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Influenza usually spreads through the human population in multiple-wave outbreaks. Successive reinfec-

tion of individuals over a short time interval has been explicitly reported during past pandemics. However,

the causes of rapid reinfection and the role of reinfection in driving multiple-wave outbreaks remain

poorly understood. To investigate these issues, we focus on a two-wave influenza A/H3N2 epidemic

that occurred on the remote island of Tristan da Cunha in 1971. Over 59 days, 273 (96%) of 284

islanders experienced at least one attack and 92 (32%) experienced two attacks. We formulate six math-

ematical models invoking a variety of antigenic and immunological reinfection mechanisms. Using a

maximum-likelihood analysis to confront model predictions with the reported incidence time series, we

demonstrate that only two mechanisms can be retained: some hosts with either a delayed or deficient

humoral immune response to the primary influenza infection were reinfected by the same strain, thus

initiating the second epidemic wave. Both mechanisms are supported by previous empirical studies

and may arise from a combination of genetic and ecological causes. We advocate that a better understand-

ing and account of heterogeneity in the human immune response are essential to analysis of multiple-wave

influenza outbreaks and pandemic planning.
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1. INTRODUCTION
A swine-origin influenza A/H1N1 virus that arose in 2009

reminds us of the persistent risk of influenza pandemics.

Lessons from the past are precious and may help us to

anticipate and manage such potential disasters [1]. The

most striking example is certainly the ‘Spanish’ influenza

pandemic of 1918–1919 that occurred in three waves and

caused about 50 million deaths worldwide in only nine

months [2]. To date, this multiple-wave outbreak pattern,

which has also been reported during several other pan-

demic episodes, remains only partially understood. On

one hand, there is evidence from the 2009 A/H1N1 pan-

demic that climate variations and school closing and

reopening shape the timing of successive epidemic

waves [3]. On the other hand, the explicit reports of

individuals experiencing reinfections over a short time

interval during pandemic seasons are still poorly

understood [4–7].
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A commonly invoked hypothesis is that antigenically

distinct, co-circulating influenza strains that confer only

partial, humoral cross-immunity are each driving separate

influenza outbreaks. Based on this assumption, Barry

et al. [6] estimated the level of cross-protection between

the first and the second waves of the 1918 H1N1 pan-

demic in US Army Camps and Britain, and Rios-Doria

& Chowell [8] fitted a two-strain mathematical model to

the 1918 H1N1 epidemic in Geneva. However, it is also

commonly believed that evolving influenza strains may

take years to escape population immunity, while the

observed inter-wave periods are typically of the order of a

few weeks [2]. Unfortunately, virus or serum samples

from separate waves of past pandemics are too scarce to

resolve this issue on empirical grounds.

Recent findings provide new evidence that supports

the role of alternative reinfection mechanisms in driving

multiple-wave influenza outbreaks. Notably, a large sero-

logical survey conducted during the first wave of the 2009

H1N1 pandemic highlighted host heterogeneity in the

efficient development of humoral immunity [9]. This

report challenges the assumption that influenza infection

confers life-long protection against reinfection by the

same strain [10]. From a theoretical perspective, it is
This journal is q 2011 The Royal Society
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Figure 1. Historical and geographical data. (a) Daily incidence time series as it was originally reported by Mantle & Tyrrell
[13]. (b) Photo and (inset) geographical position of the island of Tristan da Cunha in the South Atlantic Ocean. The Settlement
of Edinburgh of the Seven Seas has been enlarged. Photographs from HMS Endurance’s Helicopter taken on 12 April 2007.
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possible to fit mathematical models in which individuals

can be reinfected by the same strain to multiple-wave out-

breaks [11,12]. However, these existing models are rather

phenomenological and have been endowed with different

biological interpretations, ranging from immune escape

by antigenic drift to reinfection by immune deficiency

[11,12].

What is lacking to direct further research is an evi-

dence-based comparison of alternative immunological

hypotheses that attempts to explain multiple-wave influ-

enza outbreaks. We formulate six mechanistic stochastic

models that incorporate a variety of potential antigenic

and immunological mechanisms (i.e. positing both viral

and host heterogeneity) that may explain rapidly occur-

ring reinfection waves during influenza outbreaks.

Particular emphasis is given to ensure that each hypoth-

esis is associated with exactly one, parsimonious model.

Using a simulation-based maximum-likelihood (ML)

analysis, we interface these models with case data from

the two-wave influenza epidemic that was reported on

the remote island of Tristan da Cunha (TdC) in 1971

[13] (figure 1).

Historical circumstances make this case a unique natu-

ral experiment well-suited to mathematical modelling and

statistical inference for multiple reasons: (i) moderate size

and free social mixing of the community under study,

(ii) full isolation of the community throughout the epi-

demic rules out the hypothesis that a second influenza

virus was introduced from outside, (iii) incidents of influ-

enza in the community were remarkably low and uniform

before the 1971 epidemic, and (iv) the daily reported

incidence counts are almost exhaustive [13] (§2a).

Our study reveals that, when demographic stochasti-

city is appropriately accounted for, the second epidemic

wave can only be explained with mechanisms attributable

to delayed or deficient humoral immune responses. Our

strictly mechanistic interpretations enable us to quantitat-

ively compare our results with empirical data and we close
Proc. R. Soc. B (2011)
with an evaluation of the potential genetic and ecological

determinants of variation in host susceptibility.
2. MATERIAL AND METHODS
(a) Data

TdC is a volcanic island in the South Atlantic Ocean. It has

been inhabited since the nineteenth century and in 1971, the

284 islanders were living in the single village of the island:

Edinburgh of the Seven Seas (figure 1b). Whereas the

internal contacts were typical of close-knit village commu-

nities, contacts with the outside world were infrequent and

mostly owing to fishing vessels that occasionally took passen-

gers to or from the island. These ships were often the cause of

introduction of new diseases into the population [14]. Focus-

ing on influenza, several serological analyses between 1955

and 1963 provide important insights into the immune

status of the adults among the 284 islanders present in

1971. Following an epidemic of A/H1N1 in 1954 during

which most of the islanders were infected, antibodies to

older influenza A and B types were detected in islanders

over 20 years of age [15]. In 1961, when the volcano erupted,

the island was evacuated to Britain and the islanders were

given a polyvalent influenza vaccine that contained an

A/H2N2 strain and a recent B strain. Serological studies

showed a good response to this inoculation [16]. After the

population returned to TdC in 1963, no influenza epidemic

had been reported. In this context of a small population with

a small and homogeneous immune repertoire against influ-

enza virus, an unusual epidemic occurred in 1971, 3 years

after the global emergence of the new subtype A/H3N2.

On August 13, a ship returning from Cape Town landed

five islanders on TdC. Three of them developed acute respir-

atory disease during the 8 day voyage and the other two

presented similar symptoms immediately after landing.

Various family gatherings welcomed their disembarkation

and in the ensuing days, an epidemic started to spread

rapidly throughout the whole island population. After three
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weeks of propagation, while the epidemic was declining,

some islanders developed second attacks and a second peak

of cases was recorded. The epidemic faded out after this

second wave and lasted a total of 59 days (figure 1a).

Among the 284 islanders, 273 (96%) experienced at least

one attack and 92 (32%, mainly adults) experienced two

attacks. Only a few individuals experienced their single

attack during the second epidemic wave. Unfortunately,

only 312 of the 365 attacks (85%) are known to within a

single day of accuracy and constitute the dataset [13]. A pre-

cise description of the clinical features of the illness as well as a

review of the secondary infections were provided by Mantle &

Tyrrell [13]. The authors reported that 85 per cent of the first

attacks were moderate or severe, and this proportion decreased

to 50 per cent for the second attacks. Serological analyses of 11

infected individuals demonstrated a high level of antibody

against A/H3N2, a subtype to which the population had

never previously been exposed. Moreover, seroconversion of

individuals infected for the first time during either the first or

the second epidemic wave attests that the virus was circulating

throughout the epidemic. Unfortunately, no virological analysis

was conducted to show whether first and second attacks were

due to antigenically differing strains of A/H3N2.
(b) Mechanistic modelling of reinfection hypotheses

In their original paper from 1973, Mantle & Tyrrell [13]

proposed that this two-wave epidemic could have been

caused by either the initial introduction of two separate

viral agents or reinfection by the same viral agent. Although

this second hypothesis appeared to them as the only possi-

bility, they were unable to determine whether antigenic

changes in the virus had occurred, allowing for second infec-

tion, or whether some patients did not acquire an efficient

immune protection and either suffered a recrudescence of

infection or were reinfected by other patients. We expand

upon these possibilities as follows:

— Although originally dismissed [13], the first biological

hypothesis (subsequently referred as the 2 Virus, or 2Vi,

hypothesis) assumes that two separate viral agents,

with different transmissibility, were introduced at the

beginning of the epidemic.

— The Mutation (Mut) hypothesis assumes that a single

initiating virus mutated within an infected host during

the first epidemic wave, leading to the emergence of a

new antigenic variant [8].

— The All-or-Nothing (AoN) hypothesis assumes that fol-

lowing recovery from infection, some hosts did not

develop a long-term protective immunity and remained

fully susceptible to reinfection by the same strain [9,11].

— The Partially Protective Immunity (PPI) hypothesis

assumes that following recovery from infection, all hosts

developed a long-term immunity that is not fully protective

but reduces the risk of reinfection by the same strain [12].

— The In-Host (InH) hypothesis assumes that following infec-

tion some hosts were unable to completely eliminate the

viral load and suffered from an intra-host recrudescence

of infection [13].

— The Window-of-reinfection (Win) hypothesis assumes

that following recovery, long-term protective immunity

can take some time before becoming effective [9], result-

ing in a time window of susceptibility to reinfection by the

same strain.
Proc. R. Soc. B (2011)
An extensively used epidemiological model for influenza

dynamics is of susceptible–exposed–infectious–removed

(SEIR) form [8,11]. After exposure to the virus, suscep-

tible hosts (S) pass through an exposed state (E) of

latent infection, become infective (I) and are finally

removed (R) from the infectious pool as they simul-

taneously recover and acquire permanent immunity.

However, our immunological hypotheses motivate a more

accurate description of the different stages from infection

to development of long-term protective immunity. We

incorporate several known [8,11,12,17,18] and novel fea-

tures to the classical SEIR model in order to

mechanistically translate the six biological hypotheses into

six stochastic state-space models (see figure 2 and elec-

tronic supplementary material, text S1, for further

details). Particular emphasis is given to ensure that each

model combines enough parsimony to enable parameter

inference and enough complexity to match unambiguously

to a single hypothesis.
(c) Simulation and model selection

Given the small population of TdC, demographic stochasti-

city is expected to play a significant role in the epidemic

dynamics, especially during the inter-wave period when the

number of infected hosts is low and epidemic fade-out is

likely to happen. We therefore used the stochastic framework

of continuous-time Markov chains that naturally allows

demographic stochasticity to be taken into account. The

Markov chain events and the transition rates used to simulate

the six models are provided in electronic supplementary

material, text S1.5. Numerical simulations were performed

using the exact algorithm provided by Gillespie [19].

Model-predicted incidence is computed by counting the

daily number of new hosts entering the infectious class I.

Since the dataset reports only 85 per cent of the total

number of attacks and in order to take account of possible

unreported asymptomatic cases, the observation process

must also be modelled. More precisely, after having checked

that the data were not overdispersed (electronic supplemen-

tary material, text S1.6), we assumed a Poisson process

observation whose reporting rate parameter (r) was also

inferred [20].

Our approach for evaluating the reinfection hypotheses

rests on a statistical comparison of the corresponding state-

space models to the shape and the dynamics of the observed

daily incidence counts while, crucially, allowing for demo-

graphic stochasticity. For a time series y1:T of T successive

observations and a state-space model Hi with parameter

vector u, the likelihood is given by L(ujHi) ¼ P( y1:T j u, Hi).

Parameter inference and model selection are based on an iter-

ated filtering procedure that converges to the ML parameter

estimate (uML) for each model to the incidence data [20].

We performed log-likelihood profiles in order to check conver-

gence to the ML and to calculate 95% confidence intervals for

parameter estimates. Finally, we used the corrected Akaike

information criterion (AICc) to select the model that best

explains the data: AICc
i ¼ 22l(uMLjHi)þ 2kþ 2k(kþ 1)/

(T 2 k 2 1), where k is the number of estimated parameters

plus initial conditions, T ¼ 59 is the number of observations

and l(uMLjHi)¼ log L(uMLjHi) is the maximized log likelihood.

This correction accounts for the small sample size relative to

the number of parameters (T/k , 10). Finally, we decomposed

the maximized log likelihood of each model into conditional log
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Figure 2. The six models with six different reinfection mechanisms can be retrieved by adding to three common skeletons (in
black) the transitions corresponding to the indicated colour. All models have five epidemiological states in common: susceptible
(S), exposed (E), clinically ill and infectious (I), temporarily removed from the transmission process (R) and protected in the

long-term against reinfection by the same strain (L). To improve biological realism, durations of the states E, I and R are all
gamma-distributed (electronic supplementary material, text S1.1). (a) The 2Vi (blue) and Mut (red) models implement a
widely used history-based formalism [17,18] with (i, j) e f1,2g2 and i = j. Upper index stands for the infective strain,
bottom index for the already-immunized strain, li ¼ bi(I

i þ Ij
i )/N is the force of infection of strain i and both strains are sup-

posed to have the same mean latent, infective and temporary removed periods (electronic supplementary material, text S1.2).

Hosts recovered from strain i enter the Li class and become completely protected against reinfection by strain i while remaining
susceptible to the other circulating strain j. For the Mut model, the two strains are supposed to have the same transmissibility
(b1 ¼ b2, see electronic supplementary material, text S1.2) and to interact through a cross-immunity parameter s e [0,1] that acts
by reducing the susceptibility to the other strain (electronic supplementary material, text S1.3). The dashed red arrow indicates

that at time Tmut if I1. 0, one infectious host with the initial strain (i¼ 1) becomes infectious with the mutated strain ( j ¼ 2).
(b,c) For the AoN, PPI, InH and Win models, l ¼ bI/N is the force of infection of the single strain. In the AoN model (red),
we assume that hosts acquire full protection against reinfection with probability a, otherwise they re-enter the S class. In the
PPI model (blue), we assume that all hosts develop long-term immunity that partially reduces the level of susceptibility through
a protection factor s e [0,1]. In the InH model (green), we assume that infected hosts are able to clear the viral load with prob-

ability a, otherwise they suffer from an intra-host reinfection and, after some time, re-enter the I state. In the Win model (c), we
assume host heterogeneity in the waiting time for acquisition of a completely protective immunity [9]: if some hosts re-enter the
transmission process before protection is effective, they fall into a time window of susceptibility to reinfection (W ). We simply
assume that all hosts remain in the W state for a duration that is exponentially distributed: this distribution has a positive density
in zero, thus enabling some hosts to immediately enter the L class (electronic supplementary material, text S1.4). Parameter

descriptions can be found in figure 3. The transition rates to simulate the six stochastic models are provided in electronic
supplementary material, text S1.5.

3638 A. Camacho et al. Explaining rapid influenza reinfections
likelihoods log P( ytjy1:t21, uML , Hi) in order to compare the six

models at successive observation times t (see electronic

supplementary material, text S2, for further details on the

inference framework).
3. RESULTS AND DISCUSSION
(a) Model selection

The maximized likelihood provides a first quantitative

answer to the objective question: ‘How likely is it that

the stochastic process resulted in the observed epidemic?’.

The AICc [21] is then a related measure of the expected

predictive capability of the model that penalizes model

complexity. The rescaled AICc values, presented in

figure 3, allow for an immediate ranking of the competing

models and show that the Win mechanism best explains the

data. Following the rough rule of thumb of Burnham &
Proc. R. Soc. B (2011)
Anderson [22], the AoN hypothesis also receives substan-

tial support (DAICc � 2). In contrast, the 2Vi and Mut

models have considerably less support (DAICc . 7),

whereas the InH and PPI models have essentially no sup-

port (DAICc p 10). This rule of thumb has proved to be

efficient in many practical situations [22,23] and can

formally be justified by computing the evidence ratio of

each competing model (electronic supplementary material,

text S3). However, it has also been shown that one should

be cautious regarding the systematic use of this rule

of thumb when applying AIC corrections [23], which

motivates a more detailed analysis of DAICc values.

First, we identified that the differences in the log likeli-

hoods (and thus AICc) accumulate during the inter-wave

period, the second epidemic wave and the extinction

period after the second wave (figure 4a–e, lower panels).

Second, to investigate whether the differences in



model

5

10

15

20

25

30

0.40

0.45

0.50

0.55

0.60

0.65

R0 = b n

prob. of long−term immunity: a 

Win AoN 2Vi Mut InH PPI

0.5

1.0

1.5

2.0

2.5

3.0

0.65

0.70

0.75

0.80

0.85

0.90

latent period (days): 1 e

partial protection: 1 − s

Win AoN 2Vi Mut InH PPI

1

2

3

4

5

6

7

0.55

0.60

0.65

0.70

0.75

0.80

infective period (days): 1/n

reporting rate: ρ 

Win AoN 2Vi Mut InH PPI

5

10

15

20

−118

−117

−116

−115

−114

−113

removed period (days): 1/g 

maximized log−likelihood

Win AoN 2Vi Mut InH PPI

4

6

8

10

12

14

0

2

4

6

8

10

reinfection window (days): 1/t

ΔAICc

Win AoN 2Vi Mut InH PPI
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AICc correspond to visible, practically significant differ-

ences in reproducing the characteristic second wave, we

performed predictive checks by simulating 105 time

series under each ML-fitted model. Comparison of the be-

haviour of the best model (Win) with each competitor

reveals superimposed dynamics with the AoN model and

confirms that the dynamics of the four other models are

different with respect to the second epidemic wave

(figure 4a–e, upper panels). Furthermore, figure 4f

shows that the extinction probability increases rapidly at

the end of the first wave for the 2Vi, Mut and PPI

models, whereas the Win and AoN models appear to be

much more robust to stochastic extinctions during the

inter-wave period. In the electronic supplementary

material, text S4, we supplement a suite of statistical ana-

lyses to evaluate and compare the goodness of fit of these

predictive simulations to the characteristic second-wave

infection dynamics. Overall, these analyses support the

view that, out of the models considered, the Win and

AoN models explain the observed time series significantly

better.

Our predictive simulations emphasize the paramount

role of demographic stochasticity in the multiple-wave

infection dynamics on this small island. In particular,

given the elevated risk of epidemic fade-out during the

low-prevalence inter-wave period, we find that only a sto-

chastic framework can accurately assess alternative

reinfection hypotheses.

Regarding the 2Vi hypothesis, R0 estimates (figure 3)

indicate that the two viruses should have had very differ-

ent transmissibility (both viruses are supposed to have the

same duration of infection). The resulting dynamics

reveal that during the first epidemic wave, the highly

transmissible virus outcompetes the poorly transmissible

virus, which has a 35 per cent risk of extinction owing

to ecological interference (electronic supplementary

material, text S5). However, if the poorly transmissible

virus manages to maintain a low prevalence until the

end of the first wave, when the highly transmissible

virus goes extinct, then it can initiate the second epidemic

wave (electronic supplementary material, figure S8).
Proc. R. Soc. B (2011)
On the other hand, the newly emerging variant in the

Mut hypothesis has a 60 per cent chance of early extinc-

tion [24] because it has a low effective reproduction

number Re � 1.7 (electronic supplementary material,

text S5) and only one host initially infected. This latter

choice can be justified a posteriori: the ML estimated

level of antigenic escape is high (sML � 20% ) and similar

to that of antigenic cluster transitions occurring each 2–8

years at the scale of the global human population [25,26].

However, we demonstrate in electronic supplementary

material, text S6, that the AIC, the sML and the risk of

extinction are only weakly sensitive to the relaxation of

this assumption.

The case of the PPI hypothesis is more complicated.

A previous analysis of a similar but deterministic model

[12] has revealed that dynamics depend on a reinfection

parameter sR0. When this parameter is well above a rein-

fection threshold (sR0 . 1), reinfection becomes self-

sustained and dynamics are SIS-like, whereas below this

threshold primary infection dominates and leads to SIR-

like dynamics. Our stochastic PPI model estimates

sR0 ¼ 1.18 and indicates critical dynamics: the reinfec-

tion parameter must be sufficiently high to reduce

stochastic extinctions during the inter-wave period, but

at the same time it must be sufficiently low to avoid sus-

tained reinfection and therefore more than two epidemic

waves. Put another way, epidemic fade-out after the

second wave can only be reproduced near the reinfection

threshold (sR0p1), which simultaneously generates a

significant inter-wave extinction probability.

The case of the InH hypothesis might seem surprising

as its extinction probability remains null all along the epi-

demic. This result is in fact straightforward since

reinfection in this model does not depend on a contact

process and is not subject to demographic stochasticity.

This reinfection mechanism is therefore very robust to

the small population size but interestingly it is not sup-

ported by the statistical comparisons. This emphasizes

the sensitivity and accuracy of our ML approach regard-

ing the shape and the dynamics of the incidence time

series (figure 4d).
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Figure 4. (a–e, upper panels) Qualitative comparison of the dynamics of each competing model (in blue: (a) AoN; (b) 2Vi;

(c) Mut; (d) InH; (e) PPI) to the best model (Win, in red) and to the daily number of new cases reported in the data
(black dots). For each model and associated ML parameter set, the mean predicted incidence (solid line) and corresponding
95% confidence envelope owing to demographic stochasticity and observation error (shaded area) were computed over 105

stochastic simulations by conditioning on occurrence of the second epidemic wave (electronic supplementary material,
text S4). Note that the dynamics of the Win and AoN models are superimposed (a). For the Mut model (c), emergence

time of the second variant (Tmut) is indicated on the x-axis. (a–e, lower panels) Quantitative comparison of the conditional
log likelihoods for each observation time t: CLLt ¼ log(P(ytjy1:t21, uML, Hi ), where y1:T is the daily incidence dataset and
uML is the ML parameter set of a given model Hi. Absolute differences (jDCCLtj, blue and red bars, left axis) allow quantitative
identification of the parts of the time series where the Win model is better than the competing model Hi (Win . Hi). Similarly,

evolution of the absolute cumulative differences (j
P

i¼1
t DCCLij, black line, right axis) indicates that the Win model performs

always better than the competing model, at least after the second epidemic wave has begun. ( f ) Evolution of the extinction
probability for each model defined at each point of time as the proportion of faded-out trajectories (E(t) ¼ I(t) ¼ 0) over
105 stochastic realizations. ( f ) Blue line with circles, Mut; blue line with squares, 2Vi; blue line with diamonds, PPI; solid
red line, Win; solid blue line, AoN; blue line with triangles, InH.
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Finally, it is remarkable that the two best models per-

form almost equally well despite being based on

antagonistic mechanisms. Indeed, the Win hypothesis

assumes that 100 per cent of the infected hosts can be

reinfected during a limited period lasting an average of

4.8 days, whereas the AoN hypothesis assumes that only

47 per cent of the infected hosts can be reinfected at

any time. This superimposed dynamics is in fact specific

to the epidemiological context of TdC and we show in

electronic supplementary material, text S7, that the
Proc. R. Soc. B (2011)
dynamics of these two models would differ both qualitat-

ively and quantitatively in the epidemiological context of a

large population.

(b) Parameter estimates

ML estimates and 95% confidence intervals for model

parameters are shown in figure 3. The first observation

concerns the high values of the basic reproduction

number (R0) and its large variation from one model to

another. R0 estimates are similar for the Mut, AoN and
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Win models (around 10), slightly lower for the PPI

model, but more than twice as high for the InH model

owing to an identifiability issue (electronic supplementary

material, text S8). Overall, these high values for R0 are

somewhat unusual: R0 is typically estimated around 2

for influenza, although exceptional cases have also been

reported in closed populations [27]. We contend that a

high value of R0 as well as rapid spread (the first peak

was reached after only 6 days) and a high attack rate

(96%) can be expected in small, isolated communities

[28] without pre-existing immunity [29]. Furthermore,

estimates of the effective reproductive number from the

TdC incidence time series [30] are in agreement with

our estimates of R0 (electronic supplementary material,

text S9).

The generation time (average time between primary and

secondary cases) can be estimated by the sum of the mean

latent period plus half the mean duration of infectiousness

[31]. ML estimates under the two best models are 3.2 days

(Win) and 3.3 days (AoN) and in agreement with those

previously published for A/H3N2 [32].

Recently, Mathews et al. [11] fitted a deterministic

model (similar to the AoN model) on the same dataset.

Their parameter estimates were very close to our values

except for R0 (6.44 versus 11.27) and for the mean

latent (1.36 versus 2.07 days) and infective (0.98 versus

2.44 days) periods. We suggest that this discrepancy is

mainly attributable to the incorporation of demographic

stochasticity in our approach. Indeed, deterministic

models neglect the probability of stochastic extinction

and should implicitly underestimate the above parameters

that play a significant role during the inter-wave period

(electronic supplementary material, figure S9).

The estimate of the proportion of the total cases that

were reported in the data, r, is � 70 per cent under all

models. As expected, this value is under the empirical

threshold of 85 per cent owing to data uncertainties

(§2a) and the remaining discrepancy can easily be

explained by undetected asymptomatic cases [11,32].

Variation of the mean temporary removed period from

one model to another is expected since interpretation of

the R state depends on the reinfection mechanism con-

sidered (electronic supplementary material, text S1.1).

In particular, ML estimates under the two best models

are 13.61 days (Win) and 11.57 days (AoN) and in agree-

ment with the duration of the short-term, cell-mediated

protection, as we now discuss.
(c) Immunological support for reinfection

Our results suggest that heterogeneity among hosts (e.g.

in the timely development of protective immunity) is a

significantly more likely explanation for 1971’s two-wave

influenza outbreak on TdC than viral heterogeneity (e.g.

in antigenic type). This suggestion finds empirical sup-

port in known mechanisms of immunity to influenza.

In particular, both the Win and AoN mechanisms

might be explained in light of genetic and/or ecological

determinants of susceptibility.

A multi-pronged innate [33] and adaptive [34]

immune response is optimal for clearing influenza infec-

tion. The innate response is the first to be activated and

plays a key role through its ability to control early viral

replication and to promote and regulate the virus-specific
Proc. R. Soc. B (2011)
adaptive immune response [33]. Cytokines are among the

most important bridges between the innate and adaptive

responses to influenza [35]. The adaptive response itself

may be broken into two critical sub-components: (i) the

cellular immune response by which antigen-specific cyto-

toxic T lymphocytes (CTLs) eliminate infected cells and

thus prevent viral release, and (ii) the humoral immune

response by which serum antibodies efficiently neutralize

the virus (both of which are promoted by T-cell help [34]).

Antibodies can remain detectable for years after infection

and prevent reinfection by the same strain as well as by suffi-

ciently cross-reactive variants [36]. Genetic variation in any

of these immune components might determine whether or

how rapidly an individual develops protective immunity

following primary influenza infection (in keeping with the

AoN or Win hypotheses, respectively).

It is important to note that during primary influenza

infection, the innate and cellular responses play the key

role in viral clearance whereas neutralizing antibodies are

generated later and do not play a significant role unless the

viral load is high/sustained [37]. The primary CTL response

is detectable in blood after 6–14 days whereas the neutraliz-

ing antibody response peaks at four to six weeks [38].

Critically, the CTL response is downregulated after viral

clearance [37], disappears by day 21 post-infection [38]

and is followed by a state of immunological ‘memory’ with

antigen-specific T cells. The memory cells cannot prevent

reinfection as well as specific antibodies could, but they

can reduce the severity of the disease [37]. Together, these

elements support the Win hypothesis: our parameter esti-

mates indicate that the reinfection window occurred 17.8

days (s.d. 6.4 days) post-infection and lasted for 4.8 days

(s.d. 4.8 days). This timing of susceptibility is in good agree-

ment with the interval between the completion of CTL

contraction and the full development of the neutralizing anti-

body response. Moreover, the reduced severity of most of the

reinfection episodes in TdC (§2) might be explained by the

T-cell ‘memory’.

In agreement with the AoN hypothesis, it has been

reported that a protective serum antibody response

cannot be detected in approximately 20 per cent of sub-

jects after natural influenza infection [38]. However, our

estimate is much higher and indicates that about 50 per

cent of the islanders did not mount a protective response

following the first infection. It has been proposed that this

lack of protective immunity could be related to a low prior

exposure to influenza [11]. Interestingly, the high level of

consanguinity among the islanders, together with evi-

dence that genetic bottlenecks occurred in the history of

the population [39], may also have led to the over-

representation of an unusual genotype involved in the

control of influenza.

Furthermore, ecological factors including the dose of

virus that initiates infection and the time interval between

primary and secondary exposure may shape Win or AoN

immunity, or indeed may make Win immunity appear as

an AoN phenomenon. For example, the amount of virus

in the lung determines the multiplicity of infection of

innate antigen-presenting cells, which in turn affects

their ability to induce subsequent adaptive responses

[33]. Additionally, the rate at which immunity to reinfec-

tion develops is likely to interact with exposure rates to

determine susceptibility. For example, when force of

infection is high (as on TdC), many hosts are likely to
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be re-exposed to virus before their window of suscepti-

bility to reinfection closes. If force of infection is low,

then most hosts will have closed that window before

re-exposure (electronic supplementary material, text S7).
(d) Outlook

In this study, we assessed and compared six potential anti-

genic and immunological drivers of multiple-wave influenza

A outbreaks on a two-wave influenza A/H3N2 epidemic

that occurred on the island of TdC in 1971. We transla-

ted these hypotheses unambiguously into six mechanistic

stochastic models, and employed a rigorous statistical frame-

work based on ML [20] for parameter inference and model

selection. In addition, we performed complementary statisti-

cal analyses, based on extensive simulations, to evaluate and

compare the goodness of fit of the predictions of our six

models. Our findings emphasize that a stochastic formulation

is essential to capture demographic stochasticity induced by

small populations [24] and/or low-prevalence inter-wave

periods. We show that two mechanisms—both invoking

host heterogeneity rather than viral heterogeneity—are sig-

nificantly better supported by the data. Both mechanisms

challenge the efficiency of the human immune response fol-

lowing primary influenza infection, indicating that, after a

first attack, some individuals with delayed (Win) or deficient

(AoN) humoral immune response could be reinfected by the

same strain.

Further analyses to distinguish between the Win and

AoN mechanisms will require more empirical data on

reinfection at the individual level. Unfortunately, the orig-

inal paper by Mantle & Tyrrell [13] does not provide such

information, but surveillance of more recent influenza

outbreaks may offer suitable data. For example, three

cases of rapid reinfection by the same strain over a short

time scale have been reported during the 2009 H1N1

pandemic [7]. We advocate application of state-of-the-

art virological and immunological methods to samples

from such cases. Alternatively, both parameter estimates

and immunological support for the Win model indicate

that successive infections by the same strain spaced over

more than four to six weeks can only be explained by

the AoN mechanism. We advocate application of our stat-

istical approach to other multiple-wave datasets that

occurred on a longer time scale than that of 1971’s

epidemic on TdC. It is also possible that ongoing

outbreaks may enable tests of our results, and we refer

to electronic supplementary material, text S7, for

qualitative guidelines for such tests.

Finally, our results advocate a better account of host het-

erogeneity in the analysis of multiple-wave outbreaks. In

particular, studies assuming that the immune response

always provides a long-term humoral protection should

overestimate the amount of immune escape required to

sequential influenza variants to cause rapid reinfection [6]

and multiple-wave outbreaks [8]. Put another way, our

results may have important implications in the current con-

text of influenza post-pandemic. Notably, the AoN

mechanism, in addition to antigenic drift and compensatory

mutations, would contribute to break population herd

immunity by increasing the effective reproduction number

of subsequent 2009 H1N1 influenza variants (electronic

supplementary material, text S7). If empirically validated,

these novel interactions should be included in
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epidemiological models aimed at pandemic planning and

real-time risk prediction for influenza.
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