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In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral
integration of auditory information. There are widespread neural interactions in unilateral
(one) IC and between bilateral (two) ICs that could modulate auditory signal processing
such as the amplitude and frequency selectivity of IC neurons. These neural interactions
are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA)
and glutamate, respectively. However, the majority of interactions are inhibitory while
excitatory interactions are in the minority. Such unbalanced properties between excitatory
and inhibitory projections have an important role in the formation of unilateral auditory
dominance and sound location, and the neural interaction in one IC and between two ICs
provide an adjustable and plastic modulation pattern for auditory signal processing.
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INTRODUCTION
In sound reception, auditory signal processing has traditionally
been explained by neural interactions of divergent and conver-
gent projections within the ascending auditory system through the
interplay between excitation and inhibition (Suga, 1997). Audi-
tory interactions can be found between neurons in one auditory
nucleus, bilateral symmetrical auditory structures or nuclei, and
even in auditory and non-auditory structures. This implies a neu-
ral modulation that plays an important role in maintaining the
diversity and accuracy of auditory functions (Mei and Chen,2010).
For example, all sound signals in the range of audible frequency
can be perceived by ear, however, we only notice those sounds
interested by us and other sound signals that assumed to have
no biological significance are filtered by excitatory or inhibitory
modulation during transmission upward to different auditory
nucleus.

Inferior colliculi (ICs), paired auditory structures, are located
between the lower brainstem auditory nuclei and the auditory
thalamus in the central auditory pathway. IC receives excitatory
and inhibitory inputs from many lower auditory nuclei (Adams,
1979; Adams and Wenthold, 1979; Brunso-Bechtold et al., 1981;
Adams and Mugnaini, 1984; Pollak and Casseday, 1989; Covey
and Casseday, 1995; Casseday and Covey, 1996), contralateral IC
(Malmierca et al., 1995, 2009) and from the primary auditory cor-
tex (AC; Games and Winer, 1988; Herbert et al., 1991; Ojima,
1994; Saldaña et al., 1996; Malmierca and Ryugo, 2011). IC func-
tions as an important relay station, and not only analyzes and
integrates sound signals in terms of amplitude, frequency, and
time course, etc., from different sources, but also prepares to
route these signals to higher level center (Casseday et al., 1994;
Jen et al., 1998; Suga et al., 1998; Jen and Zhang, 2000; LeBeau
et al., 2001). A number of studies have shown that auditory sig-
nal processing and integration in ICs are significantly modulated

by the massive descending corticofugal system which adjusts
and improves ongoing collicular signal processing in multiple-
parametric domains but also reorganizes collicular auditory maps
according to the acoustic experience (Jen et al., 1998; Jen and
Zhou, 2003; Popelar et al., 2003; Yan et al., 2005; Zhou and Jen,
2007; Ma and Suga, 2008; Suga, 2008; Suga et al., 2010). However,
few studies have characterized how neural circuits in or between
ICs can affect collicular auditory signal processing and integra-
tion. Therefore, in this article, we review recent findings and
focus mainly on neural interactions either in one IC or between
two ICs.

EFFECT OF INTERACTIONS BETWEEN NEURONS IN ONE IC
IN THE AUDITORY SIGNAL PROCESSING
There are extensive intrinsic connections between neurons in one
IC such that the IC neurons are likely to be a major source
of inputs to other IC cells (Saldaña and Merchán, 1992). Such
intercollicular fibers contribute to the formation of the known
fibrodendritic laminae in one IC (Herrera et al., 1988, 1989; Oliver
and Schneiderman, 1991). How do the neurons inside one audi-
tory center interact with each other? Little is known about this
interaction, but immunocytochemical localization demonstrated
that one IC contained considerable amounts of glutamic acid,
glycine, and glutamate decarboxylase (GAD), an enzyme that
catalyzed the decarboxylation of glutamate to γ-aminobutyric
acid (GABA), although some of these molecules could have an
extrinsic origin (Adams and Wenthold, 1979; Ottersen and Storm-
Mathisen, 1984; Vetter and Mugnaini, 1984; Moore and Moore,
1987; Roberts and Ribak, 1987; Caspary et al., 1990; Merchán
et al., 2005). The presence of these excitatory and inhibitory trans-
mitters suggests extensive interactions and modulations between
neurons in one IC, because excitation and inhibition are the
two most important neural interactions that modulate auditory
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signal processing by increasing and decreasing responses of audi-
tory neurons. To study the effect of neural interactions on sound
amplitude and frequency selectivities of IC neurons, the audi-
tory responses including the rate-intensity function (RIF) and
frequency tuning curve (FTC) of each IC neuron in two simulta-
neously recorded IC neurons (or paired neurons) were examined
under two-tone stimulation conditions. A pair of electrodes was
used to simultaneously record two IC neurons in the same iso-
frequency lamina or different iso-frequency (non-iso-frequency)
laminae of the IC (Figure 1). A modulating tone with the best
frequency (BF) of one of the paired IC neurons was delivered
prior to a probe tone. This two-tone stimulating paradigm pro-
vided an opportunity to examine how a neuron activated by
its BF sound might affect the response of the other neuron in
amplitude and frequency domains. In particular, this procedure
allows us to study the possible correlation of each pair of neu-
rons in signal processing. For example, when a pair of IC neurons
was stimulated by their two BF tones, the response of one IC
neuron was either inhibited (two-tone suppression, Figure 1A)
or facilitated (two-tone facilitation, Figure 1B) by the other. It
has been reported that the proportion of neurons inhibited by
interactions between simultaneously recorded neurons was always
higher than that of facilitated neurons (Jen et al., 2002; Wu and
Jen, 2008). Thus, the high level of inhibition in IC is basically
similar to that in other reports (Vater et al., 1992; Suga, 1995;
Fuzessery and Hall, 1996; Zhou and Jen, 2000; Lu and Jen, 2002;
Mayko et al., 2012).

Further testing of inhibitory interactions on responses of the
paired neurons revealed that the percent two-tone suppression of
auditory responses decreased significantly with BF and recording
depth differences between paired IC neurons (Jen et al., 2002).
This observation is similar to a study in which auditory spatial
selectivity of IC neurons was studied under two-tone stimulation
conditions (Zhou and Jen, 2000). It was proposed that this phe-
nomenon might be caused by the tonotopic organization of IC
neurons, and that inputs from neurons with small BF differences
arrive earlier with less attenuation than neurons with large BF dif-
ferences (Jen et al., 2002). On the other hand, this observation also
suggests a gradient of decreasing two-tone suppression along the
dorsoventral axis of the IC (Schreiner and Langner, 1997). How-
ever, the neural basis underlying this observation remains to be
explored.

Because the two-tone stimulation was based on the BFs of two
simultaneously recorded neurons, two-tone suppression and facil-
itation might be thought to be caused by interactions between the
two simultaneously recorded neurons activated by their respective
BF sounds. Since IC neurons are tonotopically organized, inter-
actions between the IC neurons are actually interactions between
frequency laminae or bands. For a pair of IC neurons simultane-
ously recorded in big brown bat, a sound with the BF of one neuron
could modulate the frequency tuning of another neuron by sharp-
ening or broadening it’s FTC (Wu et al.,2004). The pairs of neurons
involved in frequency band interaction are not only within the
same frequency band, but also across different frequency bands.
The sharpening degrees of neurons within the same frequency
band are higher than those of neurons across frequency bands. It
was also found that the strength of frequency band interactions

was weaker near the BF but gradually increased with frequency
away from the BF of FTC (Wu et al., 2004). Moreover, FTCs of
neurons with a BF of 20–30 kHz are most strongly sharpened
which is similar to that observed in the chinchilla (Biebel and
Langner, 2002).

These data suggest that IC neurons are highly correlated dur-
ing frequency analysis such that frequency selectivity of the IC
neurons is improved through inhibition while the spectrum of
frequency sensitivity of other IC neurons is enhanced through
excitation.

To further explore the mechanism underlying the effect of
two-tone suppression on the responses of two simultaneously
recorded neurons, bicuculline (an antagonist of GABAA recep-
tor) was applied to one of the paired IC neurons in big brown
bat to abolish GABAergic inhibition (Figure 2). Using a pair of
neurons (A and B, for example), when bicuculline was applied
to neuron A, it’s number of impulses was greatly increased
(Figure 2 Aa vs Aa+bic), and the two-tone suppression was
completely removed in neuron A (Figure 2 Aa+bic vs Aa+bic
� b), but was stronger in neuron B (Figure 2 Bb � a vs Bb
� a+bic). Thus, the degree of response inhibition decreased
in the bicuculline-applied neuron but increased in the paired
neuron, suggesting that GABAergic inhibition directly mediated
the inhibitory interactions between two simultaneously recorded
or paired IC neurons (Wu and Jen, 2008, 2009). However, for
another pair of neurons C and D, the number of impulses
greatly increased following bicuculline administration to neuron
C (Figure 2 Cc vs Cc+bic), but the two-tone suppression was
only partly abolished in neuron C (Figure 2 Cc+bic vs Cc+bic�
d), and was slightly increased in neuron D (Figure 2 Dd� a
vs Dd� c+bic). A previous study in big brown bat indicated
that IC neurons with GABAA receptors are mostly distributed
in the dorsomedial region but are sparsely distributed in the
ventrolateral region which is mostly distributed with neurons
containing glycine receptors (Fubara et al., 1996). Therefore, the
degree of GABA-mediated two-tone suppression would progres-
sively decrease along the dorsoventral axis of the IC. In brief,
when an IC neuron is excited, it may inhibit other neighbor-
ing neurons to stand out as the best in the neurons through
inhibitory interaction. These inhibitory interactions between neu-
rons in one IC improves auditory sensitivity during auditory signal
processing.

BILATERAL COLLICULAR INTERACTION IN AUDITORY
SIGNAL PROCESSING
Many previous studies have clearly shown the anatomical con-
nections between two ICs through the commissure of IC (CoIC).
Injecting retrograde tracer in one IC demonstrated that commis-
sure neurons in the central nucleus of IC (ICc) sent projections or
fibers to the central nucleus, dorsal and lateral cortices of oppo-
site IC. The commissural fibers ending in the contralateral IC to
the injection point formed a laminar plexus that was symmetri-
cal to the ipsilateral plexus, and interconnected mirror symmetric
regions of the ICs representing similar frequency bands (Saldaña
and Merchán, 1992; Malmierca et al., 1995). Even in the ICc,
retrograde labeling of neurons demonstrated that commissural
neurons send a divergent projection to the whole extent of the
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FIGURE 1 | Responses of two pairs of simultaneously recorded IC

neurons. (A,B) Sketches showing the experimental arrangement for
simultaneous recording two pairs of IC neurons. a and b represent a
pair of IC neurons in iso-frequency laminae while c and d are another
pair of IC neurons in non-iso-frequency laminae. M, medial; L, lateral; D,
dorsal; V, ventral; A, aqueduct; PVG, paraventricular gray. The firing rates
of these neurons in response to a 4 ms best frequency (BF) sound at

10 dB above the minimum threshold (MT) was inhibited (Aa vs
Aa � b, Ab vs Ab � a) and facilitated (Bc vs Bc � d, Bd vs Bd � c)
to different degrees when the 10 dB BF sound was preceded by a
4 ms sound at the BF and 20 dB above the MT of its counterpart
neuron (abbreviated as the counterpart sound). N: number of impulses.
All sound stimuli are shown by short horizontal bars. (based on
Jen et al., 2002).

contralateral lamina, which resulted in a V-shaped axonal plexus
that covered most of the ICc laminae and extended into the dorsal
and lateral cortices. However, the density of the labeled com-
missurally projecting neurons was weighted toward a point that
matched the position of the corresponding tracer injection into
the contralateral IC, which is consistent with a point-to-point pat-
tern (Figure 3). The coexistence of point-to-point and divergent

projections suggest that CoIC is likely to be involved in interac-
tions between specific regions of corresponding frequency band
laminae as well as in integration across the laminae. (Malmierca
et al., 2009).

An immunocytochemistry study in CoIC (Saint Marie, 1996)
demonstrated the presence of both excitatory projections medi-
ated by glutamate and inhibitory projections mediated by
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FIGURE 2 |Two-tone suppression on responses of two pairs of

simultaneously recorded IC neurons before and during bicuculline (bic)

application. Presentation of a counterpart sound decreased the firing rates
of each IC neuron in the (A,B) pair or (C,D) pair (Aa, Bb, Cc, Dd vs Aa � b, Bb
� a, Cc � d, Dd � c). When bicuculline was applied to neurons A and C, the
number of impulses increased (Aa vs Aa+bic, Cc vs Cc+bic). The presentation

of a counterpart sound during bicuculline application to neurons A and C
decreased the number of impulses only slightly in neuron A but substantially
in neuron C (Aa+bic vs Aa+bic � b, Cc+bic vs Cc+bic � d), however,
decreased the number of impulses substantially in neuron B and slightly in
neuron D (Bb vs Aa+bic � b, Cc+bic vs Cc+bic � d). N: number of impulses.
All sound stimuli are shown by short horizontal bars. (Wu and Jen, 2008)

FIGURE 3 | Schematic wiring diagrams of the commissural

connections. In the central nucleus of IC (ICc), the retrograde labeling of
neurons demonstrated that an injection into one point on the lamina (dotted
circle, left IC) retrogradely labeled neurons over the whole extent of the
contralateral lamina, consistent with a divergent pattern of connections
(thin arrows). The density of the projection is centered on a point matching
the position of the tracer injection which is consistent with a
point-to-point-weighted wiring pattern (thick arrow; Malmierca et al., 2009).

GABA. Injections of D-[3H] aspartate which is considered a
selective marker for glutamatergic synapses, suggested that some
glutamatergic endings in the IC originated from the oppo-
site IC in the chinchilla. Studies that combined tract-tracing
with horseradish peroxidase (HRP) and immunocytochemical

labeling for GABA, found that double labeled neurons were
mostly in the contralateral IC following a tracer injection into
the ipsilateral IC in rat. These GABAergic CoIC could exert a
direct monosynaptic inhibitory influence on their contralateral
counterparts (González-Hernández et al., 1996; Hernández et al.,
2006).

These anatomical findings are consistent with an electrophys-
iological study that concentrated on the interactions between
two ICs. In vitro whole cell recording of IC neurons demon-
strated that an excitatory and inhibitory postsynaptic current
(EPSC and IPSC) was evoked by direct stimulation of the CoIC.
The addition of GABAergic or glycinergic antagonists to CoIC
could reduce the IPSC to various degrees, even there was a strong
inhibitory input that was almost exclusively GABAergic. Further-
more, ionotropic glutamic receptor antagonists reduced both the
EPSC and IPSC. This indicated that much of the inhibitory input
appears to be mediated by interneuronal connection (Moore et al.,
1998). Inactivation of excitatory CoIC could inhibit recorded
IC neurons by direct elimination of the excitation and facil-
itate recorded neurons by disinhibiting inhibitory synapse of
interneurons.

Bilateral collicular interaction between two ICs in auditory
signal processing were examined using extracellular recordings
in vivo. Malmierca et al. (2003, 2005) blocked the transmission
of excitatory fibers in CoIC by means of local hydraulic injec-
tion of kynurenic acid (KA; a non-specific glutamatergic receptor
antagonist) into one IC and observed changes in the frequency
response area, number of impulses and monotonicity of neu-
rons located in the corresponding region of the contralateral IC.
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FIGURE 4 | Modulation of response of IC neuron (ICMdu) during focal

electrical stimulation of the contralateral IC neuron (ICES). (A,B) Focal
electrical stimulation of one ICES neuron produced inhibition of two ICMdu
neurons but produced facilitation of another ICMdu neuron. (C,D) Focal
electrical stimulation of another ICES neuron produced inhibition of all three

ICMdu neurons studied. The BF of all six ICMdu neurons progressively
increased with recording depth, and the percent inhibition was closely
correlated with BF difference. N, number of impulses; %, percent inhibition
or facilitation; of response of each ICMdu neuron. Arrow: focal electric
stimulation (Mei et al., 2012b).

These studies indicated bilateral collicular interactions in the cor-
responding frequency laminae between the two ICs that were
mediated by CoIC. Consistent with the result of whole cell record-
ing, focal injection of KA in one IC both decreased and increased
the number of impulses in the opposite IC neurons. This pro-
vided further evidence for an inhibitory influence mediated by
inhibitory interneuronal connection.

Moreover, our recent study also demonstrated that focal elec-
trical stimulation of one IC produced widespread inhibition and
focused excitation of responses in contralateral IC neurons. The
excitatory modulation of bilateral collicular interactions expands
the RIFs and FTCs of facilitated IC neurons but decreased the
slope of their RIFs and Q10 value of their FTCs for wider ampli-
tude and frequency responses to sound stimuli. Conversely, the
inhibitory modulation of bilateral collicular interaction sharpens
the RIFs and FTCs of inhibited IC neurons but increased the slope

of their RIFs and Q10 value of their FTCs for sharper sensitivity
to sound amplitude and frequency (Mei et al., 2012b; Cheng et al.,
2013). It is also suggested that the small proportion of bilateral col-
licular excitatory interactions between neurons in corresponding
frequency laminae and the large proportion of bilateral collicu-
lar inhibitory interactions between neurons in different frequency
laminae may be involved in the formation of binaural neurons (i.e.,
excitation–excitation, EE neurons that can be excited by same BF
sound stimulation to either ear; excitation–inhibition, EI neurons
that are strongly excited by sound stimulation to the contralateral
ear and are inhibited by sound stimulation to the ipsilateral ear;
Mei et al., 2012a). The possible neural pathway may be described
that the excitation from ipsilateral ear can cross to the contralateral
IC in a lower auditory nucleus and then to the ipsilateral IC via
facilitatory or inhibitory CoIC, respectively. The unbalanced prop-
erties between excitatory and inhibitory projections have a very
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important role in the formation of unilateral auditory dominance
and sound location.

In accordance with the anatomical data of point-to-point and
divergent projections between two ICs, focal electrical stimula-
tion of one neuron modulated the responses of three contralateral
neurons (Figures 4A vs 4B and 4C vs 4D). Each of three con-
tralateral IC neurons was sequentially isolated at a different depth
with a progressive increase in BF. The degree of bilateral collicu-
lar interaction was dependent upon the BF difference between the
electrically stimulated IC neurons and the modulated IC neurons.
The percent modulation in the number of impulses was larger for
the neuron with a smaller BF difference than for the neuron with
a larger BF difference (Mei et al., 2012b).

In addition, after the focal electrical stimulation was delivered
for 30 min, a long term shift in an IC neuron’s BF was induced
which remained for as long as 150 min and decreased with time
(Cheng et al., 2013). Therefore the bilateral collicular interaction
modulates both auditory signal processing and auditory plasticity
of IC neurons that is similar to the corticofugal modulation of
IC neurons (Jen et al., 1998; Ma and Suga, 2001; Suga et al., 2002;
Yan and Ehret, 2002; Jen and Zhou, 2003; Yan et al., 2005; Zhou
and Jen, 2007). Since the BF-dependent modulation of bilateral
collicular interaction is not entirely comparable to the egocentric
selectivity of corticofugal modulation, further studies are required
to determine whether the modulation effect of bilateral collicular
interactions might also be mediated through corticofugal feedback
loops.

Interestingly, following reciprocal electrical stimulation of pairs
of neurons, respectively, in two ICs, we found that the bilateral
collicular interaction was either reciprocal or unilateral. However,
after HRP deposits were made in CoIC, regions of the IC sup-
plying fibers to the commissure were not the main targets for the

terminals of these fibers, which suggested that interconnections
of the ICs through their commissure were complementary, rather
than reciprocal (Aitkin and Phillips, 1984).

PROSPECTS
Neural interactions are of great interest because of their con-
tribution to sensory information processing, neural functional
integration and neural modulation. As for the auditory midbrain,
neural interactions were found both in one IC and between two
ICs, even in unilateral iso-frequency and non-iso-frequency lam-
inae as well as bilateral corresponding and non-corresponding
frequency laminae. Generally, there is a large percentage of
inhibitory interactions but a small percentage of excitatory inter-
actions, which is likely because of the presence of many inhibitory
interneurons. These excitatory and inhibitory interactions in or
between ICs modulate auditory signal processing in amplitude
and frequency domains, and provide an adjustable and plastic
modulation pattern for the auditory signal processing of ICs. How-
ever, many details, such as neural plasticity of the structure and
function as well as cellular and synaptic mechanisms of the neu-
ral modulation underlying neural interactions in auditory signal
processing, remain unclear and require further study. We have
sufficient reasons to believe that new knowledge about the various
neural interactions will be obtained with successive studies. Thus,
the studies of neural interactions in one IC and between two ICs
are in the ascendancy.
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