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Abstract
Background: The evolution of type II MADS box genes has been extensively studied in
angiosperms. One of the best-understood subfamilies is that of the Arabidopsis gene APETALA3
(AP3). Previous work has demonstrated that the ancestral paleoAP3 lineage was duplicated at some
point within the basal eudicots to give rise to the paralogous TM6 and euAP3 lineages. This event
was followed in euAP3 orthologs by the replacement of the C-terminal paleoAP3 motif with the
derived euAP3 motif. It has been suggested that the new motif was created by an eight-nucleotide
insertion that produced a translational frameshift.

Results: The addition of 25 eudicot AP3 homologs to the existing dataset has allowed us to clarify
the process by which the euAP3 motif evolved. Phylogenetic analysis indicates that the euAP3/TM6
duplication maps very close to the base of the core eudicots, associated with the families
Trochodendraceae and Buxaceae. We demonstrate that although the transformation of paleoAP3
into euAP3 was due to a frameshift mutation, this was the result of a single nucleotide deletion.
The use of ancestral character state reconstructions has allowed us to demonstrate that the
frameshift was accompanied by few other nucleotide changes. We further confirm that the
sequence is evolving as coding region.

Conclusion: This study demonstrates that the simplest of genetic changes can result in the
remodeling of protein sequence to produce a kind of molecular 'hopeful monster.' Moreover, such
a novel protein motif can become conserved almost immediately on the basis of what appears to
be a rapidly generated new function. Given that the existing data on the function of such C-terminal
motifs are somewhat disparate and contradictory, we have sought to synthesize previous findings
within the context of the current analysis and thereby highlight specific hypotheses that require
further investigation before the significance of the euAP3 frameshift event can be fully understood.

Background
An increasing body of research has demonstrated that
changes in gene regulation play a major role in the evolu-
tion of morphological form (reviewed [1-3]). That is not

to say, however, that the evolution of coding sequence
does not also contribute. Multiple examples from both
plants and animals demonstrate that even minor changes
in coding sequence can impact both biochemical and
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developmental functions (e.g., [4-7]). Interestingly, a
common theme among many of these examples is gene
duplication, which serves to release resultant paralogs
from the selective pressures experienced by the single
ancestral locus. In order to begin to understand the proc-
ess by which non-synonymous mutation leads to changes
in gene function, we need to be able to isolate such
changes and characterize the pattern of sequence evolu-
tion in detail. This is facilitated by a thorough understand-
ing of taxonomic and gene lineage evolution as well as a
relatively recent evolutionary timescale. All of these crite-
ria are met by the APETALA3 (AP3) lineage of type II
MADS box genes.

Members of the type II MADS box family control many
important aspects of plant development (reviewed [8]).
Extensive phylogenetic analyses have identified multiple
subfamilies, which are particularly well understood in the
seed plants (reviewed [9]). This interest was largely trig-
gered by the central role that type II MADS box genes play
in the genetic program controlling floral organ identity.
The so-called ABC model [10] describes how floral organ
identity is determined by an overlapping set of three gene
activities that produce distinct combinatorial codes: A
class genes code for first whorl sepals; A+B, for second
whorl petals; B+C, for third whorl stamens; and C alone,
for fourth whorl carpels. Subsequent studies have identi-
fied additional critical gene classes, including the "E" class
that acts in all floral whorls to facilitate the function of A,
B and C class genes [11,12]. All but one of the ABCE class
loci are type II MADS box genes [13], which are also
known as MIKC MADS box genes due to the canonical
structure displayed by the members. Starting at the N-ter-
minal end of the gene, the 'M' or MADS domain is highly
conserved across eukaryotes, and mediates DNA binding
and protein dimerization [14,15]. The next two regions,
referred to as I and K, are primarily involved with protein
dimerization [14], while the last, the C domain, has been
associated with a number of different functions. These
include mediating higher-order interactions among
MADS protein dimers [16,17], transcriptional activation
[18,19], and post-translational modification [20]. A nota-
ble feature of the C-terminal domain is that although it
shows a lower degree of overall sequence conservation
than the other regions, each of the major MIKC sub-
families possesses short, highly conserved diagnostic
motifs at their C-terminal end (reviewed [21,22]). In the
majority of cases, the specific function of these motifs
remains unknown.

As our understanding of the evolution of MIKC MADS
box genes has grown, it has become increasingly clear that
their evolutionary history is one of frequent gene duplica-
tion across all phylogenetic levels (reviewed [9,23]). One
subfamily that demonstrates this phenomenon especially

well is defined by the APETALA3 (AP3) and PISTILLATA
(PI) gene lineages, which include the Arabidopsis petal and
stamen identity genes of the same names. These two line-
ages are sister groups within the larger MIKC MADS gene
family [24] and are the product of a gene duplication
event that predated the diversification of the angiosperms
[25-27]. Early studies recognized that there were, in fact,
two paralogous lineages of AP3-like genes in the core eud-
icots: one termed euAP3 that contains AP3 itself and the
other named TM6, which lacks a representative in Arabi-
dopsis but has been identified in many other core eudicot
taxa [28,29]. Although clearly related, the euAP3 and TM6
lineages have a number of distinct features, the most strik-
ing of which is their C-terminal motifs. In the TM6 and
ancestral paleoAP3 lineages, the C-terminal motif has the
consensus YGxHDLRLA (x indicating a variable site) [28].
This sequence, the paleoAP3 motif, is conserved through-
out angiosperms and is recognizable in gymnosperm
AP3/PI ancestors as well as the even more distantly related
Bsister lineage [30,31]. In the euAP3 lineage, however, the
paleoAP3 motif is completely absent and in its place is the
so-called euAP3 motif with the consensus SDLTTFALLE
[28]. The differences in this region and other sites reveal
euAP3 to be a divergent paralogous lineage relative to
both its ancestral and sister lineages.

The patterns of sequence evolution associated with the
euAP3/TM6 duplication raise questions regarding the
functional significance of the C-terminal motifs in general
and the euAP3 divergence in particular. From the bio-
chemical standpoint, we can say with certainty that the
euAP3 motif is important for proper AP3 function in vivo,
and that the paleoAP3 and euAP3 motifs are not function-
ally equivalent [6,32]. In terms of the genes' developmen-
tal roles, the suggestion has been made that following the
euAP3/TM6 duplication, the euAP3 lineage acquired a
new role in petal development [6]. The evidence to sup-
port this conclusion is diverse, and includes: 1) the fact
that the expression patterns of paleoAP3 orthologs in the
petals of non-core eudicots are much more variable than
those observed for euAP3 representatives within the core
eudicots [29,33]; 2) that a chimeric AP3 bearing a
paleoAP3 motif is especially poor at promoting petal
identity in Arabidopsis [6]; and 3) that the sole TM6
ortholog to be functionally characterized, PhTM6 from
Petunia, only contributes to stamen identity ([34],
Vandenbussche and Gerats, pers. comm). On the other
hand, paleoAP3 orthologs are almost always expressed in
petaloid organs (e.g., [35-37]) and appear to function in
the identity of petal-derived organs in the grasses [38,39].
One explanation that could encompass all of the current
evidence is to posit that although paleoAP3 members play
variable roles in petal identity, this function was canalized
at the base of the core eudicots in conjunction with
changes in biochemical aspects of euAP3 function and
Page 2 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:30 http://www.biomedcentral.com/1471-2148/6/30
subsequent subfunctionalization in the TM6 lineage
[40,41].

In regards to the evolution of the euAP3 motif itself, it was
recently recognized that a frameshift event in the coding
sequence of the paleoAP3 motif could generate compo-
nents of the euAP3 motif [22]. The model of Vanden-
bussche et al. proposes that an eight nucleotide insertion
contributed to the evolution of the euAP3 motif both by
the addition of novel sequence and by causing a
frameshift mutation. In the current study, we have sought
to better establish the timing of the euAP3/TM6 duplica-
tion event and the nature of the evolution of the euAP3
motif. The addition of 25 new AP3 homologs has particu-
larly provided insight into the latter issue by demonstrat-
ing that the derivation of the euAP3 motif was even
simpler than previously suggested. We conclude that a
single nucleotide deletion transformed the ancestral
paleoAP3 motif into the euAP3 motif with relatively few
associated nucleotide changes. Furthermore, we provide
evidence that the region is being conserved at the amino
acid level, suggesting that the almost immediate conserva-
tion of the euAP3 motif was due to new function of the
novel protein sequence.

Results and discussion
Characterization and phylogenetic analysis of AP3 
homologs
In an effort to better understand the evolution of the AP3
lineage in the eudicots, we used RT-PCR to isolate AP3
homologs from five taxa representing every lineage of the
basal eudicots as well as eight taxa drawn from core eud-
icot lineages that had been poorly sampled (Fig. 1). This
process yielded 25 AP3 homologs, 5 of which have been
published in the context of previous studies [27,37] (see
Additional file 1 for GenBank accession numbers). All of
the basal eudicot loci exhibit well-conserved C-terminal
paleoAP3 motifs (Additional file 2). Pachysandra,
Meliosma and Platanus were found to express multiple par-
alogs with high degrees of sequence similarity, most likely
indicating recent gene duplication events. As expected,
two types of loci were identified in the core eudicots, some
with paleoAP3 motifs and others with euAP3 motifs
(Additional file 2). Both types were obtained from Saxi-
fraga, Corylopsis and Ilex, but in the other five taxa we were
only able to detect one of the two classes. Only paleoAP3-
containing loci were found in Phytolacca, Paeonia, Vitis and
Loranthus, while only euAP3-containing genes were iden-
tified in Kalanchoe. Multiple closely related paralogs were
identified in Kalanchoe, Phytolacca and Corylopsis. The
detection of only one AP3 class may have several different
causes including actual paralog loss; low levels of paralog
expression, which could hamper RT-PCR-based identifica-
tion; and sequence divergence that prevented the success
of current primer combinations.

We performed phylogenetic analysis using maximum
likelihood (ML) on a nucleotide dataset (Additional file
3) containing all of the new loci in addition to previously
identified basal and core eudicot sequences, with magno-
liid dicot, monocot and ANITA grade AP3 homologs serv-
ing as outgroups to the eudicot sequences (Fig. 2). The
recovered phylogeny is consistent with previous analyses
[26,28] in showing two major core eudicot lineages
(euAP3 and TM6) that were derived from an ancestral lin-
eage (paleoAP3), which is represented in the basal eudicot
and outgroup taxa. There is strong ML bootstrap support
for the core eudicot euAP3 and TM6 clades but little sup-
port for the other backbone nodes. Marginal support is
seen for the clade containing Trochodendron AP3, the
Pachysandra AP3 homologs and the other core eudicot
sequences. The ML tree places Trochodendron and Pachy-
sandra close to the gene duplication event that produced
euAP3 and TM6. Based on a strict interpretation of the
current phylogeny, this duplication would be inferred to
have occurred after the divergence of Trochodendraceae
but before the split of Buxaceae (star in Fig. 2). However,
the lack of support for the backbone nodes allows alterna-
tive hypotheses. Most notably, the multiple loci from
Aquilegia are not monophyletic (Fig. 2), suggesting addi-
tional duplications that may not be independent from
euAP3 and TM6. It has been demonstrated that there are
at least three paralogous AP3 lineages in the Ranunculales
[37] but this study did not test whether these events are
related to that which gave rise to euAP3 and TM6. Analysis
of a dataset focused on complete sampling of the Ranun-
culales (including an additional 45 sequences) recovers
all of the Ranunculid representatives as a single clade with
moderate support (data not shown, Kramer, in prep). This
indicates that the Ranunculid gene duplication events are,
in fact, independent from that of euAP3/TM6. While this
increased sampling improves the resolution of the Ranun-
culid representatives, it is otherwise identical to the anal-
ysis shown in Fig. 2, both in terms of the positions of the
Trochodendraceae and Buxaceae homologs, and in the
lack of support for their positions.

The major departure of the current phylogeny from previ-
ous studies is the position of the Pachysandra AP3
homologs, representing sampling from two species,
which are placed as sister to the euAP3 lineage s.s. after the
duplication event. This position is somewhat surprising
given that none of the Pachysandra loci contain euAP3
motifs, which have previously been considered diagnostic
for the euAP3 lineage. However, in the I and K regions of
the protein sequence (Additional file 3), the Pachysandra
AP3 homologs share other character states that have been
identified as euAP3 lineage synapomorphies [28]. It
should be noted that in maximum parsimony (MP) anal-
yses, the Pachysandra loci sometimes are placed as an ear-
lier branch, just before the euAP3/TM6 duplication event
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(data not shown), underscoring the poorly supported
position of these loci.

This analysis does allow us to make some conclusions
regarding the timing of the euAP3/TM6 duplication event.
The duplication clearly occurred before the last common
ancestor of all core eudicots, including the family Gunner-
aceae, which has been identified as sister to the tradition-
ally defined core eudicot clade [42]. It seems likely that

the duplication occurred after the early lineages of the
basal eudicots, including the Ranunculales, Proteales and
Sabiaceae. Based on the current analysis, we cannot deter-
mine with certainty how the timing of the duplication
event related to the origin of the Trochodendraceae and
Buxaceae lineages. Similarly, recent phylogenetic studies
of the eudicots place these two families as sister to the core
eudicots including Gunneraceae without strong support
for their exact branching order (Fig. 1) [42,43]. Most

Simplified eudicot phylogeny with newly sampled taxaFigure 1
Simplified eudicot phylogeny with newly sampled taxa. Simplified eudicot phylogeny based on [42] and [43] with newly 
sampled taxa noted. The inferred timing of the euAP3/TM6 duplication based on phylogenetic analyses of the current dataset 
(Fig. 2) is indicated by the blue box.
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Maximum likelihood phylogeny derived from analysis of the AP3 nucleotide datasetFigure 2
Maximum likelihood phylogeny derived from analysis of the AP3 nucleotide dataset. Bootstrap percentages (above 
50) are placed at the nodes. The name of each taxon is in parentheses following the locus name. The node corresponding to 
the euAP3/TM6 duplication is indicated with a star while the branch associated with the subsequent euAP3-specific frameshift 
event is indicated with an arrow. Colored vertical bars on the right are used to indicate the paralog lineage membership of the 
adjacent loci: the purple bars represent the euAP3 lineage; the green bar, the TM6 lineage; and the blue bars, the ancestral 
paleoAP3 lineage. The phylogenetic positions of the associated taxa are denoted as Core Eudicot, Basal Eudicot, Magnoliid, 
Monocot or ANITA (See Additional file 1, [94] and [95]). Colored branches are used to indicate the "frameshift potential" of 
each locus: black branches mean that a single nucleotide frameshift in the paleoAP3 or euAP3 motif would recover 0–3 amino 
acids of the other motif; orange branches, 4–6 amino acids; and red branches, seven or more amino acids. For instance, as 
shown in Fig. 3A, the first reading frame of PloAP3-1 encodes a perfect paleoAP3 motif but the second reading frame would 
produce a motif with seven out of the ten euAP3 motif residues, and, therefore, the PloAP3-1 branch is red. In contrast, the 
second reading frame of the AreAP3 paleoAP3 motif would have only two amino acids similar to the euAP3 motif, which is indi-
cated by a black branch for AreAP3. Additionally, some paleoAP3 cDNAs would encode a positionally correct stop codon for a 
euAP3 motif in their second frame. These loci are denoted with red asterisks.
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likely, these difficulties reflect the very rapid diversifica-
tion that occurred during this period of angiosperm evo-
lution, which dates to ~95–115 mya [44].

Evidence for a single nucleotide frameshift event at the 
base of the euAP3 clade
What is interesting about the current dataset is that all of
the paleoAP3 lineage members and the Pachysandra AP3
homologs possess fairly normal paleoAP3 motifs with no
clear sign of intermediates with the highly diverged euAP3
motif (Additional file 2). The explanation for this lack of
'missing links' has recently become apparent. In the
course of characterizing the AP3 representatives from Pla-
tanus [37], we noticed that while the first reading frame
encoded a perfect paleoAP3 motif, the second frame in
the same region had the potential to encode an amino
acid sequence with strong similarity to the euAP3 motif
(Fig. 3A). The 3' UTR of PloAP3-1 even contains a stop
codon in the correct frame and position. It has similarly
been suggested by other researchers that a frameshift
event transformed the paleoAP3 motif into the euAP3
motif, but this model posited an eight nucleotide inser-
tion [22]. Examination of our basal eudicot sequences
suggests a much simpler model whereby a single nucle-
otide deletion gave rise to the novel motif without the
necessity for the insertion of new nucleotides. In fact, it is
possible to construct a theoretical nucleotide sequence
that encodes a chemically conserved paleoAP3 motif in
the first reading frame and a perfect euAP3 motif in the
second (Fig. 3F). We will subsequently refer to this phe-
nomenon, the capacity of a given nucleotide sequence to
simultaneously encode a paleoAP3 motif in the first read-
ing frame and a recognizable euAP3 motif in the second,
as 'frameshift potential.' Naturally occurring frameshift
potential is particularly noticeable in other basal eudicot
loci (Fig. 2, 3B). AP3 homologs from the magnoliid
dicots, monocots or ANITA grade show little frameshift
potential by comparison (Fig. 2, 3C). Similarly, core eud-
icot euAP3 and TM6 lineage members exhibit relatively
little frameshift potential (in the case of euAP3, this would
be a kind of 'reverse' frameshift potential to regenerate
paleoAP3 sequence from euAP3; Fig. 2, 3D-E).

The phylogenetically-structured nature of euAP3/
paleoAP3 frameshift potential suggests that it is depend-
ent on patterns of codon usage and, therefore, that this
region is behaving as normal coding region. This conclu-
sion is significant since one possible explanation for the
observed phenomenon is that the region is conserved at
the nucleotide level rather than at the amino acid level,
such as would be the case for something like a microRNA
binding site, for example. The prediction of this scenario,
however, is that the sequence should not evolve in a pat-
tern typical of coding region, where the first and second
codon positions exhibit lower nucleotide diversity than

the third positions. An alternative model is that the region
is subject to programmed translational frameshift, a phe-
nomenon previously observed in fungal, prokaryotic,
plastid and viral genomes (reviewed [45]). This process is
associated with perturbations in the expected pattern of
sequence evolution such that substitutions are concen-
trated in the third positions of the original reading frame
rather than in the third positions of the new frame. In
addition, the encoded amino acid sequence of the original
frame is conserved (e.g., [46,47]). Thus, under the first
hypothesis, the paleoAP3 sequence would be conserved at
the nucleotide level and would not bear the hallmarks of
coding sequence evolution, while under the second
hypothesis, the sequence should evolve like coding
sequence but in the original reading frame.

Our general observations, as well as those of others [22],
are not consistent with these models but we wanted to test
this further by directly analyzing patterns of nucleotide
diversity in the region. Figure 4 shows a comparison of
position-by-position nucleotide diversity values for the
region spanning the inferred frameshift event (see also
Additional file 6). In the codons before the frameshift,
first and second positions generally show lower nucle-
otide diversity than third positions. This pattern is main-
tained in both the paleoAP3-encoding and frameshifted
euAP3-encoding sequences. Comparison of the appropri-
ate paleoAP3 and euAP3 positions reveals that when the
first position nucleotides of the paleoAP3 motif become
third positions in euAP3-encoding sequences, the nucle-
otide diversity generally increases. Similarly, third posi-
tions in the paleoAP3 motif show high diversity but these
values tend to decrease when the nucleotide becomes
shifted to the second position in the euAP3 motif. Overall,
position-by-position nucleotide diversity differs between
the paleoAP3 and euAP3 regions, which suggests that the
patterns of conservation do change following the
frameshift event. Taken together, these findings confirm
that both regions show all of the evolutionary hallmarks
of sequence that is being conserved at the amino acid level
in the first reading frame, allowing us to reject both the
nucleotide-level conservation and programmed transla-
tional frameshift hypotheses. We conclude, therefore, that
the ancestral paleoAP3 motif, which was conserved over
more than 200 million years [31], was completely
replaced by a new amino acid motif via a single nucleotide
deletion following gene duplication. The euAP3 motif
appears to have been conserved due to its protein function
rather than any underlying nucleotide-level function. This
clarification of the model for euAP3 evolution has been
facilitated by the greatly improved sampling of basal eud-
icot lineages, which, in turn, allowed the refinement of
the AP3 alignment to include fewer indels than that used
by Vandenbussche et al. [22].
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Frameshift potentials of Platanus PloAP3-1 (A), Pachysandra PtAP3-1 (B), Aristolochia AreAP3 (C), S lycopersicon TM6 (D), Antirrhi-num DefA (E) and a theoretical paleoAP3-encoding sequence (F)Figure 3
Frameshift potentials of Platanus PloAP3-1 (A), Pachysandra PtAP3-1 (B), Aristolochia AreAP3 (C), S. lycopersicon 
TM6 (D), Antirrhinum DefA (E) and a theoretical paleoAP3-encoding sequence (F). A-D, Nucleotide sequences of 
the paleoAP3-encoding regions of Platanus PloAP3-1 (A), Pachysandra PtAP3-2 (B), Aristolochia AreAP3 (C) and S. lycopersicon TM6 
(D) with first and second predicted translation frames. E, Nucleotide sequence of the euAP3-encoding region of Antirrhinum 
DefA with first and third predicted translation frames. F, Nucleotide sequence of a theoretical DNA sequence that encodes a 
chemically conserved paleoAP3 motif in the first translational reading frame and a perfect euAP3 motif in the second transla-
tional reading frame. Chemical similarity with the paleoAP3 motif consensus YGxHDLRLA is indicated by purple letters while 
chemical similarity with the euAP3 motif consensus SDLTTFALLE is indicated by blue letters.
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As shown in Fig. 3F, it is possible that the single nucle-
otide deletion was accompanied by few additional nucle-
otide changes. In an effort to investigate the potential
range of nucleotide changes, we used MP and ML meth-
ods to reconstruct the ancestral nucleotide character states
for critical nodes in the current AP3 phylogeny (Fig. 5).
We also conducted the same analyses on alternative topol-
ogies to control for the fact that there is little or no support
for the backbone of our phylogeny, (see Fig. 5 and Meth-
ods). Due to the high level of conservation in this region,
the ancestral character state reconstructions were very sim-
ilar for the MP and ML approaches, regardless of the mod-
els of substitution or the details of the topology. Based on
these results, it appears that 4–6 nucleotide changes

occurred coincidently with the frameshift event, which in
the current phylogeny would be inferred to have occurred
along the branch at the base of the euAP3 clade after the
separation of the Buxaceae (represented by Pachysandra;
Fig. 2). We cannot predict the order of the nucleotide
changes relative to the frameshift event, however; and due
to the nature of the frameshift, some changes that are syn-
onymous before the deletion event are non-synonymous
after (and vice versa). Figs. 5C and 5D reconstruct two
alternative scenarios using the ancestral character states
shown in Fig. 5B (which infers six nucleotide changes). In
Figs. 5C and 5D, each line represents a stepwise set of
changes that could have occurred during the transition
from the states reconstructed for node B1 to those recov-

Comparison of position-by-position nucleotide diversity values for paleoAP3 and euAP3 motif encoding loci (see also Add Files 4-6)Figure 4
Comparison of position-by-position nucleotide diversity values for paleoAP3 and euAP3 motif encoding loci 
(see also Add. Files 4-6). The yellow bars indicate the values for a dataset including all TM6 lineage members and basal eud-
icot paleoAP3 loci. The codon positions of each nucleotide and the corresponding amino acids are shown immediately below 
the chart. Third positions are highlighted in yellow. The blue bars indicate the values for a dataset including all euAP3 lineage 
members. The codon positions of each nucleotide and the corresponding amino acid are shown at the bottom, with third posi-
tions highlighted in blue. The position of the euAP3 frameshift is represented by a dash mark. Note that some of the euAP3 
positions have zero nucleotide diversity. n/a = not applicable.
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ered for node B2. The first scenario is a 'minimal' model
in which only one of the six changes is nonsynonymous
and this one change is chemically conservative (Fig. 5C).
The second is a 'maximal' model where all six changes are
nonsynonymous. In this case, three out of the nine
paleoAP3 amino acids are changed before the frameshift
and three of the ten euAP3 amino acids are changed after-
ward (a total of four of these changes are chemically non-
conservative). Even under the 'maximal' model, the
frameshift event was clearly more significant in terms of
sequence remodeling, resulting in the replacement of all
but one of the paleoAP3 amino acids. Overall, these find-
ings demonstrate that it is possible for the euAP3 motif to
have been generated by single nucleotide deletion with-
out significant additional nonsynonymous changes.

Evidence for independent frameshift events in the AP3 
lineage
The euAP3 frameshift event seems so extraordinary that it
naturally begs the question of how often this sort of thing
happens. Similar events have been described in other
MADS box genes lineages [22,48] as well as vertebrate
gene families [49]. We examined the larger AP3 dataset for
additional examples and found three (Fig. 6). The first we
will consider is a single nucleotide insertion very close to
the 3' end of the coding region in euAP3 orthologs of the
Solanaceae (Fig. 6A). Other euAP3 loci from the Asterids,
including the basal Solanaceous genus Petunia [50], show
the complete euAP3 motif with a terminal glutamic acid.
In comparison to these sequences, the euAP3 homologs of
more derived members of the Solanaceae have a single A
insertion in the eighth codon of the euAP3 motif, which
results in a single amino acid truncation of the motif. Such
a minor change seems unlikely to have major biochemical
significance, potentially explaining why the frameshifted
form could be maintained. In contrast to this example, the
other two instances are from taxa that have multiple
recent AP3 paralogs. In Paeonia, there are two TM6 lineage
members that share 91% identity at the nucleotide level.
Their C-terminal regions are completely divergent, how-
ever, with PesTM6-1 having a recognizable paleoAP3
motif while PesTM6-2 has only the first tyrosine of the
consensus (Fig. 6B). Examination of the nucleotide align-
ment reveals two indels in the 3' end of the coding region,
the more significant of which is a 7-nucleotide deletion in
PesTM6-2 that falls within the first codon of the paleoAP3
motif. This results in the complete replacement of the
paleoAP3 sequence with a novel coding region derived
from the 3' UTR and a second indel region. Similar to this
case, a frameshift is observed in one of the four paleoAP3
paralogs of the magnoliid dicot Drimys, which is a recently
polyploid genus [51]. The nucleotide identity among
these paralogs ranges from 84–93% and three of the four
paralogs have canonical paleoAP3 motifs. The fourth,
DrwAP3-1, diverges in sequence in the second half of the

motif, corresponding with an eight nucleotide deletion of
this region. It has been argued that compensating mecha-
nisms such as the presence of closely related paralogs or
splicing variants can enable frameshift mutations to per-
sist and eventually lead to functional divergence [22,49].
This model is consistent with the current observations for
Paeonia and Drimys, as well as for the ancient euAP3/TM6
duplication. The frameshifts detected in Solanum, Paeonia
and Drimys may also indicate that this type of event occurs
with relative frequency. Although sequence remodeling
events such as those in PesTM6-2 and DrwAP3-1 may very
well be lost over a short evolutionary timescale, it only
takes one successful event to found a divergent paralogous
lineage such as euAP3.

Molecular 'hopeful monsters'
The term 'hopeful monster' was coined by Goldschmidt
[52] to describe new species that arise abruptly by macro-
mutation. Very rarely, he argued, such profound muta-
tions could be beneficial and allow the organism to
rapidly adapt to a new mode of life. On the molecular
level, the impact of a frameshift mutation on protein
sequence is similarly drastic – replacing most, if not all, of
the ancestral amino acids with new residues. It seems very
likely that the vast majority of such mutations will not be
retained, but the euAP3/TM6 example, as well as others
[22,49], demonstrates that there are isolated cases in
which frameshifts have become conserved. Although this
phenomenon would seem to be so unlikely as to be van-
ishingly rare, the role of gene duplication in this process
means that it is essentially a matter of numbers, particu-
larly in plants. It has been suggested that plants are espe-
cially subject to frequent gene duplications [53], due to
everything from genome-scale events to single locus tan-
dem duplications. In particular, loci involved in transcrip-
tional regulation and signal transduction appear to be
preferentially retained [54,55]. Phylogenetic analyses of
multiple gene families bear out this impression, display-
ing evidence of duplications at every phylogenetic level
(e.g., [27,56-58]). The lower eudicots appear to be a par-
ticularly active period for MADS box gene duplication
(reviewed [23,59]), leading to the suggestion that at least
one genome duplication occurred during this period [60].
Given what may be a relatively high rate of paralog gener-
ation, even very rare events such as the appearance of an
adaptive frameshift mutation will occur at low frequency.
Once such a frameshifted allele appears, it will be subject
to the usual microevolutionary forces and may be fixed
due to selection or neutral processes. Along these lines, it
has been suggested that periods of paralog maintenance
due to neutral forces or subfunctionalization may eventu-
ally facilitate neofunctionalization [61,62].

Of course, it is only the evolutionarily successful events, or
the fairly recent ones, that can be easily detected. Many
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Nucleotide ancestral character state reconstructions and evolutionary scenariosFigure 5
Nucleotide ancestral character state reconstructions and evolutionary scenarios. A, The MP ancestral character 
state reconstructions for the pre- and post-frameshift nodes (A1 and A2, respectively, as indicated to the right) of the recov-
ered phylogeny (Fig. 2). These nucleotide sequences were recovered with the accelerated transitions (ACCTRAN) setting. 
Under the delayed transitions (DELTRAN) setting, the inferred sequences were identical to those shown in B. In the schematic 
phylogeny to the right, the star indicates the euAP3/TM6 duplication node and the red branch denotes the timing of the 
frameshift event. B, The MP ancestral character state reconstructions for an alternative topology where the Pachysandra loci 
predate the euAP3/TM6 duplication (again indicated by a star on the schematic phylogeny to the right). In this case, the 
frameshift occurred along the red branch immediately following the duplication event. Node B1 represents the duplication 
while B2 represents the ancestor of the euAP3 clade. The sequences recovered with the ACCTRAN and DELTRAN settings 
were identical. C. Evolutionary scenario that minimizes the number of non-synonymous changes associated with the frameshift 
event. Each line represents stepwise changes that would have occurred during the transition from the sequence indicated as 
'node B1' to that denoted 'node B2.' Under this model, four nucleotide changes occurred before the frameshift (line 'pre-FS') 
and two after (line 'node B2'), but only one of these changes was non-synonymous (indicated by red asterisk). D. Evolutionary 
scenario that maximizes the number of non-synonymous changes associated with the frameshift event. Again, each line repre-
sents stepwise changes that would have occurred during the transition from the sequence indicated as 'node B1' to that 
denoted 'node B2.' Under this model, three nucleotide changes occurred before the frameshift (line 'pre-FS') and three after 
(line 'node B2'), but all of these changes were non-synonymous (indicated by red asterisks). Scenarios in C and D are both 
based on the reconstructions shown in B. All nucleotide changes are indicated with red letters. FS = frameshift.
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such molecular 'monsters' may have come and gone over
the course of plant evolution. This is not to say that
frameshift-based evolution is restricted to plants, since it
has also been identified in vertebrates [49]. In these cases,
the presence of differentially spliced transcripts is associ-
ated with frameshift sequence remodeling. It remains to
be seen whether duplication-related frameshift will also
be uncovered in animals or if the variable transcript phe-
nomenon will predominate. Other instances of clustered
non-synonymous nucleotide changes have been identi-
fied [63], which demonstrate that such events can be
maintained by selection. These examples may also pro-
vide candidates to be re-examined for evidence of
frameshift mutation since the failure to recognize a
frameshift mutation would result in a nucleotide align-
ment with the signature of successive non-synonymous
substitutions. It is important to note, however, that the
'hopeful monster' analogy only applies to the evolution-
ary pattern of the protein sequence. At the nucleotide
level, the sequence changes are, in fact, quite gradual.

Implications for the evolution of the AP3 lineage and the 
ABC program
The rapid generation and fixation of the euAP3 motif
raises obvious questions regarding its biochemical func-
tion and its evolutionary significance. In order to consider
these issues, we must first outline our basic knowledge of
B gene function in model species. In Arabidopsis, AP3 and
PI function as obligate heterodimers to promote petal and
stamen identity [14,64]. All aspects of their function
appear to be interconnected since their heterodimeriza-
tion through the I and K domains is a requirement for pro-
tein stability [65,66], nuclear localization [67], DNA
binding [14,68] and the maintenance of gene expression
[69,70]. The contribution of the C-terminal motifs to
these functions is not well understood. As mentioned pre-
viously, it has been demonstrated that the euAP3 motif is
required for proper AP3 function and that the paleoAP3
motif is not biochemically equivalent to the euAP3 in Ara-
bidopsis [6,32]. The study of Lamb and Irish further deter-
mined that the euAP3 motif is capable of conferring AP3-
specific function to PI. This result is particularly intriguing
since it suggests that dimers between the endogenous PI

Additional identified frameshift events in the APETALA3 lineageFigure 6
Additional identified frameshift events in the APETALA3 lineage. A, Amino acid (left) and corresponding nucleotide 
(right) alignments of the C-terminal regions of select Asterid euAP3 cDNAs. Loci from Antirrhinum (DefA), Syringa (SvAP3) and 
Petunia (pMADS1) show the typical euAP3 motif but a single nucleotide insertion in the Solanaceous taxa Nicotiana tobaccum 
(NTDEF), Solanum lycopersicon (LeAP3) and Solanum tuberosum (StDef) has produced a one amino acid truncation. B, Amino acid 
(left) and corresponding nucleotide (right) alignments of the C-terminal regions of the Paeonia suffructosa TM6 lineage members 
PesTM6-1 and PesTM6-2. A seven nucleotide deletion in PesTM6-2 has given rise to a novel C-terminal motif that replaces the 
paleoAP3 motif (which is moderately conserved in PesTM6-1). There is an additional indel between the two loci in the region 
of the PesTM6-2 stop codon. C, Amino acid (left) and corresponding nucleotide (right) alignments of the C-terminal regions of 
the Drimys winterii paleoAP3 lineage members DrwAP3-1, -2, -3 and -4. An eight nucleotide deletion in DrwAP3-1 results in 
remodeling of the last four amino acids in the paleoAP3 motif. For A-C: Asterisks indicate translational stops. The stop codons 
used in the separate reading frames are boxed. Numbers at right indicate the position in the amino acid or nucleotide sequence 
of each locus. See also Additional Files 2 and 3.
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and chimeric PIcAP3 proteins were stabilized when one of
the PI proteins possessed a euAP3 motif. Although indi-
rect, this is the best evidence we have to support a role for
the euAP3 motif in mediating protein-protein interac-
tions. As to the paleoAP3 motif, a study in Lilium has
argued that this region contributes to the novel
homodimerization capacity of the paleoAP3 homolog
and, further, that the Lilium paleoAP3 motif is sufficient
to confer homodimerization capability on AP3 itself [71].
These findings are highly surprising given that all previous
studies have shown that the C domain as a whole plays no
role in AP3/PI dimerization [14,16,72]. Additionally,
other analyses of both TM6 and paleoAP3 orthologs have
not recovered any evidence of homodimerization
[34,36,73,74]. Despite the conflicting nature of this set of
results, it remains true that all specific investigations of
AP3 motif function have indicated that it plays a role in
mediating protein-protein interactions.

Following from this statement, it is natural to now con-
sider the known interaction partners of AP3. The current
model of ABCE gene function holds that AP3/PI dimers
form higher order complexes with other type II MADS box
proteins from the A, C and E classes. In Arabidopsis, these
genes are represented by APETALA1 (AP1) in the A class,
AGAMOUS (AG) in the C class and the SEPALLATA1-4
loci in the E class (reviewed [75]). Therefore, in petals
AP3/PI would interact with AP1/SEP dimers and in the
stamens, with AG/SEP dimers [76]. This model is assumed
to essentially hold for all other core eudicots, with sup-
porting evidence in Antirrhinum and Petunia [16,77-80].
Unfortunately, the broader findings concerning the func-
tions of C-terminal motifs within the context of these
higher order complexes tend to be somewhat contradic-
tory. On the one hand, complete deletion of the motifs
does not generally affect complex formation in yeast
three- or four-hybrid analyses [16,19] but, on the other
hand, a separate yeast three-hybrid study recovered muta-
tions in the C-terminal PI motif that did affect interactions
with SEP proteins [17]. Similarly, the ability of PIcAP3 to
rescue AP3 function may suggest a role for the euAP3
motif in higher order interactions [6]. Since the C-termi-
nus is not required for AP3/PI dimerization [14], the
apparent stabilization of the PI/PIcAP3 dimer is unlikely to
be due to a direct interaction between the euAP3 motif
and PI. It is more probable that the presence of the euAP3
motif allows the weakly associated dimer to interact with
other proteins, thereby stabilizing the whole complex.
One explanation for this diverse set of results is that there
are other proteins participating in complex formation in
planta that are not represented in the yeast experiments
and it is these co-factors that are the targets of C-terminal
motif interactions. Alternatively, it may simply be that the
yeast system is not always sensitive enough to detect alter-
ations in interaction strength that are significant in vivo.

Given that our current understanding of C-terminal motif
functions is confusing at best, it is also useful to consider
the evolutionary histories of the loci thought to interact
with AP3. In the case of PI, there is currently no clear evi-
dence for a coincident gene duplication. Moreover,
although there are sequence synapomorphies for core
eudicot PI homologs, none of these map to the C-termi-
nus and the MIK-associated residues do not represent
obvious candidates for co-evolutionary changes (Kramer
and Hu, unpublished data; [28]). Interestingly, the AG
and SEP1/4 lineages both duplicated close to the base of
the core eudicots [81,82]. However, AG has been shown
to be unable to interact with AP3/PI on its own [19] and
neither AG nor SEP1 underwent any major sequence
remodeling in association with their basal eudicot dupli-
cations [81,82]. In contrast, the gene lineage containing
AP1 is of particular interest given that it exhibits an evolu-
tionary pattern which closely parallels that of AP3 [48].
Specifically, this lineage duplicated close to the base of the
core eudicots to produce the paralogous euAP1 and
euFUL lineages. Similar to euAP3, the euAP1 genes are
divergent in sequence relative to both euFUL and the
ancestral FUL-like lineage. Perhaps most surprising is that
the remodeling of the euAP1 C-terminus also involved a
frameshift mutation, although the exact extent of this phe-
nomenon remains unclear [22,48]. In the case of euAP1,
the single ancestral FUL-like motif was lost and two new
conserved motifs evolved: one being involved in tran-
scriptional activation (termed the euAP1 motif) and the
other a site of post-translational farnesylation [18,20]. No
clear data exist, however, regarding the function of the
ancestral FUL-like motif or to suggest that the euAP1
motifs play a role in higher order complex formation.

Although it has been proposed that the appearance of the
euAP3 and euAP1 motifs may have been a co-evolution-
ary phenomenon [22], there are at least two variations on
this theme that could fit the data. These two hypotheses
yield sets of opposing and, most importantly, testable pre-
dictions. One possibility is that the new motifs promote
interaction with each other in a manner that their ances-
tors did not. This theory is consistent with the idea that
euAP1 and euAP3 acquired their common role in petal
identity at the base of the core eudicots [6,22]. Supporting
evidence includes the fact that AP1 orthologs can interact
with AP3/PI heterodimers on their own, although this
does not appear to be dependent on their C-terminal
motifs [16,19]. Also, as opposed to the equivocal situa-
tion with euAP3 homologs [41], significant data exist to
suggest that the role of euAP1 in petal identity is specific
to the core eudicots [35,48]. A second scenario is that it
was the ancestral FUL-like and paleoAP3 motifs that
directly interacted and that, following the gene duplica-
tions, the loss of one of these motifs released the other
from selection and allowed it to diverge to new function.
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This theory is more consistent with the lack of data indi-
cating a protein interaction function for the euAP1 motifs.
It is interesting to note that the FUL-like motif is strongly
similar to the C-terminal motif of the SEP lineages
[48,81], which are found within the same subfamily as
AP1/FUL [8]. It may be that the loss of the FUL-like motif
in euAP1 could be compensated by its conservation in the
SEP proteins, which are thought to participate in the same
complex. In terms of testable hypotheses, analyses of pro-
tein interactions among pre-duplication taxa could help
to distinguish between the two models. On the whole, we
are left with an intense sense of coincidence – that the AP3
and AP1/FUL lineages both duplicated and experienced C-
terminal frameshift mutation in the same approximate
phylogenetic vicinity. Understanding the full significance
of this coincidence awaits the definitive establishment of
the functions of the C-terminal motifs.

Conclusion
Phylogenetic analysis of an expanded set of AP3 homolog
sequences indicates that the euAP3/TM6 duplication
event occurred very close to the base of the core eudicots
in association with the Trochodendraceae and Buxaceae
lineages. The current dataset also reveals that the transi-
tion from the ancestral paleoAP3 motif to the derived
euAP3 motif was primarily mediated by a single nucle-
otide deletion. The new motif appears to have become
conserved with relatively little additional change, a some-
what extraordinary finding highlighting the potential for
'punctuated equilibrium' [83] to act at the molecular level
as well as the morphological. It seems likely that the exist-
ence of a conserved second paralog facilitated the mainte-
nance of the frameshift mutation. This finding fits with
original models of gene duplication as a major source for
genetic and biochemical diversification [84]. Current evi-
dence regarding the biochemical functions of these C-ter-
minal motifs is largely indirect and often contradictory,
underscoring the importance of targeting these regions for
further analysis.

Methods
Characterization of APETALA3 homologs
Homologs of AP3 were cloned from select taxa (see Fig. 1)
using reverse transcriptase polymerase chain reaction (RT-
PCR) on floral RNA following the protocol described by
Stellari et al. [27] and Kramer et al. [28]. 5' rapid amplifi-
cation of cDNA ends (RACE) was performed on TroAP3
using 5' RACE system (Invitrogen™ Life Technologies,
Carlsbad CA). Reverse primers are as follows: for the first
round of PCR, TroAP3-KR1 5' CTTTTTCCTGTCCGTCT-
CAGTCTG, and for the second round, TroAP3-KR2 5'
TCCACCCGTCCTTCGCCCAATTTC. Sequences have been
deposited in GenBank under accession numbers
DQ453773-DQ453775 and DQ479353-DQ479368 (see
Additional file 1).

Phylogenetic analyses
In addition to the 20 new loci obtained in the current
study, 61 other core eudicot, basal eudicot, magnoliid,
monocot and ANITA grade AP3 homologs were identified
based on previously published analyses and BLAST
searches [85] (see Additional file 1 for references and
accession numbers). In cases where GenBank contained
nearly identical sequences from the same taxon, only one
representative sequence was included. Full-length nucle-
otide alignments of the loci were initially compiled using
ClustalW. ClustalW multiple alignment parameters were
gap penalty 8 and gap extension penalty 2, transitions
weighted for the nucleotide alignment. The alignments
were then refined by hand using MacClade 4.06 [86]. The
hypothesized single nucleotide deletion in the C-terminus
of euAP3 lineage members was incorporated into the
alignment (see Additional file 3 for complete alignment
in NEXUS format).

Maximum likelihood (ML) phylogenetic analyses were
performed using PAUP* [87]. We used Modeltest [88]
with the standard Akaike Information Criterion (AIC) to
determine the simplest and most appropriate evolution-
ary model for our dataset. The models selected were a gen-
eral time-reversible model (GTR) with a proportion of
invariable sites (I) and a gamma approximation to the rate
of variation among sites (Γ). The ML analysis used a single
heuristic search with 100 random addition replicates, TBR
branch swapping, MULPARS, and the steepest descent
options. Branch support was estimated by performing 100
replicates of nonparametric bootstrapping using the same
parameters as the original analysis. We also performed
maximum parsimony (MP) analysis on the dataset using
a heuristic tree search with 1000 random addition
sequence replicates and TBR branch swapping. Support
was estimated by performing 1000 bootstrap support rep-
licates each with 10 random sequence addition replicates.
The MP phylogeny is not shown (see text).

Analysis of nucleotide diversity and ancestral character 
state reconstructions
The program DnaSP [89] was used to determine the posi-
tion-by-position nucleotide diversity of two small align-
ments derived from the full-length nucleotide dataset. The
first alignment contains the C-terminal paleoAP3 motif-
encoding region of loci from the TM6 lineage and the
paleoAP3 lineage of basal eudicots. All indels were
removed from the DnaSP alignment (see Additional file
4). The second alignment contains the C-terminal euAP3
motif-encoding region of loci from the euAP3 lineage (all
core eudicots). All indels were removed from the DnaSP
alignment except for the single nucleotide deletion that
produced the euAP3 motif (see Additional file 5). The
DNA Polymorphism function was used to determine the
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nucleotide diversity (π, [90]) for each position in the two
alignments.

Ancestral nucleotide character state reconstructions were
performed using both MP and ML methods. For these
analyses, we used the complete nucleotide alignment and
the ML phylogeny. MP reconstructions were performed
using the accelerated transitions (ACCTRAN) and delayed
transitions (DELTRAN) options as they are implemented
in MacClade 4.0 [86]. ML reconstructions were performed
using the approach of Yang et al. [91] that is implemented
in PAML [92]. As has been found in other cases where
changes are relatively rare ([93] and references therein),
the MP and ML reconstructions were identical. Given the
fact that the relevant nodes have poor support, we also
performed ancestral character state reconstructions with
alternative topologies. Specifically, we tested a phylogeny
where the Pachysandra loci are placed before the euAP3/
TM6 duplication (see Fig. 5B). In addition, we rearranged
the euAP3 and TM6 clade members such that their rela-
tionships were consistent with published core eudicot
relationships. For this set of analyses, we tried two alterna-
tive topologies, one consistent with Soltis et al. 2003 [42]
and the other, with Kim et al. [43].
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