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A B S T R A C T

Following the onset of the ongoing COVID-19 pandemic throughout the world, a large fraction of the global
population is or has been under strict measures of physical distancing and quarantine, with many countries
being in partial or full lockdown. These measures are imposed in order to reduce the spread of the disease and
to lift the pressure on healthcare systems. Estimating the impact of such interventions as well as monitoring the
gradual relaxing of these stringent measures is quintessential to understand how resurgence of the COVID-19
epidemic can be controlled for in the future. In this paper we use a stochastic age-structured discrete time
compartmental model to describe the transmission of COVID-19 in Belgium. Our model explicitly accounts for
age-structure by integrating data on social contacts to (i) assess the impact of the lockdown as implemented
on March 13, 2020 on the number of new hospitalizations in Belgium; (ii) conduct a scenario analysis
estimating the impact of possible exit strategies on potential future COVID-19 waves. More specifically, the
aforementioned model is fitted to hospital admission data, data on the daily number of COVID-19 deaths and
serial serological survey data informing the (sero)prevalence of the disease in the population while relying
on a Bayesian MCMC approach. Our age-structured stochastic model describes the observed outbreak data
well, both in terms of hospitalizations as well as COVID-19 related deaths in the Belgian population. Despite
an extensive exploration of various projections for the future course of the epidemic, based on the impact of
adherence to measures of physical distancing and a potential increase in contacts as a result of the relaxation
of the stringent lockdown measures, a lot of uncertainty remains about the evolution of the epidemic in the
next months.
1. Introduction

The COVID-19 pandemic is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a pathogenic infectious agent,
which was initially identified in Wuhan (China), where several pa-
tients presented with pneumonia after developing symptoms between
December 8, 2019 and January 2 (World Health Organization (WHO),
2020a). COVID-19 was officially declared a pandemic by the WHO
on March 11, 2020. More than 6 million confirmed cases and more
than 380,000 deaths were reported globally by June 1, 2020, of which
58,000 confirmed cases and 9,500 deaths occurred in Belgium (World
Health Organization (WHO), 2020b).

∗ Corresponding author at: Data Science Institute, Interuniversity Institute of Biostatistics and statistical Bioinformatics, UHasselt, Hasselt, Belgium.
E-mail address: steven.abrams@uhasselt.be (S. Abrams).

In line with other EU countries, the Belgian government issued a
travel notice advising against non-essential flights to China, excluding
Hong Kong, on January 29, 2020. As of March 6, a travel ban was
issued for school trips to Italy. On March 10, Belgian authorities advised
to cancel all indoor events of 1,000 participants or more. Furthermore,
physical distancing measures were taken with companies being advised
to allow their employees to work from home as much as possible. A
closure of all schools, cafes and restaurants was ordered as well as a
cancellation of all public gatherings as of March 13 at midnight. On
March 17, the Belgian National Security Council announced additional
measures to be taken, thereby imposing stricter measures of physical
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distancing, prohibiting non-essential travel to foreign countries and
within the own borders (i.e., only allowing people to leave their homes
to buy food or to go to work, at least when working in healthcare,
transport or other essential professions), closure of shops providing
non-essential services with the addition of penalties for everyone not
abiding with the rules. A lockdown was imposed on Wednesday March
18 at noon. The borders were closed as of March 20. Throughout
the epidemic, the government continuously stressed the importance of
measures of physical distancing and hygiene, thereby avoiding physical
contacts, ensuring regular washing of the hands, coughing and sneezing
in the inner elbow, not shaking hands and staying at home when hav-
ing COVID-19 related symptoms (Belgian Government: Federal Public
Service – Health, Food Chain Safety and Environment, 2020).

Upon having imposed very strict measures of physical distancing,
including mobility restrictions and school closure, a thorough inves-
tigation of different exit strategies is required to relax unsustainable
social life and economic constraints while maintaining control over
pressure exerted on the health care system. After a specific exit strategy
is implemented, a careful monitoring of the outbreak is necessary to
avoid subsequent waves of COVID-19 infections.

Here we use a stochastic, discrete, age-structured compartmental
model for COVID-19 transmission. The model is contrasted to Belgian
data on the daily number of new hospitalizations and deaths prior and
after mitigation strategies have been imposed. The model accounts for
pre-symptomatic and asymptomatic transmission. Age-specific data on
social contacts is used to inform transmission parameters (Willem et al.,
2020) and serial serological survey data is incorporated in the model
to inform the prevalence of past exposure to the disease (Herzog et al.,
2020). The impact of the intervention measures as well as various exit
strategies upon relaxing lockdown measures are studied in the context
of this model.

The paper is organized as follows. In Section 2, we provide specific
details on the (stochastic) compartmental model, its parametrization
and estimation of model parameters based on several data sources.
Moreover, we study the impact of intervention measures and subse-
quent exit strategies on the spread of COVID-19. The results of fitting
the stochastic model to the available data is presented in Section 3.
Furthermore, the impact of various exit strategies on the number of new
hospitalizations is visualized using an extensive scenario-analysis. Fi-
nally, in Section 4, we discuss limitations and strengths of the proposed
approach and we present avenues for further research.

2. Methodology

2.1. Mathematical compartmental transmission model

We use an adapted version of an SEIR mathematical compartmental
model to describe COVID-19 disease dynamics. In this model, individ-
uals are susceptible to infection when in compartment 𝑆, and after
an effective contact (between a susceptible and infectious individ-
ual) the susceptible individual moves to an exposed state 𝐸 at age-
and time-specific rate 𝝀(𝑡), referred to as the force of infection (with
boldface notation representing a vector including age-specific rates).
After a latent period, the individual becomes infectious and moves
to a pre-symptomatic state 𝐼𝑝𝑟𝑒𝑠𝑦𝑚 at rate 𝛾. Afterwards, individuals
either develop symptoms (state 𝐼𝑚𝑖𝑙𝑑) with probability 1 − 𝒑 or re-
main completely free of symptoms (compartment 𝐼𝑎𝑠𝑦𝑚, probability
𝒑). Asymptomatic cases recover at rate 𝛿1. Symptomatic infections are
either very mild and such cases recover at rate 𝛿∗2 (for an age-dependent
fraction of these individuals, represented by the vector 𝝓0 = 𝜹2∕(𝜹2+𝝍),

here 𝜹2 = 𝝓0𝛿∗2 and 𝝍 = (1 − 𝝓0)𝛿∗2 ) or they move to a state 𝐼𝑠𝑒𝑣
prior to requiring hospitalization (i.e., severe infection is defined as
requiring hospitalization). When severely ill, implying hospitalization,
individuals move to state 𝐼ℎ𝑜𝑠𝑝 with probability 𝝓1, or become critically
ill (𝐼𝐼𝐶𝑈 ) with probability 1−𝝓1. Hospitalized and critically ill patients
admitted to the Intensive Care Unit (ICU) recover at rate 𝜹 and 𝜹
2

3 4 2
with probabilities
{

1 − 𝜇ℎ𝑜𝑠𝑝(𝑎)
}

and
{

1 − 𝜇𝑖𝑐𝑢(𝑎)
}

, respectively, where
𝜇ℎ𝑜𝑠𝑝(𝑎) = 𝝉1∕(𝝉1 + 𝜹3) and 𝜇𝑖𝑐𝑢(𝑎) = 𝝉2∕(𝝉2 + 𝜹4) represent the age-
pecific case-fatality rates (i.e., probabilities of dying when severely ill
nd hospitalized on a general ward or admitted to ICU). Hospitalized
nd ICU patients die at rate 𝝉1 or 𝝉2 with probabilities 𝜇ℎ𝑜𝑠𝑝(𝑎) and
𝜇𝑖𝑐𝑢(𝑎), respectively. A schematic overview of the compartmental model
s given in Fig. 1. Individuals in the red compartments are able to
ransmit the disease.

The following set of ordinary differential equations describes the
lows in the (deterministic version of the) proposed age-structured
ompartmental model:

𝑑𝑺(𝑡)
𝑑𝑡

= −𝝀(𝑡)𝑺(𝑡)

𝑑𝑬(𝑡)
𝑑𝑡

= 𝝀(𝑡)𝑺(𝑡) − 𝛾𝑬(𝑡)

𝑑𝑰𝒑𝒓𝒆𝒔𝒚𝒎(𝑡)
𝑑𝑡

= 𝛾𝑬(𝑡) − 𝜃𝑰𝒑𝒓𝒆𝒔𝒚𝒎(𝑡)

𝑑𝑰𝒂𝒔𝒚𝒎(𝑡)
𝑑𝑡

= 𝜃𝒑𝑰𝒑𝒓𝒆𝒔𝒚𝒎(𝑡) − 𝛿1𝑰𝒂𝒔𝒚𝒎(𝑡)

𝑑𝑰𝒎𝒊𝒍𝒅(𝑡)
𝑑𝑡

= 𝜃(1 − 𝒑)𝑰𝒑𝒓𝒆𝒔𝒚𝒎(𝑡) −
{

𝝍 + 𝜹2
}

𝑰𝒎𝒊𝒍𝒅(𝑡)

𝑑𝑰𝒔𝒆𝒗(𝑡)
𝑑𝑡

= 𝝍𝑰𝒎𝒊𝒍𝒅(𝑡) − 𝝎𝑰𝒔𝒆𝒗(𝑡)

𝑑𝑰𝒉𝒐𝒔𝒑(𝑡)
𝑑𝑡

= 𝝓1𝝎𝑰𝒔𝒆𝒗(𝑡) −
{

𝜹3 + 𝝉1
}

𝑰𝒉𝒐𝒔𝒑(𝑡)

𝑑𝑰 𝒊𝒄𝒖(𝑡)
𝑑𝑡

= (1 − 𝝓1)𝝎𝑰𝒔𝒆𝒗(𝑡) −
{

𝜹4 + 𝝉2
}

𝑰 𝒊𝒄𝒖(𝑡)

𝑑𝑫(𝑡)
𝑑𝑡

= 𝝉1𝑰𝒉𝒐𝒔𝒑(𝑡) + 𝝉2𝑰 𝒊𝒄𝒖(𝑡)

𝑑𝑹(𝑡)
𝑑𝑡

= 𝛿1𝑰𝒂𝒔𝒚𝒎(𝑡) + 𝜹2𝑰𝒎𝒊𝒍𝒅(𝑡) + 𝜹3𝑰𝒉𝒐𝒔𝒑(𝑡) + 𝜹4𝑰 𝒊𝒄𝒖(𝑡)

here, for example, 𝑺 = (𝑆1(𝑡), 𝑆2(𝑡),… , 𝑆𝐾 (𝑡))𝑇 represents the vector
f number of susceptible individuals in age group 𝑘 = 1,… , 𝐾 in the
opulation at time 𝑡. A full account on the definition of the different
ompartments and the notation used for the number of individuals
herein can be found in Table A1 in Appendix A. An overview of the
ifferent parameter definitions can be found in Table B3.

The proposed age-structured compartmental transmission model
onsists of 10 age classes, i.e., [0-10), [10-20), [20-30), [30-40), [40-
0), [50-60), [60-70), [70-80), [80-90), [90, ∞) with the number of
ndividuals in each age class obtained from Eurostat.

.2. Social contact data and transmission rates

As mentioned previously, the infectious phase of COVID-19 disease
s divided into two different states: a pre-symptomatic state occurring
efore the end of the incubation period, followed by a state in which in-
ividuals may either remain asymptomatic or develop (mild to severe)
ymptoms (see Fig. 1). Transmission of the disease is governed by an
ge- and time-dependent force of infection. The age-specific force of
nfection in age group 𝑘 = 1,… , 𝐾, denoted by 𝜆(𝑘, 𝑡), is defined as the
nstantaneous rate at which a susceptible person in age group 𝑘 acquires
nfection at time 𝑡. Furthermore, the time-invariant transmission rate
(𝑘, 𝑘′) represents the average per capita rate at which an infectious
ndividual in age group 𝑘′ makes an effective contact with a susceptible
ndividual in age group 𝑘, per unit of time. Consequently, the force of
nfection is defined as

(𝑘, 𝑡) =
𝐾
∑

𝑘′=0
𝛽(𝑘, 𝑘′)𝐼(𝑘′, 𝑡),

here 𝐼(𝑘′, 𝑡) denotes the total number of infectious individuals in age
roup 𝑘′ at time 𝑡 and 𝛽(𝑘, 𝑘′) can be rendered as

(𝑘, 𝑘′) = 𝑞𝑐(𝑘, 𝑘′),

hen relying on the so-called social contact hypothesis (Wallinga et al.,
′
006). This hypothesis entails that 𝑐(𝑘, 𝑘 ) are the per capita rates at
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Fig. 1. Schematic overview of the flows of individuals in the compartmental model: Following SARS-CoV-2/COVID-19 infection susceptible individuals (𝑆) move to an exposed
state (𝐸) and after a latent period individuals further progress to a pre-symptomatic state (𝐼𝑝𝑟𝑒𝑠𝑦𝑚) in which they can infect others. Consequently, individuals stay either completely
ymptom-free (𝐼𝑎𝑠𝑦𝑚) or develop mild symptoms (𝐼𝑚𝑖𝑙𝑑 ). Asymptomatic individuals will recover over time. Upon having mild symptoms, persons either recover (𝑅) or require

hospitalization (going from 𝐼𝑠𝑒𝑣 to 𝐼ℎ𝑜𝑠𝑝 or 𝐼𝑖𝑐𝑢) prior to recovery (𝑅) or death (𝐷).
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hich an individual in age group 𝑘 makes contact with an individual
n age group 𝑘′, per unit of time, and 𝑞 is a proportionality factor
apturing contextual and host- and disease-specific characteristics such
s susceptibility and infectiousness. The (𝐾 ×𝐾)-matrix 𝐶 containing
he elements 𝑐(𝑘, 𝑘′) is referred to as the social contact matrix describing
ixing behaviour within and between different age groups in the
opulation. Social contact rates 𝑐(𝑘, 𝑘′) are estimated based on social
ontact data from Flanders (Belgium) collected in 2010 (Kifle et al.,
015; Willem et al., 2012, 2020; Hoang et al., 2021). We hereby assume
hat contact rates for Flanders can be used for all regions in Belgium.

In this manuscript, we rely on social contact matrices 𝐶𝑠𝑦𝑚 and 𝐶𝑎𝑠𝑦𝑚
stimated for symptomatic and asymptomatic individuals, implying

𝑠𝑦𝑚(𝑘, 𝑘′) = 𝑞𝑠𝑦𝑚𝑐𝑠𝑦𝑚(𝑘, 𝑘′) and 𝛽𝑎𝑠𝑦𝑚(𝑘, 𝑘′) = 𝑞𝑎𝑠𝑦𝑚𝑐𝑎𝑠𝑦𝑚(𝑘, 𝑘′),

efining transmission rates for both symptomatic and asymptomatic
ases, respectively (see Appendix C). Here, we assume that the relative
nfectiousness of symptomatic versus asymptomatic cases is equal to
−1
𝛽 = 𝑞𝑠𝑦𝑚∕𝑞𝑎𝑠𝑦𝑚. The age-dependent force of infection is defined as:

(𝑡) = 𝜷𝒂𝒔𝒚𝒎 ×
{

𝑰𝒑𝒓𝒆𝒔𝒚𝒎(𝑡) + 𝑰𝒂𝒔𝒚𝒎(𝑡)
}

+ 𝜷𝑠𝑦𝑚 ×
{

𝑰𝒎𝒊𝒍𝒅(𝑡) + 𝑰𝒔𝒆𝒗(𝑡)
}

,

where 𝝀(𝑡) = (𝜆(1, 𝑡), 𝜆(2, 𝑡),… , 𝜆(𝐾, 𝑡)) written as a matrix multiplication
with boldface notation for vectors and matrices. Note that hospitalized
individuals are assumed not to contribute to the transmission process
because of isolation.

2.3. Discrete time stochastic epidemic model

The spread of the virus is hampered by reductions in the number of
contacts and changes in the way contacts are made, either voluntarily
or as a consequence of government intervention. These time- (and age-)
dependent behavioural changes introduce substantial uncertainty in the
further course of the outbreak and require stochastic model components
to evaluate the effectiveness of the intervention strategies and to make
future predictions in terms of, for example, new hospitalizations. More-
over, stochastic epidemic models allow to determine the probability
of extinction based on multiple realizations of the model. Therefore,
we amended the deterministic model hitherto described into a discrete
time stochastic epidemic model to describe the transmission process
under the mitigation strategies as highlighted hereabove.
3

Our chain binomial model, originally introduced by Bailey (1975),
is a so-called discrete-time stochastic alternative to the continuous-
time deterministic model based on the health states and transitions
presented in Fig. 1. The chain binomial model assumes a stochastic
version of an epidemic obtained through a succession of discrete gener-
ations of infected individuals in a probabilistic manner. Consider a time
interval (𝑡, 𝑡+ℎ], where ℎ represents the length between two consecutive
time points at which we evaluate the model, here ℎ = 1∕24 day. Let
us assume that there are 𝑆𝑡(𝑘) susceptible individuals at time 𝑡 in age
group 𝑘, we expect 𝑆𝑡(𝑘)𝑝∗𝑡 (𝑘) newly exposed individuals at time 𝑡 + ℎ,
i.e.,

𝐸𝑛𝑒𝑤𝑡+ℎ (𝑘) ∼ Binomial
(

𝑆𝑡(𝑘), 𝑝∗𝑡 (𝑘) = 1 −
{

1 − 𝑝𝑡(𝑘)
}𝐼𝑡

)

,

here 𝐼𝑡 is the total number of infected individuals at time 𝑡 and
𝑡(𝑘) represents the transmission probability conditional upon contact
etween a susceptible individual in age group 𝑘 and an infected indi-
idual. The probability that a susceptible individual escapes infection
during a single contact with an infected individual) is equal to 𝑞𝑡(𝑘) =
− 𝑝𝑡(𝑘), hence, assuming all contacts to be equally infectious, the

scape probability is 𝑞𝑚𝑡 (𝑘) in case the susceptible individual contacts 𝑚
nfectious individuals. In this setting, the probability of infection 𝑝∗𝑘(𝑡)
or a susceptible individual in age group 𝑘 = 1,… , 𝐾 can be obtained
s:

𝑝∗𝑡 (𝑘) = 1 − exp

[

−ℎ
𝐾
∑

𝑘′=0
𝛽𝑎𝑠𝑦𝑚(𝑘, 𝑘′)

{

𝐼𝑝𝑟𝑒𝑠𝑦𝑚,𝑡(𝑘′) + 𝐼𝑎𝑠𝑦𝑚,𝑡(𝑘′)
}

+ 𝛽𝑠𝑦𝑚(𝑘, 𝑘′)
{

𝐼𝑚𝑖𝑙𝑑,𝑡(𝑘′) + 𝐼𝑠𝑒𝑣,𝑡(𝑘′)
}

]

.

he number of individuals in age group 𝑘 leaving the exposed state
and entering the pre-symptomatic compartment) within the specified
ime interval is
𝑛𝑒𝑤
𝑝𝑟𝑒𝑠𝑦𝑚,𝑡+ℎ(𝑘) ∼ Binomial

(

𝐸𝑡(𝑘), 1 − exp (−ℎ𝛾)
)

,

here 1∕𝛾 equals the mean length of the latency period. Probabilistic
ransitions in the other compartments are derived similarly, hence, a
iscretized age-structured stochastic model (with step size ℎ = 1∕24
ays) is fully specified by
𝑛𝑒𝑤 ( )
𝐼𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘) ∼ Binomial 𝐼𝑝𝑟𝑒𝑠𝑦𝑚,𝑡(𝑘), 1 − exp (−ℎ𝑝(𝑘)𝜃) ,
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𝐼𝑛𝑒𝑤𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑝𝑟𝑒𝑠𝑦𝑚,𝑡(𝑘), 1 − exp [−ℎ{1 − 𝑝(𝑘)}𝜃]
)

,

𝐼𝑛𝑒𝑤𝑠𝑒𝑣,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑚𝑖𝑙𝑑,𝑡(𝑘), 1 − exp {−ℎ𝜓(𝑘)}
)

,

𝐼𝑛𝑒𝑤ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑠𝑒𝑣,𝑡(𝑘), 1 − exp
{

−ℎ𝜙1(𝑘)𝜔(𝑘)
})

,

𝐼𝑛𝑒𝑤𝑖𝑐𝑢,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑠𝑒𝑣,𝑡(𝑘), 1 − exp
[

−ℎ{1 − 𝜙1(𝑘)}𝜔(𝑘)
])

,

𝐷𝑛𝑒𝑤
ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) ∼ Binomial

(

𝐼ℎ𝑜𝑠𝑝,𝑡(𝑘), 1 − exp
{

−ℎ𝜏1(𝑘)
})

,

𝐷𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡+ℎ(𝑘) ∼ Binomial

(

𝐼𝑖𝑐𝑢,𝑡(𝑘), 1 − exp
{

−ℎ𝜏2(𝑘)
})

,

𝑅𝑛𝑒𝑤𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑎𝑠𝑦𝑚,𝑡(𝑘), 1 − exp
(

−ℎ𝛿1
))

,

𝑅𝑛𝑒𝑤𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑚𝑖𝑙𝑑,𝑡(𝑘), 1 − exp
{

−ℎ𝛿2(𝑘)
})

,

𝑅𝑛𝑒𝑤ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼ℎ𝑜𝑠𝑝,𝑡(𝑘), 1 − exp
{

−ℎ𝛿3(𝑘)
})

,

𝑅𝑛𝑒𝑤𝑖𝑐𝑢,𝑡+ℎ(𝑘) ∼ Binomial
(

𝐼𝑖𝑐𝑢,𝑡(𝑘), 1 − exp
{

−ℎ𝛿4(𝑘)
})

,

and

𝑆𝑡+ℎ(𝑘) = 𝑆𝑡(𝑘) − 𝐸𝑛𝑒𝑤𝑡+ℎ (𝑘),

𝐸𝑡+ℎ(𝑘) = 𝐸𝑡(𝑘) + 𝐸𝑛𝑒𝑤𝑡+ℎ (𝑘) − 𝐼
𝑛𝑒𝑤
𝑝𝑟𝑒𝑠𝑦𝑚,𝑡+ℎ(𝑘),

𝐼𝑝𝑟𝑒𝑠𝑦𝑚,𝑡+ℎ(𝑘) = 𝐼𝑝𝑟𝑒𝑠𝑦𝑚,𝑡(𝑘) + 𝐼𝑛𝑒𝑤𝑝𝑟𝑒𝑠𝑦𝑚,𝑡+ℎ(𝑘) − 𝐼
𝑛𝑒𝑤
𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘) − 𝐼

𝑛𝑒𝑤
𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘),

𝐼𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘) = 𝐼𝑎𝑠𝑦𝑚,𝑡(𝑘) + 𝐼𝑛𝑒𝑤𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘) − 𝑅
𝑛𝑒𝑤
𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘),

𝐼𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘) = 𝐼𝑚𝑖𝑙𝑑,𝑡(𝑘) + 𝐼𝑛𝑒𝑤𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘) − 𝐼
𝑛𝑒𝑤
𝑠𝑒𝑣,𝑡+ℎ(𝑘) − 𝑅

𝑛𝑒𝑤
𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘),

𝐼𝑠𝑒𝑣,𝑡+ℎ(𝑘) = 𝐼𝑠𝑒𝑣,𝑡(𝑘) + 𝐼𝑛𝑒𝑤𝑠𝑒𝑣,𝑡+ℎ(𝑘) − 𝐼
𝑛𝑒𝑤
ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) − 𝐼

𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡+ℎ(𝑘),

𝐼ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) = 𝐼ℎ𝑜𝑠𝑝,𝑡(𝑘) + 𝐼𝑛𝑒𝑤ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) −𝐷
𝑛𝑒𝑤
ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) − 𝑅

𝑛𝑒𝑤
ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘),

𝐼𝑖𝑐𝑢,𝑡+ℎ(𝑘) = 𝐼𝑖𝑐𝑢,𝑡(𝑘) + 𝐼𝑛𝑒𝑤𝑖𝑐𝑢,𝑡+ℎ(𝑘) −𝐷
𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡+ℎ(𝑘) − 𝑅

𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡+ℎ(𝑘),

𝐷𝑡+ℎ(𝑘) = 𝐷𝑡(𝑘) +𝐷𝑛𝑒𝑤
ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) +𝐷

𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡+ℎ(𝑘),

𝑅𝑡+ℎ(𝑘) = 𝑅𝑡(𝑘) + 𝑅𝑛𝑒𝑤𝑎𝑠𝑦𝑚,𝑡+ℎ(𝑘) + 𝑅
𝑛𝑒𝑤
𝑚𝑖𝑙𝑑,𝑡+ℎ(𝑘)

+ 𝑅𝑛𝑒𝑤ℎ𝑜𝑠𝑝,𝑡+ℎ(𝑘) + 𝑅
𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡+ℎ(𝑘).

Predictions based on the stochastic discrete age-structured epidemic
model will account for two sources of variability, namely (1) variability
coming from the observational process reflected in uncertainty about
the model parameters; and (2) variability introduced by the stochastic
process. An overview of the fixed parameter values, sources (incl.
literature), and distributional assumptions are listed in Table B3 of
Appendix B.

2.4. Next generation matrix and basic reproduction number

The basic reproduction number 𝑅0 for the proposed compartmental
model can be obtained by means of the next-generation approach (Diek-
mann et al., 1990). More specifically, the basic reproduction number is
equal to the leading eigenvalue of the next generation matrix, i.e., 𝑅0
is

max
{

eigenvalues
(

𝜷𝒂𝒔𝒚𝒎𝛥𝑵𝑇

𝜃
+
𝒑𝜷𝒂𝒔𝒚𝒎𝛥𝑵𝑇

𝛿1
+

(1 − 𝒑)𝜷𝒔𝒚𝒎𝛥𝑵𝑇

𝝍 + 𝜹2

+
(1 − 𝒑)(1 − 𝝓0)𝜷𝒔𝒚𝒎𝛥𝑵𝑇

𝝎

)}

,

here 𝑴𝛥𝑽 operates by multiplying the 𝑖th row of matrix 𝑴 with the
𝑖th element of column vector 𝑽 . Note that the vector 𝑵 ≈ 𝑺(0) denotes
he population age distribution (i.e., the number of individuals in each
ge group in the population). The time-dependent effective reproduc-
ion 𝑅𝑡 is obtained by replacing 𝑵 with the number of susceptible
ndividuals 𝑺(𝑡) at time 𝑡.

.5. Intervention measures

Intervention measures mainly targeted the reduction of face-to-
ace contacts as an effective way of breaking the transmission chains
f COVID-19 disease. These measures have led to significant alter-
tions in social mixing patterns, hence, changing the trajectory of the
ynamics of COVID-19. To assess the impact of these measures, we
4

utilize social contact matrices derived using the online SOCRATES
tool (Willem et al., 2020), developed for social contact data sharing
and assessment of mitigation strategies, and including survey data for
various locations, i.e, home, work, school, transport, leisure and other
places. The imposed measures have changed the contacts made on these
respective contact locations and altered disease transmission. Different
social contact matrices are considered to describe the data prior to the
lockdown measures and those quantifying contact patterns after the
interventions taken. Different choices with regard to the reduction in
social contacts are as outlined in Table 1 and Appendix C, and their
performance in terms of model fit is compared using the Deviance
Information Criterion (see Appendix C for specific details). Note that
the choice of the intervention matrix quantifies the extent of social
contact reductions, thereby determining the reduction in the effective
reproduction number following the instalment of stringent lockdown
measures (Santermans et al., 2015).

Compliance to the intervention measures taken is assumed to be
gradual and is therefore modelled in a flexible way. More specifically,
we consider a logistic compliance function

𝑝𝑐 (𝑡) =
exp{𝛽∗0 + 𝛽∗1 (𝑡 − 𝑡𝐼 )}

1 + exp{𝛽∗0 + 𝛽∗1 (𝑡 − 𝑡𝐼 )}
,

here 𝑡𝐼 is the time at which the interventions are initiated. The
lope parameter associated with the compliance function (i.e., 𝛽∗1 ) is

estimated based on the available data.

2.6. Exit strategies

Following the intervention measures that the Belgian government
imposed towards limiting the spread of COVID-19 disease, well-tailored
exit strategies are needed in order to enable individuals to resume
their normal social life whilst protecting the health care system from
unprecedented pressure leading to unnecessary loss of lives. Here, we
explore and compare possible approaches in lifting imposed measures.
The different aspects within the exit strategies are listed below:

• Progressive lifting of lockdown measures on key sectoral pillars
of the economy that require physical presence for workers/staff
while keeping non-essential service providers closed. This will
entail progressively re-adjusting the social contact matrices made
at work, during travel/transport, and contacts at other places.

• Gradual re-opening of schools. This will entail re-adjusting the
contacts made at school. In line with the exit strategies adopted
in Belgium, various partial re-opening dates are considered and
their joint impact is explored.

• Opening social places like restaurants, retail stores and hotels.
This will involve re-adjusting the social contact matrices for those
contacts made during leisure activities, work and transportation
as well as those made at other places.

Note that the aforementioned exit strategies cannot be looked at inde-
pendently since, e.g., parents going back to work will have to rely on
childcare/schools to take care of their children. Therefore, we will refer
to exit scenarios rather than individual strategies in the remainder of
the paper.

To assess the effectiveness of the individual exit strategies and
combined scenarios, several comparisons will be made as follows:
each exit scenario will be compared to a (baseline) situation without
changes, and with each other. More details on the exit scenarios and
the translation to the relative number of contacts compared to the pre-
pandemic situation are outlined in Table 2. The different scenarios
presented in this table give rise to a gradual relief of the lockdown
measures taken, similar to the current strategy in Belgium:

Phase 1a — May 4: Although remote work remains the norm,
business-to-business services and companies that are able to

comply with physical distancing measures re-opened;
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Table 1
Different social contact matrices considered to quantify the impact of the intervention measures on social
contact patterns. Percentage of average number of pre-pandemic contacts at different locations. WT: Work
and transport reductions, SC: School closure.

Social contact matrix Work & Transport School closure Leisure & other activities

50% WT & SC 50% Yes 10%
60% WT & SC 40% Yes 10%
70% WT & SC 30% Yes 10%
80% WT & SC 20% Yes 10%
90% WT & SC 10% Yes 10%
Table 2
Exit scenarios considered in combination with the best fitting intervention social contact matrix without
any lifting of the measures taken as the baseline scenario. Differences in contact percentages in subsequent
phases highlighted in bold for each scenario.

Scenario Timing Work & Transport School Leisure & other activities

Baseline – 20% 0% 10%
S1 Phase 1a–1b 30% 0% 20%
S2 Phase 1a 30% 0% 20%

Phase 1b 40% 0% 30%
S3 Phase 1a 30% 0% 20%

Phase 1b 50% 0% 40%
S4 Phase 1a–1b 40% 0% 30%

Phase 2a–2b 40% 20% 30%
S5 Phase 1a–1b 40% 0% 30%

Phase 2a–2b 40% 40% 30%
S6 Phase 1a–1b 40% 0% 30%

Phase 2a–2b 40% 60% 30%
S7 Phase 1a–1b 40% 0% 30%

Phase 2a–2b 40% 20% 30%
S8 Phase 1a–1b 40% 0% 30%

Phase 2a 40% 20% 30%
Phase 2b 40% 40% 30%

S9 Phase 1a–1b 40% 0% 30%
Phase 2a 40% 20% 30%
Phase 2b 40% 60% 30%

S10 Phase 1a–1b 40% 0% 30%
Phase 2a–2b 40% 20% 30%
Phase 3 40% 20% 20%

S11 Phase 1a–1b 40% 0% 30%
Phase 2a–2b 40% 20% 30%
Phase 3 40% 20% 30%

S12 Phase 1a–1b 40% 0% 30%
Phase 2a–2b 40% 20% 30%
Phase 3 40% 20% 40%
w
h
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Phase 1b — May 11: Shops re-opened under strict requirements
related to organization of the work and restricting access to the
store to avoid overcrowding;
Phase 2a — May 18: Schools partially re-opened (first phase —
selected grades in primary and secondary schools);
Phase 2b — June 2: Schools partially re-opened further (second
phase — pre-primary schools);
Phase 3 — June 8: Restaurants, bars, and cafes re-opened un-
der strict measures including physical distancing and a limited
number of customers;

These comparisons were mainly made on the basis of the daily number
of new hospitalizations and admissions to the ICU. Furthermore, the
implementations thereof in combination with the timing of holiday
and school periods will be studied to explore whether rebound effects
will occur, i.e., whether deconfinement results in subsequent COVID-19
waves.

2.7. Data and estimation procedure

In this section we briefly describe the parameter estimation proce-
dure and different data sources that are considered to fit the models.

2.7.1. Deterministic model
We first fit the deterministic version of the proposed compartmental

model to the initial phase of the epidemic. More specifically, we fit the
5

n

model to the daily numbers of new COVID-19 hospitalizations (for all
age groups combined) starting from 1 March 2020 until 22 March 2020
(before intervention measures had an influence on hospital admissions).
We use a likelihood-based approach by assuming

𝑌𝑡 ∼ Poisson
( 𝐾
∑

𝑘=0

{

𝐼𝑛𝑒𝑤ℎ𝑜𝑠𝑝,𝑡(𝑘) + 𝐼
𝑛𝑒𝑤
𝑖𝑐𝑢,𝑡(𝑘)

}

)

, (1)

here the realization 𝑦𝑡 of 𝑌𝑡 is the observed total number of new
ospitalizations across all age groups at time (day) 𝑡 (i.e., within the last
4 h), and 𝐼𝑛𝑒𝑤ℎ𝑜𝑠𝑝,𝑡(𝑘) and 𝐼𝑛𝑒𝑤𝑖𝑐𝑢,𝑡(𝑘) are the expected number of new hos-
italizations (without ICU) and ICU admissions at time 𝑡 in age group
, respectively. These expected numbers are obtained by numerically
olving the set of ordinary differential equations. The aforementioned
rocedure is used to obtain reasonable starting values for the model
arameters in order to initialize the MCMC sampler (see Section 2.7.4
n fitting the stochastic compartmental model to the available outbreak
ata).

.7.2. Stochastic model
Next to the social contact data used to inform the transmission

arameters, three different data sources are considered when fitting the
tochastic compartmental model, namely (1) age-specific data on the
aily number of new hospitalizations (until May 4) (Belgian Scientific
nstitute for Public Health, 2020); (2) age-specific data on the daily
umber of new deaths (excluding deaths in elderly homes) (until May



Epidemics 35 (2021) 100449S. Abrams et al.

𝑘

4) (Belgian Scientific Institute for Public Health, 2020); and (3) serial
serological survey data collected during the epidemic (Herzog et al.,
2020). Belgian hospitals are obliged to report the daily number of new
hospitalizations to the Scientific Institute of Public Health, Belgium
(Sciensano), which are made publicly available through an online plat-
form (Belgian Scientific Institute for Public Health, 2020). Age-specific
hospitalization data were collected through the clinical surveillance
database of COVID-19 hospitalized patients (Van Goethem et al., 2020).
This database is an ongoing multicenter registry collecting information
on hospital admission related to COVID-19 infection. Patient-specific
characteristics are collected through two online questionnaires: one
related to admission and one related to discharge. As the reporting
is strongly recommended by the Belgian Risk Management Group, the
reporting coverage is high including more than 70% of all hospitalized
COVID-19 cases during the first wave (Van Goethem et al., 2020).
Based on this information, the weekly age distribution of hospitalized
cases (see Figure D1 in Appendix D) is derived such that the total
daily incidence of hospitalizations is transformed to be age-specific.
Reporting of the daily incidence of COVID-19 related deaths by age
within hospitals is mandatory and made publicly available on the Sci-
ensano dashboard (Belgian Scientific Institute for Public Health, 2020).
The (serial) serological data is obtained from two data collections (30
March–5 April, 2020 & 20 April–26 April, 2020) within a prospective
cross-sectional seroprevalence study and based on residual sera ob-
tained from individuals aged 0–101 years. Seropositivity of the samples
is determined based on a semi-quantitative ELISA test kit (EuroImmun,
Luebeck, Germany) measuring IgG antibody concentrations against S1
proteins of SARS-CoV-2 in serum (see Appendix E for more details).

The following distributional assumptions are made with regard to
the different outcome variables:

𝑌𝑡+1,𝑘 =
24
∑

𝑗=1
𝑌𝑡+(𝑗×ℎ),𝑘 ∼ Binomial

( 24
∑

𝑗=1
𝐼𝑠𝑒𝑣,𝑡+((𝑗−1)×ℎ)(𝑘), 1 − exp (−ℎ𝜔)

)

,

𝑍𝑡+1,𝑘 =
24
∑

𝑗=1
𝑍𝑡+(𝑗×ℎ),𝑘 ∼ Binomial

( 24
∑

𝑗=1

{

𝐼ℎ𝑜𝑠𝑝,𝑡+((𝑗−1)×ℎ)(𝑘)

+ 𝐼𝑖𝑐𝑢,𝑡+((𝑗−1)×ℎ)(𝑘)
}

, 1 − exp {−ℎ𝜏(𝑘)}

)

,

𝑊𝑡∗ ,𝑘 ∼ Binomial
(

𝑛𝑡∗ (𝑘),

𝜋𝑡∗ (𝑘) =
1

𝑁(𝑘)

𝑡∗
∑

𝑡=0
𝑝𝑠𝑒𝑛𝑠(𝑡∗ − 𝑡)

{

𝐼𝑝𝑟𝑒𝑠𝑦𝑚,𝑡(𝑘) + 𝐼𝑎𝑠𝑦𝑚,𝑡(𝑘)
}

)

,

where 𝑌𝑡,𝑘 and 𝑍𝑡,𝑘 represent the number of new hospitalizations and
new deaths at time 𝑡 in age group 𝑘, respectively, relying on the
assumption of equal age-specific mortality rates 𝜏1(𝑘) = 𝜏2(𝑘) ≡ 𝜏(𝑘)
for hospitalized patients on general and ICU wards. Since we do not
have data on referral within hospitals, we do not explicitly distinguish
between hospitalized and ICU admitted patients in terms of hospital
discharge (including death), although the model is equipped to do so.

Moreover 𝑊𝑡∗ ,𝑘 represents the total number of seropositive individ-
uals in age group 𝑘 in a cross-sectional serological collection of residual
blood samples performed at time 𝑡∗. All individuals tested in age group

at time 𝑡∗, denoted by 𝑛𝑡∗ (𝑘), have a probability 𝜋𝑡∗ (𝑘) (i.e., equal to
the observed seroprevalence) to be classified as seropositive accounting
for sensitivity of the test 𝑝𝑠𝑒𝑛𝑠(𝑡𝑜) as a function of time since symptom
onset and assuming perfect specificity of the test. The sensitivity of the
test is assumed to follow a logistic growth curve based on available
information in the literature (Lou et al., 2020). For more details, the
reader is referred to Appendix E. Weighted seroprevalence estimates
are used in the analysis (Herzog et al., 2020).

2.7.3. Model initialization
The number of imported cases (and first generation(s) of infected
6

cases through local transmission) is determined from the age-specific
number of confirmed cases on 12 March 2020. More specifically, given
a number 𝑛0(𝑘) of confirmed cases in age group 𝑘, the expected number
of imported cases in age class 𝑘 equals

𝑛0(𝑘)
{

1
1 − 𝑝(𝑘)

}

,

where 𝑝(𝑘) represents the asymptomatic fraction in age group 𝑘 thereby
assuming that confirmed cases solely reflect the proportion of mildly
and severely ill individuals. The introduction of the imported cases in
the system is presumed to take place on 1 March following the school
holiday period.

2.7.4. Estimation
Model parameters are estimated using a Markov Chain Monte Carlo

(MCMC) approach. A two phase method is considered in which the
first phase consists of an adaptive Metropolis-within-Gibbs (AMWG)
(Roberts and Rosenthal, 2007, 2009) and/or adaptive mixture
Metropolis–Hastings (AMM) algorithm (Roberts and Rosenthal, 2009)
to achieve stationary samples that seem to have converged to the target
posterior distributions (stationarity is obtained after a maximum of
250,000 iterations). In the second phase, a non-adaptive Random-Walk
Metropolis (RWM) algorithm (Lesaffre and Lawson, 2012) is used to
draw final samples from the posterior distributions. More specifically,
500,000 iterations were conducted thereby retaining every 100th iter-
ation after discarding an initial burn-in part of 250,000 iterations. An
overview of the different prior distributions is presented in Table B4
of Appendix B. In order to ensure that plausible parameter values are
obtained, logit- and log-transformations are considered depending on
the required range for the different model parameters.

3. Results

In this section, we show the results of fitting the stochastic com-
partmental model to the data at hand. First of all, we study the fit to
the data and the posterior distributions of the model parameters. Next,
we investigate the age- and time-varying (sero)prevalence derived from
the model. Finally, we investigate the impact of different exit strategies
on the resurgence of the COVID-19 epidemic.

3.1. Baseline scenario accounting for mitigation strategies

Both the probability of experiencing an asymptomatic infection and
the probability of having mild symptoms upon contracting COVID-19,
i.e., 𝒑 and 𝝓0 are assumed to be age-dependent. The latter is estimated
using a prior distribution based on current literature (see Tables B3
and B4 for more details). The relative infectiousness of asymptomatic
versus symptomatic individuals 𝑟𝛽 is fixed at a value of 0.51 (Li et al.,
2020). Other model parameters are either fixed or estimated based on
the available data (see Table B3 and Appendix F).

The best fitting model included social contact matrices with an 80%
reduction of the normal work and transportation contacts (𝛼 = 0.2 in
Appendix C), with no school contacts and with 10% of the regular
leisure contacts and contacts related to other activities. In Fig. 2, we
graphically depict 25 stochastic realizations of the hospital admissions
and deaths since March 1 based on a thinned chain from the joint
posterior distribution of the model parameters together with pointwise
95% credible intervals derived from stochastic realizations based on
5000 random draws from the joint posterior distribution of the model
parameters. The figure clearly shows that the observed daily number
of hospitalizations and deaths (black dots) are well described by the
model. Furthermore, the estimated age-dependent daily numbers of
new hospitalizations and deaths are graphically depicted in Fig. 3 for
the 10 age categories.
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Fig. 2. Stochastic realizations of the compartmental model based on a thinned MCMC chain from the joint posterior distribution of the model parameters and relying on an
‘asymptomatic’ and ‘symptomatic’ social contact matrix composed of 20% of regular work and transportation contacts, no school contacts and 10% of leisure contacts and contacts
related to other activities. Shaded areas represent 95% credible intervals. Reported daily number of hospitalizations and deaths are represented by black circles.
Fig. 3. Stochastic realizations of the compartmental model based on a thinned MCMC chain from the joint posterior distribution of the model parameters and relying on an
‘asymptomatic’ and ‘symptomatic’ social contact matrix composed of 20% of regular work and transportation contacts, no school contacts and 10% of leisure contacts and contacts
related to other activities. Number of new hospitalizations (left upper and lower panels) and deaths (right upper and lower panels) are shown for all 10 age groups. Shaded areas
represent 95% credible intervals. Reported daily number of hospitalizations and deaths are represented by circles.
3.2. Posterior distributions

In Table 3, we present summary measures for the posterior distribu-
tions of the most important (implicit) model parameters including the
posterior mean, median, standard deviation and 95% credible intervals
7

(CIs). An overview of posterior quantities for all model parameters is
included in Appendix F).

The basic reproduction number 𝑅0 at the start of the epidemic –
prior to any government intervention – is estimated to be 2.900 with
95% CI (2.885, 2.918). On May 4, 2020 the effective reproduction
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Table 3
Posterior mean, median, standard deviation (SD) and 95% credible interval for the
model parameters.

Parameter Mean Median 95% credible interval SD

𝛾−1 1.373 1.369 (1.264, 1.489) 0.056
𝜃−1 2.108 2.103 (1.912, 2.306) 0.100
𝛿−11 4.176 4.175 (3.817, 4.458) 0.169
𝛿∗−12 1.324 1.322 (1.240, 1.403) 0.041

𝜔−1(1) 6.698 7.050 (2.984, 9.797) 1.874
𝜔−1(2) 10.963 10.665 (7.180, 16.267) 2.265
𝜔−1(3) 10.194 10.100 (8.320, 12.482) 1.112
𝜔−1(4) 6.213 6.216 (5.355, 7.053) 0.458
𝜔−1(5) 2.968 2.958 (2.704, 3.266) 0.140
𝜔−1(6) 3.642 3.630 (3.264, 4.107) 0.213
𝜔−1(7) 2.923 2.925 (2.695, 3.174) 0.121
𝜔−1(8) 2.657 2.672 (2.322, 2.927) 0.159
𝜔−1(9) 2.995 2.986 (2.773, 3.242) 0.129
𝜔−1(10) 3.331 3.286 (2.974, 3.968) 0.252

𝜌−1 3.481 3.481 (3.304, 3.642) 0.090
𝜎−1𝑎𝑠𝑦𝑚 6.284 6.267 (5.959, 6.555) 0.155

𝑅0 2.900 2.899 (2.885, 2.918) 0.009

number after the lockdown was estimated to be 0.738 (95% CI: 0.732,
0.744). The time-dependent effective reproduction number 𝑅𝑡 is shown
n Figure F3 of Appendix F. The posterior means for the parameters
(−1)(𝑘) are in line with estimates of the median duration between
ymptom onset and hospitalization (Faes et al., 2020). Furthermore, the
verage length of the incubation and asymptomatic infectious period,
−1 and 𝜎−1𝑎𝑠𝑦𝑚 are estimated to be 3.481 days (95% CI: 3.304, 3.642)
nd 6.284 days (95% CI: 5.959, 6.555), respectively, very similar to
alues reported in the literature (see Table B3). For individuals expe-
iencing severe symptoms, the average length of the infectious period,
onstrained due to isolation in hospital, depends on the age-specific
ime between symptom onset and hospitalization. Full compliance to
he intervention measures was obtained after approximately 6 days (see
ppendix F).

Boxplots of the marginal posterior distributions of the probability
f hospitalization are presented in Fig. 4. The probability of hospi-
alization increases substantially with increasing age. A decrease in
ospitalization probability is observed in age class [80, 90) after which it
ncreases again for individuals of age 90+. However, the probability of
ospitalization, as a proxy of disease severity, is likely time-dependent
s well as biased for the oldest age groups due to differential referral
olicy in elderly homes or end of life choices in the last will of severely
ll persons. More specifically, the general population essentially consists
f two subpopulations, i.e., a nursing home and non-nursing home
opulation. It is likely that in reality, the nursing home residents
ere more often exposed than elderly in the general population of

he same age. One other explanation for the decrease in probability
f hospitalization is that nursing home residents (which constitute an
mportant part of the age group between 80 and 89 years of age) were
ess likely referred to the hospital (as would have been the case when
hey were not living in a nursing home), at least during the initial part
f the epidemic, thereby implying a lower hospitalization probability in
hat age group. Moreover, persons in age class [80, 90) living in the non-
ursing home population are believed to be in better condition than
ursing home residents of that age, being more frail when suffering
rom more severe comorbidities. Hence, this could lower the probability
f hospitalization further. Estimated mortality and infection fatality
ates are shown in Figure F4 in Appendix F.

.3. Estimated age- and time-dependent (sero)prevalence of COVID-19

In Fig. 5, we show the estimated and observed seroprevalence on
arch 30, 2020 (left panel) and on April 20, 2020 (right panel) with
8

95% credible intervals in grey dashed lines and asymptotic 95% error
bars for the weighted seroprevalence.

The estimated age- and time-dependent prevalence of COVID-19
in the Belgian population is shown in Fig. 6. Clearly, the estimated
prevalence is higher in the oldest age groups ([80,90), 90+) which is
in line with the observed seroprevalence, the latter providing a cross-
sectional snapshot of the (delayed) build-up of seropositivity in the
population upon infection (see Fig. 5). The estimated overall weighted
prevalence of COVID-19 is equal to 0.069 (95% CI: 0.064, 0.073) on
May 4, 2020 (black dashed line with grey shaded area).

3.4. Exit strategies

We performed short-term predictions of the dynamics of COVID-19
in the Belgian population through the use of scenario analyses. In Fig. 7,
we show the impact of relaxing lockdown measures by increasing
contacts made by people at different locations. More specifically, we
present stochastic realizations of the model to predict the number of
new hospitalizations under different scenarios with changes in contact
behaviour as of May 4, 2020 (Phase 1a, Scenarios S1–S3) and May
11, 2020 (Phase 1b). From May 4 onward, we presume that work-
related contacts will increase from 20% (baseline scenario — see
Table 2) to 30% of the pre-pandemic number of contacts at work (or
transmissibility is reduced to an extent equivalent with the assumed
reduction in work-related contacts), and that the number of transport
contacts and contacts during leisure and other activities will increase
respectively from 20% to 30% and from 10% to 20% of their pre-
pandemic values. On top of that, work, transport and leisure contacts
stay constant (scenario S1) or increase to 40%, 40% and 30% (S2) or
50%, 50% and 40% (S3) of the pre-pandemic values, respectively, from
May 11 onward. Moreover, a delay of one week is considered for each
change in social contact behaviour (i.e., a full extent of all changes in
behaviour is reached on May 18, 2020). A small to moderate increase in
the contacts at work, transportation and during leisure (blue and purple
scenarios) leads either to a complete reduction of hospitalizations or
a constant number of new hospitalizations over time. Only the most
extreme increases in contacts give rise to a resurgence of COVID-19
implying a second wave of COVID-19 infections (scenario S3 — orange
lines).

A partial re-opening of schools as of May 18 (Phase 2a) is studied
in detail in Fig. 8. Work- and transport-related contacts and contacts
during leisure and other activities increase as of May 4. School-related
contacts are assumed to be 20% (S4 — blue lines), 40% (S5 — pur-
ple lines) or 60% (S6 — orange lines) of such contacts prior to the
epidemic. This increase in school-related contacts is imposed between
May 18, 2020 and July 1, 2020. The start of the summer holiday on
July 1, 2020 implies a reduction of all school-related contact to 0%. A
partial re-opening of schools in combination with a moderate increase
in work, transportation and leisure activities leads to a small to mod-
erate increase in the number of new hospitalizations after lockdown
measures are relaxed.

Finally, we investigate long-term predictions of subsequent COVID-
19 waves for a selection of possible exit scenarios (Fig. 9). In those
scenarios, we mimic the timing of the Belgian exit strategy. More
specifically, schools are partially re-opened on May 18 and June 2,
2020 yielding 20% of school contacts as of May, 18 (S7), an increase
from 20% to 40% or 60% of school contacts between May 18 and June
2 for scenarios S8 and S9, respectively. Schools are closed during the
vacation period starting from July 1, 2020 until August 31, 2020. We
assume that contact behaviour at schools following partial re-opening
on September 1, 2020 is equivalent to 60% of the pre-pandemic social
contacts made at school. In the lower panel of Fig. 9, scenarios S10–S12
show the impact of an increase of leisure contacts to 20%, 40% or 60%
of pre-pandemic leisure contacts as of June 8, while assuming school-
related contacts to be equal to 20% upon Phases 2a and 2b. Under the

assumption of unadapted behaviour given a contact, we observe that
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Fig. 4. Boxplots of the marginal posterior distributions of the probability of hospitalization by age group.
Fig. 5. Estimated age-dependent seroprevalence of COVID-19 with 95% credible interval on March 30, 2020 (left panel) and April 20, 2020 (right panel). Observed seroprevalences
are depicted using red dots with 95% confidence intervals in blue. The confidence interval for the age group [0, 10) is wide due to the low number of individuals (𝑛 = 36).
Fig. 6. Estimated time-dependent prevalence of COVID-19 in the different age groups and its weighted average (right panel; black dashed line — right y-axis) based on 5000
stochastic realizations given random draws from the joint posterior distribution of the model parameters with 95% credible intervals (shaded regions).
due to an insufficient depletion of susceptibles during a second wave
of COVID-19 infections (or a phase with a stable daily number of new
hospitalizations) a large increase in the number of new hospitalizations
will occur by the end of the year with a higher peak size if the one of the
second wave (or the plateau level) was lower. The cumulative number
of hospitalizations over time is presented in Appendix F. Moreover,
leisure contacts are important in determining the peak size of the wave
at the end of the year (lower panel of Fig. 9). In Fig. 10, boxplots of the
estimated prevalence over time is shown for scenarios S7–S9 and age
groups [0, 10), [30, 40), [60, 70), 90+. The largest increase in prevalence
between May 1 (baseline) and December 1, 2020 is observed in the
9

highest age category with an average increase ranging between 36.5%
and 38.4% across different scenarios. In all age categories, the increase
in prevalence is smallest for scenario S7 and highest for scenario S9.

3.5. Validation of the model

Validation of the model is done based on (1) data on new hospital-
izations and deaths following the relaxation of the lockdown measures,
(2) serological survey data collected in a third round and (3) infection
fatality derived from Belgian mortality data (Molenberghs et al., 2020).
In Fig. 11, we show stochastic realizations under the baseline scenario
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Fig. 7. Impact of various exit strategies in terms of the number of work- and leisure-
related contacts on the number of new hospitalizations in the absence of re-opening of
schools.

Fig. 8. Impact of partial re-opening of schools on the number of new hospitalizations.

Fig. 9. Long-term predictions of the impact of various exit strategies on the number
of new hospitalizations.
10
(without change in social contact behaviour after lockdown measures
are relaxed) overlaid with new data points after May 4, 2020 (black
solid circles). In general, the stochastic model describes the observed
data well, even in the absence of changes in contact behaviour after
intervention measures were relaxed. Although the observed number
of hospitalizations tends to remain constant, thereby deviating from a
further decrease thereof in the baseline scenario, no large differences
between observed and predicted values are found. Following the grad-
ual relief of the intervention measures, no resurgence of the disease is
noticeable to date (end of June).

Next, the estimated seroprevalence based on the model is related to
the one obtained from a third cross-sectional serological survey. Data
was collected in a third round, after the initiation of the gradual relax-
ation of the stringent measures, between May 18, 2020 and May 25,
2020. The overall weighted seroprevalence was estimated to be 6.87%
(95% confidence interval: 5.89%, 8.01%) (Herzog et al., 2020). In our
model, the posterior mean of the seroprevalence is 6.8% with 95%
credible interval (6.4%, 7.2%) which is similar to the aforementioned
values. Furthermore, the estimated infection fatality rates (IFRs) (see
Appendix F) are in line with those reported by Molenberghs et al.
(2020). These authors report an overall IFR of 0.43% (95% confidence
interval: 0.30%, 0.62%) in the non-nursing home population whereas
our model suggests a posterior mean of 0.507% (95% CI: 0.480%,
0.536%) which is nicely in line. Age-specific IFRs are presented in
Appendix F.

4. Discussion

In this manuscript, we used a stochastic age-structured discrete time
epidemic transmission model fitted to daily hospital admission, COVID-
19 related mortality data and serial serological survey data with regard
to SARS-CoV-2 antibody presence to describe and study COVID-19 dis-
ease dynamics in the Belgian population. As age-specific heterogeneity
has been proven to be of great importance in terms of transmission,
clinical presentation and mortality for COVID-19, our model explicitly
accounts for such age differences informed by age-specific data. Con-
sequently, our model enables a more granular investigation of disease
dynamics and the impact of intervention measures targeting specific
age groups. Model predictions of, for example, the time-dependent
prevalence in the population can be made for different age groups,
which is especially relevant to assess whether herd immunity levels are
reached in age groups at the highest risk for severe disease.

Using this model, we evaluated the expected impact of the lockdown
and exit strategies for the control of COVID-19 transmission in the
population. The basic reproduction number prior to lockdown was
estimated to be 2.900 (2.885, 2.918) which is in line with estimates for
the epidemic growth in Europe prior to the implementation of nation-
wide intervention measures and epidemiological modelling in different
countries (Di Domenico et al., 2020; Tang et al., 2020; Cereda et al.,
2020; Gatto et al., 2020; Kucharski et al., 2020; Zhao et al., 2020),
based on recent meta-analytic results (Jarvis et al., 2020; Liu et al.,
2020a) and on other modelling exercises specifically tailored to the
Belgian setting (Coletti et al., 2020a; Willem et al., 2021). Moreover,
the intervention measures taken clearly flattened the epidemic curve
followed by a progressive reduction of the number of (confirmed) cases
over time and the number of new hospitalizations. The decrease in aver-
age number of contacts implied a substantial reduction in reproduction
number 𝑅𝑡 = 0.738 (95% CI: 0.732, 0.744) on May 4, 2020.

The proposed mathematical model is a ‘living’ model used for real-
time modelling of the Belgian epidemic and for long-term predictions
focusing on, among other things, determining a purchase strategy for
medical supplies. Needless to say, the model is updated progressively
as new data becomes available and extensions towards improving
the model and incorporating up-to-date information are considered in
future research. Although several scenarios have been displayed, the
single scenario which will unfold in reality in the next weeks and
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Fig. 10. Predictions of the prevalence in exit scenarios S7–S9 for age group [0, 10) (top row), [30, 40) (row 2), [60, 70) (row 3) and 90+ (bottom row). Increments in prevalence
compared to the prevalence on May 1, 2020 is added on top of the boxplots.
months is driven by unpredictable human behaviour and governmental
decisions in case of a resurgence of the disease. Nevertheless, displaying
and investigating a range of potential scenarios is crucial in quantifying
the impact of certain imposed changes, and of key importance to guide
policy makers to shape exit strategies.

Based on the various scenarios presented here, one can conclude
that a small to moderate level of transmission in the upcoming months
leads to an increased risk of having a large-scale resurgence of the
disease later on. In such a situation, a high number of new hospital-
izations will be reported with a peak size which is inversely related to
the level of sustained transmission in the period preceding the wave
of new COVID-19 infections. Lifting the stringent lockdown measures
without adequate exit strategies put in place would inevitably have led
11
to a large increase in the number of new infections as the population
immunity is still too low to rely on herd immunity (see, e.g., estimated
seroprevalence in Fig. 5). This signals an insufficient depletion of
susceptibles in order to prevent subsequent COVID-19 outbreaks in
the future. Our scenario analyses present both short and long-term
predictions of new waves based on the current levels of population im-
munity. However, to date, both the level of protection against infection
in the presence of IgG antibodies against SARS-CoV-2 as well as the
extent of the (humoral and cellular) immune response in relation to the
symptoms of the infected person are still very unclear (Herzog et al.,
2020). In the model, we assume that acquired immunity after recovery
lasts for the entire time period under study.
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Fig. 11. Stochastic realizations based on the baseline scenario (without change in contact behaviour upon relaxing the stringent lockdown measures) for the number of new
hospitalizations (left panel) and the number of new deaths (right panel) together with observed data points used for fitting (black open circles) and for validation (black solid
circles).
Our work suffers from several limitations. The uncertainty regard-
ing the estimate of the reproduction number on May 4 arises solely
from the uncertainty regarding the pre-lockdown reproduction number,
given the fact that the uncertainty with regard to the impact of the
lockdown (in terms of social contact behaviour and non-pharmaceutical
interventions) depends on the contact matrix used, hence, this source
of variability is absent after selecting the ‘‘intervention" contact matrix
that provides the best fit to the data. Needless to say, quantification
of the effect of the lockdown on the reproduction number compared
to the pre-lockdown reproduction number is only possible by assuming
the contact behaviour prior to the lockdown to be fixed and by having
the proportionality factor 𝑞 in the social contact hypothesis to be time-
invariant (Santermans et al., 2015). In our model, the reduction in
transmission of COVID-19 is completely attributed to a reduction in
social contacts rather than changes in transmissibility due to e.g., use
of masks, keeping distance when contacting persons, etc. However,
since social contact data collected during the pandemic was unavail-
able at the start of this project, we were unable to disentangle these
effects. A social contact survey (CoMix) done during the lockdown in
Belgium measured a reduction of 80% in the overall number of contacts
with respect to the pre-lockdown situation (Coletti et al., 2020b).
The contact matrix of our best fit model implies an overall median
reduction in number of contacts of approximately 75%, so comparable
in magnitude. In future work, we will use these social contact data
collected in Belgium within the EpiPose project (Coletti et al., 2020b)
to quantify the impact of the lockdown and its relief on the number of
contacts made.

Second, in our model, pre- and asymptomatic individuals on the
one hand and persons with mild and severe symptoms (before hospi-
talization) on the other hand are presumed to have a similar level of
infectiousness thereby contributing in the same way to the transmission
process. Patients suffering from severe disease probably reduce their
contacts more than those with mild disease (Van Kerckhove et al.,
2013), but the associated reduction in contacts may be compensated
by greater infectivity per contact, as more severely affected patients
are likely more infectious (i.e., due to a higher viral load) (Liu et al.,
2020b). Moreover the clinical presentation of the disease and disease
progression is not uniform with highly variable delay distributions
between infection, symptoms, hospitalization and death. For instance,
some individuals with mild symptoms may enjoy a symptom-free in-
termediate period after which (more severe) symptoms reappear, and
immediate hospitalization may be required (Centers for Disease Control
and Prevention, 2020). In our model, isolation (and treatment) of
hospitalized individuals is assumed to lead to a complete reduction in
ability to spread the infection. Nevertheless, the contribution of these
nosocomial infections is believed to be very limited.
12
Our model assumes a (potential) differential length of infectiousness
between individuals with no symptoms, mild symptoms and those
with severe symptoms. This assumption is supported by the faster
viral clearance of asymptomatic individuals and individuals with mild
symptoms and those individuals with a larger viral load thereby experi-
encing more severe symptoms (Liu et al., 2020b; Van Vinh Chau et al.,
2020). For symptomatic individuals, however, the average duration
in the respective I-compartments (𝐼𝑚𝑖𝑙𝑑 and 𝐼𝑠𝑒𝑣) before moving to
compartment 𝑅 or before being isolated in the hospital (for the severe
cases) is a proxy for the (average) duration until individuals completely
isolate themselves to prevent subsequent transmission (although they
could still be infectious when doing so), rather than being equal to
the average infectious period. The correspondence between differential
infectious periods depending on symptom severity on the one hand and
the serial and generation interval on the other hand is complicated
by the fact that the latter quantities depend on both a viral shedding
component (linked to infectiousness) and a contact component (which
is subject to behavioural change when displaying symptoms) (Sun et al.,
2021). A theoretical assessment of the link between the serial and
generation interval on the one hand and the duration of infectiousness
for asymptomatic, mildly infected and severely infected individuals is
considered beyond the scope of this manuscript.

The severe compartment in the stochastic model is used as a way to
induce a non-exponential delay (generalized Erlang delay distribution)
between time of first symptom onset and hospitalization. Faes et al.
(2020) showed that the time between symptom onset and hospitaliza-
tion is indeed non-exponentially distributed, albeit that the best fitting
distribution (i.e., a Weibull one) is difficult to incorporate in this mod-
elling framework. As important aspects of the transmission dynamics
and the disease are still uncertain, some of the simplifications made in
the model will be revisited and updated as biomedical insights improve
(e.g., regarding potential seasonality in COVID-19 transmission). As
a result of limited information with regard to hospital discharge, the
model is currently not able to directly predict the burden on hospital
capacity. This will be particularly relevant for surveillance of pressure
on the healthcare system in future COVID-19 waves. However, based
on the model output in terms of new hospitalizations and information
with respect to length of hospital stay, an indirect calculation thereof
is straightforward. In the current analyses, we did not distinguish
between hospitalization of individuals in elderly homes and individuals
from the general population, nor between deaths in hospitals and
nursing homes, mainly due to the lack of detailed information to do
so. Our model therefore focuses on the general population. Next to
that, we disregard potentially important factors such as seasonality
(i.e., induced by changes in temperature, humidity, exposure of the
virus to ultraviolet light, etc.) entailing an impact on social behaviour
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and transmission potential of the virus to an extent that is largely
unknown to date (Huang et al., 2020; Kissler et al., 2020). Finally,
in the scenario analyses presented in this paper, we assume that no
external re-importation of the disease in the population occurs, albeit
that the stochasticity of the model is able to account for this, at least
to a limited extent.

Several mathematical approaches have been considered in the con-
text of the SARS-CoV-2/COVID-19 epidemic in Belgium, all having
different merits and limitations (Willem et al., 2021; Coletti et al.,
2020a). For example, the individual-based model by Willem et al.
(2021) enabled the direct study of contact tracing and case isolation
as a control measure. The meta-population model by Coletti et al.
(2020a) studied the impact of mobility on disease transmission. This
stochastic model enabled the detailed fitting to age-specific serology
and incidence data using MCMC. As there is no single best model to
study all possible research questions related to the spread and control
of the disease, we compared model outputs and conclusions, as their
predictions need continuous finetuning and validation (den Boon et al.,
2019; Holmdahl and Buckee, 2020). In conclusion, predictions from our
model are useful to inform subsequent serological sample studies and
to explore various exit scenarios with respect to disease transmission
as an input for the investigation of the economic impact of COVID-19
epidemics on society.
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