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A B S T R A C T   

DNA methylation plays a crucial role in polarising naïve lymphocytes towards their various sub-populations to 
fight against many immune challenges including establishment of tumour. Gamma-tocotrienol (γT3) is a natural 
form of vitamin E, reported to possess anticancer and immunomodulatory effects. This study reports the anti
cancer effects of γT3 through modulation of DNA methylation in several genes in CD4+ T-lymphocytes using a 
syngeneic mouse model of breast cancer. Female BALB/c mice were fed with γT3 or vehicle (soy oil) for two- 
weeks via oral gavage before they were inoculated with 4T1 mouse mammary cancer cells. Supplementation 
continued until the mice were sacrificed. At autopsy, blood was collected via cardiac puncture and CD4+ T-cells 
were isolated for DNA extraction. The DNA was analysed using the EpiTech Methyl II mouse T-helper cell dif
ferentiation PCR array. γT3 supplementation reduced tumour growth in the tumour-induced animals and 
modulated host immune system by inducing changes in DNA methylation patterns of the HOXA10, IRF4 and 
RORα genes, which are involved in differentiation and clonal expansion of CD4+ T-cells. Results suggest that γT3 
may enhance cell-mediated immune response in mice with breast cancer by inducing changes in DNA methyl
ation pattern.   

1. Introduction 

Tocotrienols (T3) belong to the vitamin E family exists naturally in 
four isoforms i.e. alpha (α), beta (β), delta (δ) and gamma (γ) (Wong and 
Radhakrishnan, 2012). Natural sources include in vegetable oils such as 
palm oil, rice bran oil and annatto beans (Liu et al., 2008; Moraes et al., 
2015). Several studies using cell-based and animal models have shown 
that T3 possess anti-cancer effects through various mechanisms 
(Abraham et al., 2019; Montagnani Marelli et al., 2019). We have pre
viously reported that tocotrienols possess anticancer (Loganathan et al., 
2021; Ramdas et al., 2019, 2020), and immunomodulatory 

(Subramaiam et al., 2021; Radhakrishnan et al., 2013) effects in 
cell-based and animal models. In addition, we also found that daily 
supplementation of palm vitamin E generated tumour-specific cytotoxic 
T-lymphocytes (CTL) in a syngeneic mouse model of breast cancer (BC) 
(Hafid et al., 2013) as well as augmented immune response to tetanus 
toxoid vaccine (Radhakrishnan et al., 2013; Mahalingam et al., 2011). 
Recently, we reported on the immunomodulatory effects of gamma-T3 
supplementation in a syngeneic mouse model (Subramaniam et al., 
2021) where we reported that daily supplementation of gamma-T3 
reduced infiltration of T-regulatory cells in the tumours. 

DNA methylation refers to the addition of a methyl group (CH3) to 
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cytosine-guanine (CG) residues at the 5’ end of double-stranded DNA 
(dsDNA) strands (Petryk et al., 2021), which could be a vital process to 
stabilise gene expression and enhance the plasticity of naïve lympho
cytes differentiating into different subpopulations. This process is re
ported to help increase the flexibility and functionality of the 
lymphocytes and may be integral to their ability to respond to various 
immune challenges and the generation of immunological responses 
(Morales-Nebreda et al., 2019; Omilusik and Goldrath, 2019). Unusual 
DNA methylation patterns have been associated with various immune 
disorders (Suarez-Alvarez et al., 2012). Hence, a balance in regulating 
DNA methylation may be required to maintain a stable environment to 
minimise the occurrence of these immune diseases. However, epigenetic 
modifications are reported to be reversible events (Herman and Baylin, 
2003). 

Recent studies suggest a vital link between nutrition and DNA 
methylation (Zhang, 2015; Lim and Song, 2012). For instance, bioactive 
compounds were reported to modulate DNA methylation of genes 
involved in carcinogenesis (Stefanska et al., 2012; Meeran et al., 2010). 
To date, the effect of dietary γT3 in modulating DNA methylation of any 
genes in murine CD4+ T-lymphocytes has not been described. The pre
sent study describes modifications to DNA methylation levels of gene 
involved in T-helper differentiation following dietary γT3 using a syn
geneic mouse model of breast cancer. 

2. Methods 

Ethics approval 

The Joint Committee approved all experimental procedures 
involving animals for Research and Ethics of the International Medical 
University (IMU) (IMU-R113-2013). The study complied with the Ani
mal Ethics Guidelines of the IMU, which complies with the ARRIVE 
guidelines. The study was carried out in accordance with the U.K. Ani
mals (Scientific Procedures) Act, 1986 and associated guidelines, EU 
Directive 2010/63/EU for animal experiments, or the National Institutes 
of Health guide for the care and use of Laboratory animals (NIH Publi
cations No. 8023, revised 1978). 

2.1. Experimental animals 

Female BALB/c mice (five-week-old) were purchased from a com
mercial source in Kuala Lumpur, Malaysia (Chenur Suppliers, Selangor, 
Malaysia) and housed at the Animal House Facilities (AHF) at the IMU, 
Kuala Lumpur, Malaysia. The animals were allowed to acclimatise for 
seven-days before they were used in this study. 

2.2. Cell culture 

The 4T1 murine breast cancer cell line (ATCC CRL-2539) was pur
chased from the American Type Culture Collection (ATCC, Rockville, 
USA). The tumour formed from 4T1 cell inoculation in BALB/c is re
ported to mimic stage IV of human breast cancer (Tao et al., 2008). The 
4T1 cells were maintained in complete medium [RPMI 1640 medium, 
10% FBS, 1% penicillin-streptomycin, 1% sodium pyruvate and 1% 
HEPES (Gibco UK)] at 37 ◦C in a humidified 5% CO2 incubator. 

2.3. Test compound and administration 

Gamma-tocotrienol (γT3) was provided by Davos Life Sciences, Pte 
Ltd, Singapore. Soy oil (Soya Lite, Malaysia) was used as vehicle to feed 
γT3 to the experimental animals via oral gavage. 

2.4. Syngeneic mouse model of breast cancer 

The mice (n = 24) were randomly assigned into two groups i.e. fed 
with 50 μL of vehicle (soy oil) (n = 12) or 0.5 mg γT3 in soy oil (n = 12) 

twice daily by oral gavage for 14-days. Then, half (n = 6) of the mice in 
each group were injected with 4T1 cells (103 cells in 50 μL) in their right 
second thoracic mammary fat pad to induce breast cancer (Selvaduray 
et al., 2010). The same supplement was continued till the end-point of 
the study. Throughout the study, the mice from each treatment group 
were housed together with three mice per cage. The cages were main
tained in the same room and rack, with no relocation. We did not pool 
samples from separate experiments. Tumour volume (V) was calculated 
using the formula: V = 0.52 × L2 × W (Selvaduray et al., 2010). The 
perpendicular diameters referred to length (L) and width (W) were 
measured seven days using a digital calliper. The mice were monitored 
daily to minimise any suffering and were culled on day 35 of the study. 

2.5. Isolation of CD4+ T-lymphocytes 

At autopsy, peripheral blood obtained via cardiac puncture was 
collected in heparinised tubes. The CD4+ T-lymphocytes were isolated 
from whole blood using the MagniSort® Mouse CD4 Positive Selection 
Kit as recommended by the manufacturer (eBioscience, San Diego, CA). 
Briefly, CD4+ T-lymphocytes bind magnet bead-labelled CD4-antibody 
in a tube. The tube was placed in a magnet, which binds the beads bound 
to the CD4+ T-cells. The CD4+ T-cells can then be separated from other 
blood cells by discarding any unbound material. 

2.6. DNA methylation of T-Helper cell differentiation 

Genomic DNA was extracted from the isolated CD4+ T-lymphocytes 
using the QIAGEN DNeasy Blood and Tissue mini kit as recommended by 
the manufacturer’s protocol (QIAGEN, USA). After checking for the 
quality and quantity of DNA, the genomic DNA was processed for DNA 
methylation analysis. The EpiTech methyl II DNA restriction kit 
(SABioscience, USA) was used to prepare the reaction mix with the DNA 
samples before these were loaded into the respective well of the EpiTech 
Methyl II signature PCR plate that was specially to study DNA methyl
ation patterns of 22 genes related to T-helper differentiation. The Epi
Tech Methyl II Mouse T-Helper Cell Differentiation PCR Array 
(SABiosciences, USA) uses a real-time PCR system designed to analyse 
methylation patterns of these 22 genes (Table 1) reported to be involved 
in mouse T-helper cell differentiation. 

2.7. Statistical analysis 

Statistical analysis was carried out for all the results obtained. Stu
dent T-test was performed for all the studies by means of the treated 
groups and control was compared for significance with paired T-test. In 
all cases, significance level was set at p < 0.05 and p < 0.01. Data 
presented in texts, as well as figures were represented as means ±
standard deviation (SD). 

3. Results 

3.1. Tumour growth 

There was a marked reduction (P < 0.05) of tumour volume observed 
in the tumour-induced animals fed with γT3 compared to the vehicle-fed 

Table 1 
Functional grouping of genes annotated in the DNA methylation array for mouse 
T Helper Cell Differentiation.  

GROUPS GENES 

Th1 Cells Eomes, Tbx21 
Th2 Cells Gata3, Il13, Pparg 
Th17 Cells Rora 
Inducible & Natural Regulatory T (iTreg 

& nTreg) Cells 
Fosl1, Irf4, Irf8, Myb, Nr4a3, Pou2f2, Rel, 
Relb, Tgif1, Tnfsf11 

Conventional Versus Regulatory T Cells Chd7, Gata4, Hoxa10, Id2, Lrrc32, Perp  
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group (Fig. 1). 

3.2. Changes in DNA methylation pattern 

Daily supplementation with γT3 caused significant (p < 0.05) 
changes in the DNA methylation patterns of Gata3, Gata4, Nr4a3 and 
Tgif1 genes (Fig. 2A) in their CD4+ T-lymphocytes when compared to 
mice fed with vehicle. In the Gata3 and Gata4 genes, there was increased 
level of methylation in the Gata3 and Gata4 genes and reduced levels in 
Nr4a3 and Tgif1 genes. In the mice induced with BC and fed with γT3, 
there was significant (p < 0.05) changes in the Hoxa10, Irf4 and Rora 
genes in their CD4+ T-lymphocytes when compared to mice fed with 
vehicle (Fig. 2B). In this group, the percentage of DNA methylation was 
reduced in Hoxa10 gene but increased in Irf4 and Rora genes. There was 
significant (p < 0.05) changes in the DNA methylation pattern of five 
genes (Gata3, Hoxa10, Nr4a3, Rora and Tgif1) out of the 22 genes in the 
DNA methylation array between vehicle-fed mice induced with tumour 
compared to those without tumour (Fig. 3A). In γT3-fed animal, there 
was significant (p < 0.05) changes in the DNA methylation pattern of 
four genes (Gata3, Irf4, Nr4a3, and Rora) out of the 22 genes in the DNA 
methylation array in tumour-induce mice compared to no tumour group 
(Fig. 3B). 

4. Discussion 

Supplementation with γT3 caused significant reduction in tumour 
volume and metastasis compared to vehicle-fed mice, which is in 
agreement with some of the published literature with regards to the anti- 
cancer effects of T3. For instance, supplementation of T3 from annatto 

beans, which contain δT3 (90%) and γT3 (10%) was shown to inhibit 
growth of mammary tumour (Pierpaoli et al., 2013). In another study, 
γT3 supplementation caused marked inhibition tumour growth in 
prostate cancer (Yap et al., 2010) and gastric cancer (Manu et al., 2012). 
In our recent paper, we provided evidence that showed daily supple
mentation with γT3 modulated host immune response in this same 
syngeneic mouse model of breast cancer (Subramaniam et al., 2021). 
Daily supplementation with γT3 reduced infiltration of Treg into the 
tumours, which correlate with decreased tumour growth and metastasis 
as well as regulated gene expression that supported Th1 responses. 

Apart from anticancer activities, T3 also induced immune-enhancing 
activities. For example, TRF supplementation boosted host immune 
response to vaccine (Mahalingam et al., 2011; Radhakrishnan et al., 
2013) as well as proceed tumour-specific cytotoxic T-lymphocytes 
following dendritic cell immunotherapy in a syngeneic mouse model of 
BC (Hafid et al., 2013). 

A stable regulation of DNA methylation is required for the plasticity 
of the CD4+ T-lymphocytes to allow flexible immune responses (Omi
lusik et al., 2019). Recently, it was reported that T3 can induce epige
netics changes in cancer cells (Aggarwal et al., 2019; Huang et al., 
2017). To date, there are no reports on γT3 supplementation causing 
immunomodulatory effects through changes in DNA methylation of 
genes related to immune response. In the present study, we found that 
γT3 supplementation caused changes to the DNA methylation levels of 
several genes associated with immune response. 

There was an increase (P < 0.05) in methylation levels of the GATA3 
gene in CD4+ T-cells isolated from γT3 supplemented animals. GATA 
binding protein 3 (GATA3) gene is reported to be a master regulator of the 
Th2 subsets differentiation (Wan, 2014). The Th2 cells play a vital role 
to eliminate extracellular parasites and secrete cytokines that suppress 
Th1 immune responses (Coffman, 2006). Hypermethylation means that 
the expression of the GATA3 gene will be reduced. So, these findings 
suggest γT3 supplementation may promote Th1 immune responses by 
hypermethylation of the GATA3 genes; thereby suppressing develop
ment of Th2 cells. 

The nuclear receptor subfamily 4, group A, (Nr4a) gene family consist 
of Nr4a1, Nr4a2 as well as Nr4a3 receptors (Sekiya et al., 2013). Studies 
have shown that the Nr4a receptors play important roles in the devel
opment of T-reg cells by activating the master transcription factor Foxp3 
(Bandukwala and Rao, 2013). We found that γT3 supplementation 
reduced methylation levels (P < 0.05) of the Nr4a gene in CD4+ T-cells 
in healthy mice compared to the vehicle-fed; suggesting that γT3 may 
support maintenance of immunological tolerance under normal cir
cumstances through activation of the Nr4a gene. 

The expression of the homeobox A10 (HOXA10) gene is down- 
regulated during T-cell maturation and development (Taghon et al., 
2003). In tumour-induced mice, the was a marked (p < 0.05) increase in 
the methylation level of the Hoxa10 gene in their CD4+ T-cells when 
compared to normal mice. This suggest that expression of the Hoxa10 
gene was reduced in tumour-laden mice. However, in γT3-fed mice with, 
reduced (p < 0.05) methylation level of the Hoxa10 gene was observed, 
which suggest that expression of this gene may be restored in these 
animals. 

Increased (P < 0.05) levels of methylation was observed in the 
interferon-regulatory factor-4 (IRF4) gene from CD4+ T-lymphocytes 
isolated from tumour-induced mice fed with γT3 compared to vehicle- 
fed mice, which suggest that γT3 hypermethylated the IRF4 gene. The 
IRF4 gene is the master regulator of the CD4+ Th9, Th2, Th17 and T- 
follicular helper cells (Huber and Lohoff, 2014). The Th9 cells have an 
ambivalent role in the tumour microenvironment (Schmitt and Bopp, 
2012). 

Hypermethylation (P < 0.05) of the retinoic acid receptor-related 
orphan receptor alpha (RORα) gene was observed in CD4+ T-cells ob
tained from the tumour-laden mice fed with γT3 compared to vehicle- 
fed. The RORα gene is a regulator of Th17 differentiation (Luck
heeram et al., 2012). Recent studies have found that the Th17 cells may 

Fig. 1. (A) Tumour volume was measured once every seven-day after the 
tumour was palpable using a digital calliper. Tumour volume was calculated 
using a previously reported formula (28). (B) Tumour weight on day 35. Data is 
represented as mean tumour vol/wt ± standard deviation (SD) calculated from 
six independent mice per group. [*p < 0.05 versus vehicle treated on day 14, 
**P < 0.01 versus vehicle treated on day 14]. 
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play dual roles in a tumour microenvironment. 

5. Conclusion 

Supplementation of γT3 to tumour-inoculated mice twice a day for 
two-weeks before induction of BC showed significant (p < 0.05) 
reduction in tumour volume. Supplementation of γT3 to healthy mice 
caused significant change to DNA methylation patterns of three (GATA3, 
NR4A3 and TGIF1) genes compared to those fed with vehicle. However, 
in tumour-induced mice fed with γT3, there was significant change in 
DNA methylation patterns of the HOXA10, RORα as well as IRF4 genes. 
These findings suggest that γT3 supplementation can regulate the DNA 
methylation patterns of CD4+ T-lymphocytes, which in turn may have 
an impact on their ability to regulate induce anti-tumour immune re
sponses in the tumour-induced animals and boost immunity in healthy 
mice. 
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