · · · , ei, · · · , ej, · · · , eN ]. A swapping perturbation is therefore a pair of data points
that are interchanged/swapped. In the case where only one pair has been swapped,
the time-series becomes E′ = [e1, · · · , ej, · · · , ei, · · · , eN ], where the events ei and ej
have been swapped. However, swapping only one pair would probably not have an
impact. We therefore define two parameters:



Sensors 2021, 21, 6195 5 of 17

– Pe as the percentage (0% < Pe < 100%) of swapped events/values in each
time-series of a dataset. It means that S = N ∗ Pe

100 values will be randomly
interchanged in a TS of length N.

– R as the range in which the value is swapped (i.e., at which position the data
are moved in a certain range of possibilities). For instance, let R = [1, 2], which
means that if we randomly pick 1. as the position to be changed, an event e4 is
interchanged with the event e3 (and vice-versa).

To apply such swapping perturbations on all the time-series in a dataset D, we de-
fine the function presented in Algorithm 1, which gives a new dataset D′ as the
output. Note that a dataset D consists of a set of times-series Ek with the same
length—i.e., the number of data points N (as it is usually the case in public bench-
marking repositories)—, such as D = [E1, · · · , EM] with M the number of TS in D.
The newly created dataset D′ consisting of a set of times-series E′k has the same features
(in particular, the number of TS and of data points per TS) than D. Finally, to keep it
as generic and open (for experimentation) as possible, no probability distribution is
imposed in the random processes used in this algorithm.

Algorithm 1: Swapping perturbations function.
input : D, Pe, R
output : D′

1 Function Swap(E, pos1, pos2):
2 epos1 = epos2
3 epos2 = epos1
4 return E;
5 begin
6 S← bN ∗ Pec // No. of values to swap
7 for i← 1 to M do
8 indexS← randomSelection(0, N, S) // S indexes in the TS
9 for j← 1 to S do

10 pos← randomSelection(R, 1)
11 E′i ← Swap(Ei, indexSj, indexSj − pos)
12 end
13 end
14 end

• Dropping perturbation: A dropping perturbation is the consequence of a data loss
(e.g., between a sensor that has sent the data to be stored and the controller that has
to store the data). Formally speaking, it means that a time-series E = [e1, · · · , eN ]
is becoming E′ = [e1, · · · , eN−Q] where the length of the time-series is decreased
in terms of the number of lost/deleted events Q (Q < N). However, in that case
and particularly in practice, E′ will not strictly follow the definition of a TS where
the data points en are assumed as equally distributed over time. This means that
all the indexes will be only shifted. To be consistent, mathematically speaking, we
propose to have a reconstruction mechanism to fill out a missing value (e.g., in practice,
the controller knows that it should receive a value periodically, so it can compute
a value when detecting a missing value). Even if such mitigation mechanism can
limit the impact on the models’ robustness a priori, it is important for us to consider
it in a formal way, since in a real environment, it would be probably and easily
implemented. We nonetheless keep the term “dropping” since it is the origin of
the expected perturbations. Based on these choices, we define a dropping function
presented in Algorithm 2. It also takes the percentage Pe of removed events/values in
each time-series of a dataset D as a parameter. Similarly to the swapping function,
the indexes of the dropped (and reconstructed) elements are randomly selected. Note
that, after reconstruction, the length of E′ is equal to the one of E. Finally, to keep it



Sensors 2021, 21, 6195 6 of 17

as generic and open (for experimentation) as possible, the method for recomputing a
value at the dropped values positions is not imposed by the algorithm as such.

Algorithm 2: Dropping perturbations function.
input : D, Pe
output : D′

1 Function Drop(E, pos):
2 epos ← deleteAndReconstructElement(epos)
3 return E;
4 begin
5 Q← bN ∗ Pec // No. of values to drop
6 for i← 1 to M do
7 indexQ← randomSelection(0, N, Q) // Q indexes in the TS
8 for j← 1 to Q) do
9 pos← indexQj

10 E′i ← Drop(Ei, pos) // drop value in ith time series
11 end
12 end
13 end

4. Robustness Evaluation Based on Perturbations Generation

The approach presented in the previous section is applied for evaluating the robust-
ness of AI models trained with seven algorithms: six D-L algorithms (referred to as Fully
Convolutional Neural Network (FCN), Residual Network (ResNet), Multi Layer Perceptron
(MLP), Multi-Scale Convolutional Neural Network (MCNN), Multi Channel Deep Convo-
lutional Neural Network (MCDCNN) and Time Le-Net (Tlenet)) proposed as a framework
by Fawaz et al. [24] and one M-L algorithm (called WEASEL) developed and evaluated by
Schäfer and Leser [18]. This evaluation is achieved on 20 sensor-based datasets available in
the public UCR (https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/, accessed
on 5 July 2021) repository. These were selected since the data looks similar to the ones we
can find in industrial scenarios, when a sensor delivers a univariate time series. The algo-
rithms are selected for two reasons: (i) they are freely and publicly available to be used as a
blackbox, and (ii) they give good performance on the selected datasets to be served as a
baseline of our work.

4.1. Methodology of the Evaluation

Let us first present the methodology used for this evaluation:

1. The preparation phase consists of training models with the available datasets and then
generating datasets with perturbations that will be used for evaluating the robustness
of the models in phase 2.

(a) Retrieve the 20 selected univariate datasets of the sensors’ type (from the UCR
repository).

(b) Train models using the different selected classifiers on the previously collected
datasets. This phase is needed since the models (of existing researches) for the
benchmark datasets are not available publicly (and the hardware as well as the
software can impact the models’ accuracy, especially when D-L is used). Since
training a D-L model several times can lead to different accuracy results (even
with the same parameters and dataset), we trained each pair 5 times <classifier;
dataset> (it was enough to reach the same—or even better—accuracy as the
existing benchmark). In total, 700 models (5 iterations for 7 classifiers on
20 datasets) were trained. In this training phase, the objective is to obtain the
best classifier/model that could be deployed in real settings. In that sense, we

https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/


Sensors 2021, 21, 6195 7 of 17

kept only the best iteration/model for each pair <classifier; dataset>, resulting
in 140 models.

(c) As a first filter of our evaluation, we keep only the models that have an
accuracy higher than 90% (models with lower accuracy would not even be
considered for deployment in practice, or even for trying to improve them
before deployment) on test datasets without perturbations. Results of this step
are given in Table 2, where results in red are related to the models we used in
the following (53 models). In this table, two accuracy values are presented for
each dataset. This represents (i) the accuracy results obtained in the literature
(column ‘Ref’)—especially in [24]—and (ii) our own accuracy results (column
‘Our’). As explained previously, the hardware (as well as the software) can
impact such results, so comparing results enables only keeping models that
have equal or greater accuracy than the ones in the literature. Note that,
as the Tlenet classifier does not offer satisfying models for any datasets (i.e.,
with accuracy > 90%), it will not be studied any deeper. Similarly, no classifier
gave suitable results on the datasets ‘DodgerLoopDay’, ‘DodgerLoopGame’,
‘Earthquakes’, ‘FordB’, ‘InsectWingbeatSound’, ‘Lightning2’ and ‘Lightning7’.
These datasets will, therefore, be discarded from further analysis.

(d) Generate new datasets containing perturbations as defined in the previous
section. In this evaluation, we generated a total of 13,250 DS (5 different val-
ues for Pe—from 1% to 20%, in steps of 5%—using swapping and dropping
perturbations and 9 different values for R using swapping perturbations from
1 to 10 positions in steps of 1, all over 5 iterations to take into account the ran-
domness of the perturbations functions). Note that only uniform distribution
has been used in the random processes, and a linear regression between the
previous and next values (i.e., the average value: ej =

ej+1−ej−1
2 , where j is the

index of the dropped/reconstructed value) is used for filling out the dropped
value. Note also that this linear regression used to reconstruct a dropped value
is convenient for the implementation of the D-L algorithms since it requires the
same length for all the TS (in addition to following the mathematical properties
of a TS, i.e., to be equally distributed). We therefore believe that practitioners
need to be aware of such constraints when implementing AI models.

2. The empirical study consists of:

(a) Evaluating the robustness of each model (on each dataset generated);
(b) Concluding about the impact of such perturbations on the algorithms/models.

To run these experiments, we implemented the D-L models by using Keras 2 (https:
//keras.io, accessed on July 2021) framework with TensorFlow backend (Python 3.6) and
the WEASEL algorithm developed in Java. All the models were trained on the University of
Luxembourg High-Performance Computer (HPC) with 1 Graphics Processing Unit (GPU)
(NVIDIA TESLA V100) on Compute Unified Device Architecture (CUDA).

Table 2. Accuracy of the best models for each dataset (accuracy in %).

Dataset mlp Resnet Tlenet Mcdcnn cnn fcn WEASELOur Ref Our Ref Our Ref Our Ref Our Ref Our Ref

Car 77 80 93 93 32 32 75 80 78 80 93 93 82
DodgerLoopDay 54 16 54 15 16 16 54 53 59 58 40 15 53
DodgerLoopGame 86 88 86 80 52 48 88 90 83 83 78 78 80
DodgerLoopWeekend 99 98 96 96 74 74 99 99 98 98 91 93 97
Earthquakes 76 73 75 73 75 75 75 75 72 72 74 73 74

https://keras.io
https://keras.io


Sensors 2021, 21, 6195 8 of 17

Table 2. Cont.

Dataset mlp Resnet Tlenet Mcdcnn cnn fcn WEASELOur Ref Our Ref Our Ref Our Ref Our Ref Our Ref

FordA 85 82 94 95 52 52 89 89 90 90 92 92 97
FordB 72 71 82 82 50 50 70 73 77 77 78 78 83
FreezerRegularTrain 82 91 100 100 50 50 98 98 99 99 100 100 98
FreezerSmallTrain 69 69 96 93 50 50 70 74 74 75 71 71 91
InsectWingbeatSound 66 61 51 50 9 9 61 58 59 59 40 40 63
ItalyPowerDemand 96 96 96 96 50 50 97 97 96 96 96 96 96
Lightning2 77 70 80 80 54 54 72 69 67 66 77 75 61
Lightning7 67 64 85 85 26 26 62 64 70 66 82 84 70
MoteStrain 87 86 94 93 54 54 85 86 89 90 94 94 95
Plane 96 98 100 100 14 14 98 98 98 97 100 100 100
SonyAIBORobotSurface1 73 70 97 97 43 43 79 90 71 72 97 97 85
SonyAIBORobotSurface2 83 83 98 98 62 62 84 86 84 84 98 99 95
StarLightCurves 85 95 98 98 58 58 95 95 93 93 97 97 98
Trace 61 81 100 100 24 24 86 95 96 96 100 100 100
Wafer 100 100 100 100 89 89 99 100 96 96 100 100 100

Our case-study (Section 5) 95 100 na 99 99 100 100

4.2. Results of the Evaluation

Let us now look at the results of the empirical study with regard to the perturbations.
Tables 3 and 4 present an overview of our results. For the sake of our analysis, we consider
here that a model is impacted if its accuracy decreases more than 1% over the experiments
(with regards to its accuracy without any perturbations). Results show that:

• Very few models are not impacted at all by the swapping perturbations. To understand
to what extent the models are impacted by such perturbations over the considered
sensor-based datasets, we compute an average robustness, as shown in Figure 1. It
appears that:

– MLP, MCDCNN, CNN: Even if the results of the MLP, MCDCNN and CNN
models are limited to, respectively 4, 5 and 7 (out of 13 possible models/ datasets),
the impact of these perturbations on the models tends to be quite limited since in
the worst case (i.e., with a percentage of 20% and a swap range of [1–10]), the loss
of accuracy is, respectively, around 3%, 3.5% and 5% on average. Of course,
in practice, the tolerance of such degradation would require analysis for each
given use case.

– RESNET, FCN: Contrary to MLP, MCDCNN and CNN, RESNET and FCN have
been evaluated on all possible models of our study. This analysis shows clearly
that such algorithms/models are more rapidly impacted by the swapping per-
turbations since the loss of accuracy is already about 10% on average for a low
percentage of swap values (5%) and a small range ([1–3/4]) to reach 30% in the
worst case scenario of our study.

– WEASEL: Although WEASEL is clearly impacted by the swapping perturbations,
the impact is more limited (compared to RESNET and FCN) for low percentage
and range since the loss of accuracy tends to be less than 6% before being really
degrading when the percentage is important (more than 15%) and/or range is
high (more than [1–4]).

• Very few models are impacted by the dropping perturbations. This shows how the
mitigation mechanism (as simple as it is) plays an important role in the models’
robustness. It is therefore really important that practitioners understand this point
and integrate it from the design phase of such AI usage. Note that, even if we consider
RESNET impacted on the Car dataset, the accuracy decreases only by 5% in the worst
iteration (over the 5) when the perturbations are at the maximum (i.e., Pe = 20%).
Similar behaviour was found for FCN on this dataset (but from Pe ≥ 15%). FCN



Sensors 2021, 21, 6195 9 of 17

accuracy on FordA decreases by 6% and less than 2% on SonyAIBORobotSurface1 in
the worst iteration. Weasel on FordA appears to be an exception where the accuracy
is decreased by 21% to 41%.

Overall, this study demonstrates that some of the models/algorithms can be impacted
by the data quality, especially when it is decreasing over time. Indeed, the conditions
in which the data are collected can be different from the time the models were trained,
leading to an accuracy decrease. Based on those results, one may wonder whether such
degradation can be predicted before deploying a model in real-life scenarios, i.e., without
the need to generate as many datasets as possible for testing it under perturbations (as
proposed by our systematic approach). The next section tries to answer this question.

Table 3. Robustness under swapping perturbations.

Dataset mlp Resnet Mcdcnn cnn fcn WEASEL

Car na 7 na na 7 na
DodgerLoopWeekend 3 7 3 3 7 3

FordA na 7 na na 7 7

FreezerRegularTrain na 7 7 7 7 7

FreezerSmallTrain na 7 na na na 7

ItalyPowerDemand 7 7 7 7 7 7

MoteStrain na 7 na na 7 7

Plane 7 7 7 7 7 7

SonyAIBORobotSurface1 na 7 na na 7 na
SonyAIBORobotSurface2 na 7 na na 7 7

StarLightCurves na 7 na 3 7 7

Trace na 7 na 7 7 7

Wafer 3 7 3 3 7 3

na: not considered in our study, 3: robust (not impacted), 7: not robust (impacted).

Table 4. Robustness under dropping perturbations.

Dataset mlp Resnet Mcdcnn cnn fcn WEASEL

Car na 7 na na 7 na
DodgerLoopWeekend 3 3 3 3 3 3

FordA na 3 na na 7 7

FreezerRegularTrain na 3 3 3 3 3

FreezerSmallTrain na 3 na na na 3

ItalyPowerDemand 3 3 3 3 3 3

MoteStrain na 3 na na 3 3

Plane 3 3 3 3 3 3

SonyAIBORobotSurface1 na 3 na na 7 na
SonyAIBORobotSurface2 na 3 na na 3 3

StarLightCurves na 3 na 3 3 3

Trace na 3 na 3 3 3

Wafer 3 3 3 3 3 3

na: not considered in our study, 3: robust (not impacted), 7: not robust (impacted).



Sensors 2021, 21, 6195 10 of 17

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

MLP

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

(a) MLP

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

RESNET

−30

−25

−20

−15

−10

−5

(b) RESNET

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne
ss

−30
−25

−20

−15

−10

−5

0

MCDCNN

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

(c) MCDCNN

percentage

1
5

10
15

20
ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

CNN

−5

−4

−3

−2

−1

(d) CNN

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

FCN

−30

−25

−20

−15

−10

−5

(e) FCN

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne
ss

−30
−25

−20

−15

−10

−5

0

WEASEL

−16

−14

−12

−10

−8

−6

−4

(f) WEASEL

Figure 1. Average robustness over all the considered datasets under swapping perturbations.



Sensors 2021, 21, 6195 11 of 17

5. Is Robustness Predictable?

The objective is to answer the question, is robustness predictable? If so, we aim to
provide humans/engineers with a method—as simple to understand and to interpret as
decision trees—to determine whether a model will be impacted by some of the perturba-
tions. To do so, we assume that the characteristics of the datasets (i.e., the shape) impact the
robustness of the models. Based on this assumption and our previous results, we created a
dataset (consisting of 2700 rows) with the following information:

• The characteristics of the time-series of each dataset presented in Table 5, i.e.,

– The time-series length (denoted len(TS),
– The number of classes (Nocl),
– The Pearson correlation coefficient [43], which is defined as the covariance of two

variables divided by the product of their standard deviations. It is an intuitive and
easy to understand a way of measuring the linear correlation between two signals
(here, two time-series), which has been used in many studies from different
fields to characterise the correlation between time series (Adler and Parmryd [44],
Benesty et al. [45]). In this study, we used the average (i) of the Pearson correlation
coefficients computed between all time series of the same class (Pin−cl) and (ii) of
the Pearson correlation coefficients computed between the different classes for all
the datasets (Pbet−cl).

– The average derivative (Deriv), enabling to reflect the changes/variations in a
time series.

• The parameters of the considered perturbations as defined in Section 4, i.e., Pe, the per-
centage of swapped/dropped values, and R, the range in which the value is swapped,

• Finally, a label (per classifier) representing if the model is impacted (or not) by such
perturbations/characteristics settings.

Table 5. Dataset characteristics for decision trees.

Dataset len(TS) Nocl Pin−cl Pbet−cl Deriv

Car 577 4 0.862 0.826 0.99
DodgerLoopWeekend 288 2 0.72 0.585 0.569
FordA 500 2 0.002 −0.002 0.115
FreezerRegularTrain 301 2 0.799 0.715 0.629
FreezerSmallTrain 301 2 0.799 0.715 0.629
ItalyPowerDemand 24 2 0.829 0.734 0.236
MoteStrain 84 2 0.547 0.421 0.238
Plane 144 7 0.95 0.648 0.131
SonyAIBORobotSurface1 70 2 0.743 0.672 0.153
SonyAIBORobotSurface2 65 2 0.402 0.231 0.206
Trace 275 4 0.743 0.064 0.575
Wafer 152 2 0.123 0.044 0.386

Our case-study (Section 5) 305 3 0.7180 0.5470 0.0459
len(TS): the time-series length, Nocl : the number of classes, Pin−cl : the Pearson correlation coefficients between
all time-series of the same class, Pbet−cl : the Pearson correlation coefficients between the different classes, Deriv:
the average derivative.

This dataset is used to create as many decision trees as classifiers. To do so, we used the
sklearn decision trees library (https://scikit-learn.org/stable/modules/tree.html, accessed
on June 2021). Although one of the major features of the decision trees visualisation, the size
and number of our decision trees are too significant to be presented here. Note that the
StarLightCurve dataset does not appear due to the computational resources that are needed
to compute the different parameters since it contains too many long time series. Table 6
gives an overview of the number of leaves and depth. This shows an important disparity
between the decision tree’s features, and more particularly, the number of leaves, e.g., MLP
has “only” 21 leaves while resnet has 125 for the swapping perturbations. The depth is

https://scikit-learn.org/stable/modules/tree.html


Sensors 2021, 21, 6195 12 of 17

relatively steady, even if it is quite important with 7 to 12 levels. Contrary to the decision
trees for the swapping perturbations, their number of leaves and the depth for dropping
perturbations are not so important (even very low). Indeed, several classifiers count only
1 leaf and a depth of 0, showing the ability of models to correctly classify the time series
after perturbations as it has also been raised in the previous section (partially due to the
linear regression mitigation mechanism). Overall, such decision trees (in particular for
swapping perturbations) do not generate easy-to-understand rules as we expected and do
not provide clear indications of which parameter(s) impact the robustness the most (or the
classification in a class ‘impacted’/‘not impacted’).

Table 6. Characteristics of decision trees for both perturbations.

Classifier Swapping Perturb. Dropping Perturb.
Leaves Depth Leaves Depth

mlp 21 7 1 0
resnet 125 12 6 5
mcdcnn 42 10 1 0
cnn 68 10 1 0
fcn 76 12 10 5
weasel 64 10 2 1

To test if such decision trees are nonetheless applicable to predict whether the model
accuracy will be impacted by our perturbations, we applied a proof by contradiction
(reductio ad absurdum), assuming that the characteristics of the datasets and therefore
the decision trees enable predicting the impact of the perturbations on a dataset. To put
it in another way, if an example does not satisfy this assumption, then the answer to the
aforementioned question will be considered as ‘No’. To do so, we developed a case-study
for collecting our own data. Thanks to our Fischertechnik factory simulation (https://www.
fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v, accessed on
July 2021), we collected data from a light sensor that is used for classifying the parts
according to their colours (blue, white or red), i.e., 3 classes for our time-series classification
problem. The dataset’s characteristics are described in the Table 5. Note that the training
and testing sets consist of, respectively, 100 and 50 TS of each colour (i.e., resp., a total
of 300 and 150 TS). New datasets with perturbations have, therefore, been generated as
achieved with the public datasets (cf. previous section) and analysed similarly, as shown in
Figure 2. Then, decision trees are applied to the characteristics of our original datasets to
predict if the model will be impacted with a given level of perturbations. Table 7 gives an
overview of the results. Overall, this shows that:

Table 7. Accuracy of decision trees for the swapping effect.

Classifier mlp resnet mcdcnn cnn fcn weasel

Swapping perturb. 12% 30% 43% 37% 36% 89%
Dropping perturb. 100% 80% 100% 100% 100% 100%

• Swapping perturbation: we notice a disparity in the results between D-L and M-L methods.

– Deep-learning: The accuracy of the decision trees on deep-learning models is really
low. This means that the decision trees here are not able to predict whether the
dataset will be impacted (or not). Indeed, by training decision trees, we try to cre-
ate a model (the tree) that represents the behaviour of the D-L classifier. However,
deep-learning models are very complex. There are so many parameters to take
into account—even the hardware resources—, which make it almost impossible
to predict its behaviour beforehand. To illustrate this complexity, let us look at
Figure 1 where Resnet, FCN and Weasel were the least robust classifiers under
perturbations over the 12 datasets, while MLP, MCDCNN and CNN seemed to

https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v
https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v


Sensors 2021, 21, 6195 13 of 17

be robust. This observation could have led to a first—quick/natural-–conclusion,
where the three latter classifiers should be the best to deploy (especially in a
possibly noisy environment). However, regarding the results of our case-study,
the results are the opposite: MLP, MCDCNN and CNN are the classifiers for
which the accuracy decreases quicker under perturbations when Resnet, FCN
and Weasel are more robust to them. One may note that this has further opened
up a research topic on explainable M-L.

– Weasel: Concerning Weasel, which is more a ‘traditional Machine-Learning classi-
fier’, a decision tree is more able to predict the impact of a future perturbation.
Actually, the decision tree has an accuracy of 89%, which can be satisfying for
helping humans to make a decision out of it (especially when associated to
his/her expertise of the environment).

• Dropping perturbation: decision trees have a better accuracy in such perturbations. This
is due to the small impact they have on the robustness of the models (again, thanks to
linear regression mitigation mechanism), resulting in few scenarios where models are
impacted, leading to an easier behaviour prediction.

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

MLP

−12

−10

−8

−6

−4

−2

(a) MLP

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

RESNET

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(b) RESNET

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne
ss

−30
−25

−20

−15

−10

−5

0

MCDCNN

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

(c) MCDCNN

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

CNN

−2.5

−2.0

−1.5

−1.0

−0.5

(d) CNN

Figure 2. Cont.



Sensors 2021, 21, 6195 14 of 17

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

FCN

−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0

(e) FCN

percentage

1
5

10
15

20

ran
ge

2
3
4
5
6
7
8
9
10

ro
bu

st
ne

ss

−30
−25

−20

−15

−10

−5

0

WEASEL

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

(f) WEASEL

Figure 2. Average robustness over FischerTecknik dataset under swapping perturbations.

In conclusion, this study shows that it is not easy to predict (based on the characteristics
of a dataset) that some perturbations will impact the accuracy of a model trained on a
dataset assumed to be ideal (i.e., without perturbations). As a consequence, the systematic
approach, presented in Section 3, is really important to perform for evaluating AI models
under perturbations before the deployment in an industrial environment prone to data
quality degradation.

6. Conclusions, Implications, Limitations and Future Research
6.1. Conclusions

The world is engaging its digital transformation by providing industry with new tools
for controlling their production and business systems. It aims at improving the efficiency
of the production while covering the needs of sustainability, transparency, traceability and
customisation requested by the customers. Thanks to the huge amount of sensor data
available, AI is suitable for decision-making. However, in many companies, there is a
lack of skilled engineers who master both AI technologies and the business specificities
of the company. Thus, a condition for broad adoption is that engineering a performant
and robust AI-based system must remain simple while leading to performances at least
equal to existing solutions. In that sense, industries are not ready to implement such
technology without being convinced that it will work smoothly and properly. That is why
it is important to also evaluate the performance of AI models under perturbations (that
could happen in the industrial environment). This paper shows that it is costly and hardly
predictable, since predicting whether an AI model will be impacted is not straightforward
(or not accurate enough). This shows the necessity to generate different perturbations (as
presented in this paper) to evaluate the robustness of the AI models.

6.2. Implications

This research presents two main implications. First, it points out that M-L/D-L
researchers should not stop their model evaluation once they have the accuracy computed
on clean datasets and without any biases. The robustness of their model should always
be assessed by presenting the perturbations formally. Second, it shows practitioners that
simple measures such as the linear regression used for handling potential losses (dropping
perturbations) can prevent AI algorithms from degrading in noisy environments.

6.3. Limitations and Future Research

Some limitations of our research can be pointed out. First, the approach and the
empirical study are only based on two kinds of perturbations (swapping and dropping



Sensors 2021, 21, 6195 15 of 17

perturbations). Future researches will go further in that direction by proposing analyses of
other perturbations (which we encourage when implementing/evaluating such an AI sys-
tem in/for such industrial environment). In addition, choices have been made concerning
the range of perturbations’ parameters. For instance, ranges and percentages of pertur-
bations could be widened, or a finer-grained analysis could be conducted. Furthermore,
our perturbations follow a uniform distribution, which can be adapted for other use-cases.
Finally, the proposed methodology for predicting the robustness of the AI models, relying
on decision trees, is based on “only” the experiments of thirteen datasets and seven algo-
rithms for each kind of perturbation to train the trees. This might be too few, and input
training data could give different results with more inputs.

Author Contributions: Conceptualization, P.-L.B., Y.L.T. and J.R.; funding acquisition, Y.L.T. and
J.R.; investigation, P.-L.B. and J.R.; methodology, P.-L.B., Y.L.T. and J.R.; software, P.-L.B. and J.R.;
supervision, Y.L.T. and J.R.; validation, Y.L.T. and J.R.; writing—original draft, P.-L.B. and J.R.;
writing—review and editing, P.-L.B., Y.L.T. and J.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Luxembourg National Research Fund Stability 4.0
BRIDGES19/IS/13706587.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
2. Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3,

208–218. [CrossRef]
3. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
4. Breivold, H.P.; Sandström, K. Internet of Things for Industrial Automation–Challenges and Technical Solutions. In Proceedings

of the IEEE International Conference on Data Science and Data Intensive Systems (DSDIS), Sydney, Australia, 11–13 December
2015; pp. 532–539.

5. Varghese, A.; Tandur, D. Wireless requirements and challenges in Industry 4.0. In Proceedings of the International Conference on
Contemporary Computing and Informatics (IC3I), Mysuru, India, 27–29 November 2014; pp. 634–638.

6. Khan, W.A.; Wisniewski, L.; Lang, D.; Jasperneite, J. Analysis of the requirements for offering industrie 4.0 applications as a
cloud service. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK,
19–21 June 2017; pp. 1181–1188.

7. Yang, Q.; Wu, X. 10 challenging problems in data mining research. Int. J. Inf. Technol. Decis. Mak. 2006, 5, 597–604. [CrossRef]
8. Wang, R.Y.; Strong, D.M. Beyond accuracy: What data quality means to data consumers. J. Manag. Inf. Syst. 1996, 12,

5–33. [CrossRef]
9. Foidl, H.; Felderer, M. Risk-based data validation in machine learning-based software systems. In Proceedings of the 3rd ACM

SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation; ACM: New York, NY, USA, 2019;
pp. 13–18.

10. Barnaghi, P.; Bermudez-Edo, M.; Tönjes, R. Challenges for quality of data in smart cities. J. Data Inf. Qual. JDIQ 2015, 6,
1–4. [CrossRef]

11. Griggs, T.; Wakabayashi, D. How a Self-Driving Uber Killed a Pedestrian in Arizona. The New York Times 13 July 2018.
12. Lee, J.; Davari, H.; Singh, J.; Pandhare, V. Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manuf.

Lett. 2018, 18, 20–23. [CrossRef]
13. Gudivada, V.; Apon, A.; Ding, J. Data quality considerations for big data and machine learning: Going beyond data cleaning and

transformations. Int. J. Adv. Softw. 2017, 10, 1–20.
14. Schelter, S.; Lange, D.; Schmidt, P.; Celikel, M.; Biessmann, F.; Grafberger, A. Automating large-scale data quality verification.

Proc. VLDB Endow. 2018, 11, 1781–1794. [CrossRef]
15. Sauter, T.; Lobashov, M. How to access factory floor information using internet technologies and gateways. IEEE Trans. Ind.

Inform. 2011, 7, 699–712. [CrossRef]

http://doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1049/trit.2018.1008
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1142/S0219622006002258
http://dx.doi.org/10.1080/07421222.1996.11518099
http://dx.doi.org/10.1145/2747881
http://dx.doi.org/10.1016/j.mfglet.2018.09.002
http://dx.doi.org/10.14778/3229863.3229867
http://dx.doi.org/10.1109/TII.2011.2166788


Sensors 2021, 21, 6195 16 of 17

16. Benedick, P.L.; Robert, J.; Le Traon, Y. TRIDENT: A Three-Steps Strategy to Digitise an Industrial System for Stepping into
Industry 4.0. In Proceedings of the 2019-45th Annual Conference of the IEEE Industrial Electronics Society (IECON), Lisbon,
Portugal, 14–17 October 2019; Volume 1, pp. 3037–3042.

17. Benedick, P.L.; Robert, J.; Le Traon, Y.; Kubler, S. O-MI/O-DF vs. MQTT: A performance analysis. In Proceedings of the IEEE
Industrial Cyber-Physical Systems (ICPS), Saint Petersburg, Russia, 15–18 May 2018; pp. 153–158.

18. Schäfer, P.; Leser, U. Fast and accurate time series classification with weasel. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 637–646.

19. Dau, H.A.; Bagnall, A.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. The UCR time series
archive. IEEE/CAA J. Autom. Sin. 2019, 6, 1293–1305. [CrossRef]

20. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst.
2018, 48, 144–156. [CrossRef]

21. Luckow, A.; Cook, M.; Ashcraft, N.; Weill, E.; Djerekarov, E.; Vorster, B. Deep learning in the automotive industry: Applications
and tools. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December
2016; pp. 3759–3768.

22. Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of
production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [CrossRef]

23. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data
analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

24. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

25. Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887.
26. IEEE. IEEE Standard Glossary of Software Engineering Terminology; IEEE Std 610.12-1990; IEEE: Piscataway, NJ, USA, 1990;

pp. 1–84. [CrossRef]
27. Zhang, J.M.; Harman, M.; Ma, L.; Liu, Y. Machine learning testing: Survey, landscapes and horizons. IEEE Trans. Softw. Eng. 2020.
28. Huang, H.; Lin, S. WiDet: Wi-Fi Based Device-Free Passive Person Detection with Deep Convolutional Neural Networks. In

Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems; Association
for Computing Machinery: New York, NY, USA, 2018; pp. 53–60. [CrossRef]

29. Tanisaro, P.; Mahner, F.; Heidemann, G. Quasi View-Independent Human Motion Recognition in Subspaces. In Proceedings of the
9th International Conference on Machine Learning and Computing; Association for Computing Machinery: New York, NY, USA, 2017;
pp. 278–283. [CrossRef]

30. Chen, R.; Jankovic, F.; Marinsek, N.; Foschini, L.; Kourtis, L.; Signorini, A.; Pugh, M.; Shen, J.; Yaari, R.; Maljkovic, V.; et al.
Developing Measures of Cognitive Impairment in the Real World from Consumer-Grade Multimodal Sensor Streams. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 2145–2155. [CrossRef]

31. McDonald, A.D.; Sasangohar, F.; Jatav, A.; Rao, A.H. Continuous monitoring and detection of post-traumatic stress disorder (PTSD)
triggers among veterans: A supervised machine learning approach. IISE Trans. Healthc. Syst. Eng. 2019, 9, 201–211. [CrossRef]

32. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. Adversarial Attacks on Deep Neural Networks for Time
Series Classification. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary,
14–19 July 2019; pp. 1–8. [CrossRef]

33. Karimi-Bidhendi, S.; Munshi, F.; Munshi, A. Scalable Classification of Univariate and Multivariate Time Series. In Proceedings of
the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1598–1605. [CrossRef]

34. Yang, H.; Pan, Z.; Tao, Q. Online Learning for Time Series Prediction of AR Model with Missing Data. Neural Process. Lett. 2019,
50, 2247–2263. [CrossRef]

35. Zhai, T.; He, Z. Instance selection for time series classification based on immune binary particle swarm optimization. Knowl.-Based
Syst. 2013, 49, 106–115. [CrossRef]

36. Yan, J.; Wang, L.; Song, W.; Chen, Y.; Chen, X.; Deng, Z. A time-series classification approach based on change detection for rapid
land cover mapping. ISPRS J. Photogramm. Remote Sens. 2019, 158, 249–262. [CrossRef]

37. Park, K.; Ali, A.; Kim, D.; An, Y.; Kim, M.; Shin, H. Robust predictive model for evaluating breast cancer survivability. Eng. Appl.
Artif. Intell. 2013, 26, 2194–2205. [CrossRef]

38. Oregi, I.; Del Ser, J.; Pérez, A.; Lozano, J.A. Robust image classification against adversarial attacks using elastic similarity
measures between edge count sequences. Neural Netw. 2020, 128, 61–72. [CrossRef]

39. Nancy, J.Y.; Khanna, N.H.; Kannan, A. A bio-statistical mining approach for classifying multivariate clinical time series data
observed at irregular intervals. Expert Syst. Appl. 2017, 78, 283–300. [CrossRef]

40. Mikalsen, K.Ø.; Bianchi, F.M.; Soguero-Ruiz, C.; Jenssen, R. Time series cluster kernel for learning similarities between multivariate
time series with missing data. Pattern Recognit. 2018, 76, 569–581. [CrossRef]

41. del Rincon, J.M.; Santofimia, M.J.; del Toro, X.; Barba, J.; Romero, F.; Navas, P.; Lopez, J.C. Non-linear classifiers applied to EEG
analysis for epilepsy seizure detection. Expert Syst. Appl. 2017, 86, 99–112. [CrossRef]

42. Tsipras, D.; Santurkar, S.; Engstrom, L.; Turner, A.; Madry, A. Robustness may be at odds with accuracy. arXiv 2018,
arXiv:1805.12152.

http://dx.doi.org/10.1109/JAS.2019.1911747
http://dx.doi.org/10.1016/j.jmsy.2018.01.003
http://dx.doi.org/10.1007/s00170-019-03988-5
http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1109/IEEESTD. 1990.101064
http://dx.doi.org/10.1145/3242102.3242119
http://dx.doi.org/10.1145/3055635.3056577
http://dx.doi.org/10.1145/3292500.3330690
http://dx.doi.org/10.1080/24725579.2019.1583703
http://dx.doi.org/10.1109/IJCNN.2019.8851936
http://dx.doi.org/10.1109/BigData.2018.8621889
http://dx.doi.org/10.1007/s11063-019-10007-x
http://dx.doi.org/10.1016/j.knosys.2013.04.021
http://dx.doi.org/10.1016/j.isprsjprs.2019.10.003
http://dx.doi.org/10.1016/j.engappai.2013.06.013
http://dx.doi.org/10.1016/j.neunet.2020.04.030
http://dx.doi.org/10.1016/j.eswa.2017.01.056
http://dx.doi.org/10.1016/j.patcog.2017.11.030
http://dx.doi.org/10.1016/j.eswa.2017.05.052


Sensors 2021, 21, 6195 17 of 17

43. Pearson, K. VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. In Philosophical
Transactions of the Royal Society of London; Series A, Containing Papers of a Mathematical or Physical Character; Royal Society of
London for Improving Natural Knowledge: London, UK, 1896; pp. 253–318.

44. Adler, J.; Parmryd, I. Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s
overlap coefficient. Cytom. Part A 2010, 77, 733–742. [CrossRef]

45. Benesty, J.; Chen, J.; Huang, Y. On the importance of the Pearson correlation coefficient in noise reduction. IEEE Trans. Audio
Speech Lang. Process. 2008, 16, 757–765. [CrossRef]

http://dx.doi.org/10.1002/cyto.a.20896
http://dx.doi.org/10.1109/TASL.2008.919072

	Introduction
	Background and Related Work
	A Systematic Approach for Evaluating AI Models under Perturbations
	Robustness Evaluation Based on Perturbations Generation
	Methodology of the Evaluation
	Results of the Evaluation

	Is Robustness Predictable?
	Conclusions, Implications, Limitations and Future Research
	Conclusions
	Implications
	Limitations and Future Research

	References

