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The largest income for Southeast Asian countries comes from the export activities of wood production. The 
potential for timber exports in Indonesia continues to increase each year. This soaring potential needs to be 
continually improved by maintaining quality so that trust and good cooperation can continue to be established 
with partner countries. Wood quality is closely related to wood defects. The faster the detection of wood defects 
is, the faster the quality of the wood will be determined. The wood industry which is still manual is also 
very susceptible to human eye fatigue. Technology is currently developing rapidly to help human productive 
activities and image processing is a breakthrough to detect wood defects. This study aims to identify swietenia 
mahagoni wood defects using the euclidean distance method from the extraction of 6 texture and shape features 
GLCM (Gray Level Co-Occurance Method) including metric, eccentricity, contrast, correlation, energy, and 
homogeneity, which was previously segmented with the best segmentation from the comparison results of 
thresholding and k-means segmentation and produced an average accuracy of 95.33% with an F1 score value 
of 0.95. The dataset used is the primary dataset with a total of 54 images on 3 types of wood defects, namely 
growing skin defects on wood ends, rotten wood eye on the body, and healthy wood eye on the body. Cross 
validation is also applied to test the reliability of the proposed model. By using 3-fold cross validation, the 
optimal average accuracy is 88.90%. Validation with other similar datasets was also carried out by identifying 
potato leaf defects resulting in an average accuracy of 92.86% with the most optimal 3-fold cross validation 
value achieved an average accuracy of 83.33%. Image augmentation is also carried out in order to reproduce the 
image so that the reliability test of the proposed method can be carried out, namely by rotating the image 45 
degrees,90 degrees,120 degrees,180 degrees which produces 84 images of augmentation, so that the total image 
is 138 images and gets an average accuracy from the image augmentation is 80%.
1. Introduction

Tropical rainforests in Southeast Asia contain more than 15000 dif-

ferent plant species, consisting of 3000 categories of wood species. 
The largest income for Southeast Asian countries comes from the ex-

port activities of wood production [1, 2]. Based on WITS (World In-

tegrated Trade Solution) data in 2018, Indonesia’s timber exports are 
spread across 191 partner countries. Among the top partner countries, 
Indonesia’s timber exports including China have a selling value of $ 
3,170,496.63 (26.83%), Japan with a selling value of $ 1,375,878.33 
(11.64%), the United States with a selling value of $ 838 865, 3 
(7.10%), the Republic of Korea with a selling value of $ 753,413.46 
(6.38%), and India with a selling value of $ 524,449.63 (4.44%) while 
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the other 43.61% is in 186 other partner countries with a sale value of 
$ 5,152,764.85 [2, 3].

Swietenia mahagoni (swietenia macrophylla king) is a species 
known throughout the world and most importantly is economical 
because of its inherent wood characteristics such as malleability, me-

chanical resistance, high dimensional stability, and attractive aesthetic 
aspects [4, 5]. Therefore, there is no doubt that Swietenia Mahagoni 
wood or mahogany is the timber exported by Indonesia with increasing 
selling value.

This potential needs to be continuously improved by maintaining 
quality so that trust and cooperation are well-established especially if 
the supernatural countries are the partners whose timber needs are met 
by Indonesia. The quality of wood products depends on the strength of 
https://doi.org/10.1016/j.heliyon.2021.e07417
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the wood. The presence of defects in the wood, particularly knots, may 
reduce the strength of the wood [6]. Based on the information obtained, 
the quality of wood is determined based on how many defects are in the 
wood. Currently, wood examiners are still working to determine the 
quality of wood manually without any tools, so we can imagine how 
long it will take.

Timber identification systems can be an important system for mini-

mizing fraud in the wood markets [1, 7]. The inspection of visual defects 
being carried out manually in the wood industry is known to be unreli-

able due to its susceptibility to human error, for example, due to acute 
symptoms of headache and eye fatigue [8].

Researchers in China have conducted research related to the iden-

tification of wood defects, Zhang Yi Xiang, by extracting LBP (Local 
Binary Pattern) and GLCM features with 4 extracted features including 
correlation, Chi-Square coefficient, intersection coefficient, and Bhat-

tacharyya Distance on 40 wood image samples, and it produced 93% 
accuracy in 3 types of wood defects [9], while Xie YongHua performs 
feature extraction by combining the Tamura and GLCM methods on 
5 features, namely angular second moment, contrast, correlation, en-

tropy, and variance to identify 3 types of wood defects and to produce 
an accuracy of 92.67% [10].

Swietenia mahagoni wood in Indonesia is very potential and all par-

ties need to know about it to increase the awareness to conserve and 
pay attention to the importance of recognizing the types of wood de-

fects which then become the determination of wood quality by raising 
it as a research topic and hoping to get output that can help wood ex-

aminers. Since the 20th century, image processing technology has been 
used gradually in the field of wood defects. The extraction of wood sur-

face defects is the key to quickly identify the types of wood defects, one 
of which is the GLCM which successfully identifies 3 types of wood de-

fects [9]. This research proposes an image processing technique using 
the GLCM feature extraction method which extracts 6 features namely 
metric, eccentricity, contrast, correlation, energy, and homogeneity on 
3 types of swietenia mahagoni wood defects namely growing skin on 
wood ends, rotten wood eyes on the body, and healthy wood eyes on 
the body with k-means and thresholding segmentation and identifica-

tion with euclidean distance.

2. Materials

2.1. Dataset

The dataset used is the image of swietenia mahagoni wood defects 
which were taken directly by the researcher as many as 54 images of 
3 types of defects including growing skin defects on the wood ends, 
rotten wood eye defects on the body, and healthy wood eye on the 
body in which each defect was taken as many as 18 images [11].

2.2. YIQ color space

YIQ is the color space used by NTSC color TVs and used mostly 
in North and Central America and Japan. The Y component represents 
luma, and it is the only component used by a black-and-white televi-

sion receiver. The letter of I means in-phase, and Q means quadrature, 
referring to the quadrature amplitude component. The YIQ color space 
is intended to take advantage of the characteristics of human visual re-

sponse [12].

2.3. Thresholding

Image segmentation by thresholding is a simple but powerful ap-

proach to image segmentation. The threshold technique is based on the 
area of the image space, for example, image characteristics [13].
2

2.4. L*a*b color space

The L*a*b Color Space or what is known as CIELAB is the most 
comprehensive color space established by the International Commission 
on color illumination (French Commission Internationale de l’eclairage, 
known as CIE). This color space can describe all the colors that can be 
seen with the human eye and is often used as a reference color space. 
The L*a*b color space stands for Luminance (brightness), and A and B 
are the color components. According to the model L*a*b, A is repre-

sented between green to red and B between blue to yellow. The L*a*b 
model is designed to be model-independent [14, 15].

2.5. K-means

K-means algorithm classifies pixels in an image into some clusters 
based on some similarity of features such as the gray-level intensity of 
pixels and distance of pixel intensity from pixel intensity centroid [16]. 
In performing image segmentation, k-means clustering utilizes the gray 
intensity of the image. This image intensity is what underlies the image 
clustering. Different intensities will be grouped into different clusters. 
The formed clusters will be represented by a certain color so that each 
cluster can be visualized [17].

2.6. Gray level co-occurrence method

Feature extraction is intended to get the feature value of an object 
based on the relationship between the pixel intensity value of an im-

age. GLCM is a statistical method that can be used for texture analysis. 
Concurrency matrix is formed from an image by looking at the paired 
pixels that have a certain intensity [18].

2.7. Euclidean distance

Euclidean distance is the simplest technique to calculate the distance 
between two vectors. Euclidean distance is defined as the straight-line 
distance between two points, which checks the roots of the square dif-

ference between the coordinates of a pair of objects. The minimum 
Euclidean distance indicates the closest distance to the recognition pro-

cess [19]. Here is the formula for Euclidean Distance:

𝑃 = (𝑝1, 𝑝2,…, 𝑝𝑛)

𝑄 = (𝑞1, 𝑞2,…, 𝑞𝑛)

𝑑 =
√

(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ...+ (𝑝𝑛 − 𝑞𝑛)2

=

√√√√ 𝑛∑
𝑖−1

(𝑝1 − 𝑞1)2

Source: [19]

Definition 1. P = P image Q = Q image d = a measure of the distance 
between the query P and Q images in the database. p = feature vector 
of P image q = feature vector of Q image

2.8. Cross validation

Cross validation is one of the fundamental methods in machine 
learning for evaluation in a prediction or learning. The performance 
of model is measured by the average accuracy of validation set from 
each subset [20]. The performance of model is measured by the aver-

age accuracy of validation set from each subset. This process takes full 
advantage of the entire dataset, when the number of data is small [21]. 
Cross-validation is a technique for assessing or validate the accuracy of 
a model built on a dataset. The steps of K-fold cross validation, among 
others [22]. (1) Divide the available data into K groups. (2) For each 
K a number of T data sets are made containing all training data except 
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Table 1. Example of images of wood defects.

Types of wood defects Image examples

Growing Skin Defects

Defect of Rotten Wood Eyes

Healthy Wood Eye Defects

those in the k-th group. (3) Working on the algorithm with a number of 
T training data. (4) Algorithm testing uses data in group K as test data. 
(5) Record algorithm results. According to [23] The advantage of the 
K-fold cross validation technique is that it shows that all elements on 
the data line are used for training as well as testing.

3. Method

3.1. Image acquisition

Image acquisition is a process by which we obtain a digital repre-

sentation of a scene [12]. Image acquisition is carried out by taking an 
image of swietenia mahagoni wood defects using a 13 MP camera with 
a distance of 30 cm between the object and the camera and in the sun 
lighting around noon Western Indonesian Time in wood storage. The 
wood defect images that have been collected are as many as 54 images 
from 3 types of defects including growing skin defects on wood ends, 
rotten wood eye, and healthy wood eye on the body, each of which has 
18 images. Table 1 consists of the example of the wood defect images.

The stages of the research methodology carried out are shown in 
Fig. 1 and followed by the following explanation.

3.2. Resize

Resizing is a process to make changes in the area of the image to 
be bigger or smaller than the original size. Making changes to the size 
can result in a shift in the color value, so it changes the digital content 
that is in it [17]. In general, images that are manually taken cannot be 
processed immediately. Because the image is too big, resizing is done 
by changing the image size from 4160 x 1968 pixels to 832 x 394 pixels 
so that the image becomes easier to process.

3.3. Training & testing data

Training data is a part of the dataset that we train to make pre-

dictions or run the functions of an algorithm. We provide instructions 
through algorithms so that the machines which we train can look for 
their correlation or learn patterns from the data provided while Test-

ing data is a part of the dataset that we test to see its accuracy or in 
other words to see its performance [17]. The 54 images that have been 
collected are divided into 60% training data and 40% testing data con-

sisting of 33 training images with a composition of 11 images on each 
defect and 21 testing images with a composition of 7 images on each 
defect. 40% of the data testing was executed or tested in the program 
after completing all the stages in the training data. The reason for us-

ing split trials that have more data in the training set is to give better 
accuracy. In this study we have confirmed that the 60:40 test set in our 
dataset predicts accuracy better than the composition of the other split 
data. This is in line with what was done by previous researchers [24].
3

Fig. 1. Research method.

3.4. RGB to YIQ color conversion

This step is done before the image is segmented using the threshold-

ing method. This YIQ color space has a Y component indicating luma, 
and this component is the only component used by black-and-white 
television receivers to be used as the base color before segmentation us-

ing the thresholding method that considers the degree of the grayness 
of the image and forms a black-white image or binary image.

3.5. Thresholding

The images converted from RGB to YIQ color are then segmented 
using the thresholding segmentation method to see the degree of gray-

ness because the defect areas in the wood are generally different/darker 
than other wood areas that are not affected by defects.
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Table 2. Result of RGB to YIQ color convertion.

Types RGB YIQ

Growing Skin

Rotten Wood Eyes

Healthy Wood Eyes
3.6. RGB to L*a*b color conversion

Unlike the previous one, to perform segmentation using the k-means 
method, the training data image is converted from RGB to L*a*b color 
space. Because the k-means segmentation method has the concept of 
grouping or clustering with the closest colors, the color space must be 
complete, and the most complete color space determined by Interna-

tional Commission on color illumination is the L*a*b color space.

3.7. K-means

K-means segmentation is performed on images that have been con-

verted from RGB color space to L*a*b color space. This segmentation 
clusters the colors that exist in the image based on their proximity to 
the color so that the defect area will be segmented because in general, 
the color of the defect area in wood is not much different. The wood 
color of the defect in a particular region is different from the area with-

out the defect. The defective parts in the region tend to be almost the 
same color, and the areas that are not defective tend to be almost the 
same color as the areas that are not affected.

3.8. Best segmentation

Image segmentation is a fundamental technique in the field of im-

age processing and is widely applied in computer vision. In most cases, 
this can be described as the pre-processing stage of pattern recognition. 
Image segmentation is the process of dividing an image into different 
disjoint pixel classes that have similar characteristics such as grayscale, 
color, or texture [17]. From the two segmentation techniques, a com-

parison is made to see which method has better segmentation than 33 
training images, and calculation is performed to see how many images 
are segmented properly by the thresholding method and how many im-

ages are well segmented by the k-means method. After knowing which 
one is better, the segmentation method will be used for further feature 
extraction.

3.9. Feature extraction

In the best segmentation, texture and shape feature extraction on the 
training data is then carried out using the GLCM method as [25] who 
performed feature extraction after the segmentation process to analyze 
texture and to extract values on 6 features including metric, eccentric-

ity, contrast, correlation, energy, and homogeneity on each image in 
the training data so that a training database for the results of the best 
segmentation method is formed.
4

3.10. Identification

Image identification or image recognition is done by calculating the 
closest distance from each of the tested image feature (testing data) 
in the program after going through the segmentation and feature ex-

traction stages with each feature in the training database according to 
the concept of the method used, which is euclidean distance. The fea-

ture values from the feature extraction using the GLCM method that 
produces 6 feature values, namely metric, eccentricity, contrast, corre-

lation, energy, and homogeneity on each image, have the same weight. 
The results of testing data feature extraction, using the euclidean dis-

tance for each feature will be reduced and squared, then the results 
of the calculation of each feature are added up, and so on from initial 
to final training data to calculate the closest distance as the formula 
presented in discussion of euclidean distance. The distance between the 
testing feature value to the smallest training feature value has the great-

est possibility of the same defect type, or the type of the defect will be 
indicated by the type of defect in the training database which has the 
least Euclidean distance of its feature value.

4. Result and discussion

4.1. RGB to YIQ color conversion

The conversion of the RGB (Red Green Blue) color space which be-

comes the original image color space into YIQ (Luminance, In-phase, 
Quadrature) color space aims to separate chrominance (color informa-

tion) from luminance (grayscale information Y) obtained from the RGB 
model using a linear transformation. This color space depends on Y 
which is a combination of red, green, and blue intensity and is useful 
for segmenting in the image. The other two components, I (hue) and 
Q (saturation), represent color information where I contains hue infor-

mation of orange, and cyan and Q contains green and magenta color 
information [26, 27]. Because it is linear and requires fewer compu-

tational tasks, it also has a minimum overlap between segmented and 
non-segmented areas. This color space will be used as the base color 
for thresholding segmentation in each type of wood defect of Swietenia 
Mahagoni because of its nature that separates chrominance from lumi-

nance, so later when it is converted into a binary image from threshold 
segmentation result, the wood defect area can be segmented. The results 
of RGB to YIQ color conversion for each type of defect are as follows.

In Table 2, we can see the results of the change in the image of swi-

etenia mahagoni wood defect whose color space is changed from RGB 
to YIQ. The YIQ color conversion makes the image separated between 
the defect areas that are darker in the round part such as the eye while 
the other parts that are not affected tend to looks rosier. The YIQ color 
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Table 3. Thresholding segmentation result.

Types YIQ Thresholding

Growing Skin

Rotten Wood Eyes

Healthy Wood Eyes

space is carried out to facilitate segmentation using a threshold because 
the defect areas appear more.

4.2. Thresholding

This section will explain the results of the segmentation carried 
out by the thresholding method which has previously been converted 
into the YIQ color space in Swietenia mahagoni wood defect image. 
Thresholding converts the image to a binary or black-white image and 
segments the areas that have been separated by the color space previ-

ously performed. This method can divide the pixels in an image into 
two main groups as “detectors” to distinguish between the background 
and the object considered to be foreground in the image [28, 29]. The 
background here is the part that is not affected by defects, and the fore-

ground object is the prominent defect area. The segmentation results 
based on the type of defect for each are as follows in Table 3.

In Table 3, we can see the results of the wood defect image change of 
swietenia mahagoni segmented by the thresholding that was previously 
in the YIQ color space. The defect area is shown in black color bordered 
by white color.

4.3. RGB to L*a*b color conversion

The conversion of RGB color space which becomes the original im-

age color space into L*a*b color space aims to provide more color in-

formation to the image. L stands for light color, *a stands for red/green 
coordinates, *b stands for blue/yellow coordinates. This color space is 
device independent and can control more intensity and color informa-

tion. These color spaces provide more distinction between colors from 
one to another due to their independent devices [26]. The advantage 
of this color model is that it is not affected by the image capture de-

vice. This color space will be used as the base color for the k-means 
segmentation for each type of wood defect on swietenia mahagoni be-

cause k-means will be clustered based on color proximity. If the image 
is made with more color information, k-means will be easier to cluster 
colors in the image so that it can perform segmentation. The results of 
RGB to L*a*b color conversion are explained in the following discus-

sion.

In Table 4, we can see the results of the wood defect image change of 
swietenia mahagoni whose color space is changed from RGB to L*a*b in 
which the defect area looks darker than the other areas. The parts that 
are not affected by the defects tend to be colorful but rhythmic as if 
they are the same part. This L*a*b color space is performed to facilitate 
segmentation using k-means because the defect areas appear more and 
will be clustered based on the proximity of their colors.

4.4. K-means segmentation

This section will explain the results of the segmentation carried out 
using the k-means method which has previously been converted into 
5

Table 4. The result of RGB to L*a*b color conversion.

Types RGB L*a*b

Growing Skin

Rotten Wood Eyes

Healthy Wood Eye

Table 5. K-means segmentation results.

Types L*a*b K-means

Growing Skin

Rotten Wood Eyes

Healthy Wood Eye

the L*a*b color space in the swietenia mahagoni wood defect image. K-

means is done to get a description of the dataset by revealing the trends 
of other data. The tendency of grouping is based on the similarity of 
existing data characteristics. The basic idea of this technique is to find 
the center of each group of data that may exist and then to group each 
data into one of these groups based on the distance.

The data in the image is the pixel and the intensity of the color in 
it. K-means classifies based on similarity in color or the proximity of 
pixel values, so k-means segmented areas that have the same color or 
separated from the areas that have different colors. In this case, it can 
segment the wood defects from areas that are not affected by defects. 
The segmentation results based on the type of defect for each are as 
follows in Table 5.

In Table 5, we can see the results of wood defect image changes of 
swietenia mahagoni segmented by k-means which were previously in 
the L*a*b color space. The areas other than defects are shown in black, 
and only defects are shown without being covered with black.

4.5. Feature extraction

After knowing the best segmentation, the texture features and shape 
of the training image from the results of k-means segmentation are then 
extracted using the GLCM method on 6 features, namely metric, eccen-

tricity, contrast, correlation, energy, and homogeneity so that a training 
database is formed. To identify objects, the important thing that must be 
known is the characteristics possessed by the object. This feature extrac-

tion stage aims to determine the characteristics or image patterns. So 
that when it will be recognized or identified, it will look for the char-

acteristics or patterns contained in the extracted feature values. The 
following are the results of feature extraction for each type of defect:

1. Growing Skin Defects
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Table 6. Feature extraction results (GS).

metric ecce.. cont.. corr.. energy homog..

0.25593 0.96287 0.19558 0.78772 0.86178 0.97241

0.45566 0.83270 0.09871 0.92436 0.91742 0.98927

0.52705 0.87966 0.01708 0.75836 0.93984 0.99421

0.11666 0.97730 0.16084 0.87175 0.78966 0.96929

0.21702 0.68259 0.08297 0.91672 0.94112 0.99151

0.34107 0.87920 0.01962 0.73336 0.93988 0.99384

0.25693 0.97262 0.14819 0.86697 0.77981 0.96798

0.96907 0.78290 0.09427 0.69889 0.86367 0.97792

0.75625 0.90002 0.10236 0.84988 0.88433 0.98267

0.40585 0.95676 0.19089 0.79309 0.86224 0.97247

0.49323 0.92908 0.06558 0.89443 0.84461 0.98392

GS (Growing Skin).

Table 7. Feature extraction results (RWE).

metric ecce.. cont.. corr.. energy homog..

0.06936 0.80588 0.38945 0.95649 0.33104 0.91148

0.05254 0.81303 0.42294 0.95189 0.34053 0.91078

0.27835 0.88242 0.42727 0.92957 0.29329 0.89094

0.52631 0.76974 0.45262 0.88434 0.32686 0.88585

0.06617 0.82344 0.80945 0.89416 0.37195 0.85958

0.28467 0.97953 0.45553 0.93660 0.40145 0.88588

0.44143 0.97475 0.66281 0.91858 0.29140 0.85736

0.19005 0.96760 0.42514 0.92989 0.29417 0.89128

0.27315 0.56414 0.66002 0.91860 0.29351 0.85794

0.16944 0.89818 0.81321 0.89378 0.37202 0.85879

0.60276 0.90143 0.45867 0.93643 0.39697 0.88575

RWE (Rotten Wood Eye).

The following are the results of the extraction of GLCM feature with 
6 features, namely metric, eccentricity, contrast, correlation, energy, 
and homogeneity on the training data for the types of growing bark 
defects on wood ends.

Table 6. shows the values of each feature in each image of grow-

ing skin defects on wood ends with the average metric feature value of 
0.43588, the average eccentricity feature value of 0.88688, the aver-

age contrast feature value of 0.10692, the average correlation feature 
value of 0.82687, the average energy feature value of 0.87494, and the 
average homogeneity feature value of 0.98141.

2. Rotten Wood Eye Defects

The following are the results of GLCM feature extraction with 6 
features, namely metric, eccentricity, contrast, correlation, energy, and 
homogeneity in the training data on the types of wood knots rotten on 
the body.

Table 7 shows the value of each feature in each image of knots 
Rotten on the body with the average metric feature value of 0.26857, 
the average the eccentricity feature value of 0.85274, the average con-

trast feature value of 0.54337, the average correlation feature value of 
0.92276, the average energy feature value of 0.33756, and the average 
homogeneity feature value of 0.88142.

3. Healthy Wood Eye Defects

The following are the results of GLCM feature extraction with 6 fea-

tures, namely metric, eccentricity, contrast, correlation, energy, and 
homogeneity in the training data on the types of healthy knots wood 
defects on the body.

Table 8 shows the values of each feature in each image of healthy 
knots on the body with the average metric feature value of 0.43679, the 
average eccentricity feature value of 0.83477, the average contrast fea-

ture value of 0.22034, the average correlation feature value of 0.91054, 
6

Table 8. Feature extraction results (HWE).

metric ecce.. cont.. corr.. energy homog..

0.30037 0.96445 0.07218 0.93916 0.87083 0.98099

0.14344 0.51099 0.24420 0.90693 0.78708 0.95831

0.29278 0.99056 0.18185 0.89756 0.86615 0.97277

0.21392 0.95417 0.14414 0.92360 0.78521 0.96583

1.05426 0.57703 0.38704 0.92970 0.48200 0.91068

0.47009 0.92663 0.17659 0.89849 0.86881 0.97329

0.28745 0.98434 0.30609 0.93864 0.53525 0.92025

0.32914 0.97561 0.24118 0.88167 0.74675 0.95096

0.41955 0.94783 0.12785 0.95519 0.71038 0.96284

0.23938 0.61842 0.12102 0.91057 0.86325 0.97659

1.05426 0.73244 0.42155 0.83448 0.70751 0.93572

HWE (Healthy Wood Eye).

the average energy feature value of 0.74756, and the average homo-

geneity feature value of 0.95529.

4.6. Identification

After going through various image processing techniques and form-

ing a training database, identification is carried out on the testing data 
where there are 21 images of all types of defects in which each de-

fect has 7 images. Identification is carried out with the aim that each 
type of defect can be recognized from each shape and texture feature 
whose feature values have been issued at the feature extraction stage. 
Image identification is done by calculating the closest distance using the 
euclidean distance method between the testing data feature value and 
the training data feature value in the database. The success of the test 
program is calculated using a confusion matrix. Prior to identification, 
testing data is also treated the same as training data, namely through 
the preprocessing and segmentation stages with the best segmentation 
using k-means. It is intended that the area where the feature value will 
be extracted is close to one of the feature values in the training data. Af-

ter segmentation, feature extraction is carried out and the feature value 
is calculated as the closest distance to the training data feature value, 
the closest distance will be shown as a result of its identification. The 
results of program testing are as follows.

Table 9 shows that the results of the program testing are 7 images 
of growing skin types, 7 images of rotten wood eye, and 7 images of 
healthy wood eye which are used as testing data of the 7 images of 
growing bark types, 6 images were correctly identified and 1 image 
was identified as rotten knots. From 7 images of rotten knots, 7 images 
were correctly identified, and from 7 images of healthy knots, 7 images 
were correctly identified.

So, the confusion matrix is formed as follows in Table 10.

Table 10 shows the confusion matrix from the results of program 
testing where the calculation for the success of growing skin defects is 
6 images, and 1 image is identified incorrectly while all rotten wood 
eye and healthy wood eye are identified correctly. Accuracy, precision 
and recall is calculated from the number of correctly identified images 
divided by all data as follows in Table 11.

Table 11 shows that the accuracy of growing skin defects by 86% 
from the calculation results of 6/7x100%, the accuracy of rotten wood 
eye of 100% from the calculation results of 7/7 x100%, and the ac-

curacy of healthy wood eye of 100% from the calculation results of 
7/7x100%, so the average accuracy is 95.33% in the identification 
of swietenia mahagoni wood defects segmented by k-means, extracted 
with 6 GLCM features, namely metric, eccentricity, contrast, correla-

tion, energy, and homogeneity, and identified by calculating the closest 
distance between each value of the testing data feature on the value of 
each training data feature using the euclidean distance method.

In addition to using accuracy, the calculation of the performance 
method used can be seen from the F1 Score [30]. All Precision is 0,95 
and the result of recall is 0,95.
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Table 9. Program testing result.

Testing data Actual Identification Information

1 GS GS True

2 GS GS True

3 GS GS True

4 GS GS True

5 GS GS True

6 GS RWE False

7 GS GS True

8 RWE RWE True

9 RWE RWE True

10 RWE RWE True

11 RWE RWE True

12 RWE RWE True

13 RWE RWE True

14 RWE RWE True

15 HWE HWE True

16 HWE HWE True

17 HWE HWE True

18 HWE HWE True

19 HWE HWE True

20 HWE HWE True

21 HWE HWE True

GS (Growing Skin), RWE (Rotten Wood Eye), HWE (Healthy Wood Eye)

Table 10. Feature extraction results (HWE).

Prediction

GS RWE HWE Total

GS 6 1 0 7

Actual RWE 0 7 0 7

HWE 0 0 7 7

GS (Growing Skin), RWE (Rotten Wood Eye), HWE (Healthy Wood Eye).

Table 11. The result of accuracy, precision & recall.

Class Accuracy Precision Recall

Growing Skin 86% 0,86 1

Rotten Wood Eyes 100% 1 0,86

Healthy Wood Eyes 100% 1 1

Mean 95,33% 95,33% 95,33%

𝐹1 = 2𝑥 0,95𝑥0,95
0,95 + 0,95

= 0,95

Precision is the level of accuracy between the information requested 
by the user and the answers given by the system. While recall is the 
success rate of the system in recovering information, while the F1-Score 
is the harmonic mean of precision and recall, in Table 11, the values of 
precision, recall and of course F1 score are the same and are close to 
the value of 1, the perfect score.

4.7. Validation

To test the reliability of the proposed model, testing was carried out 
using cross validation, namely 3-fold cross validation. This technique 
divides the image or dataset into 2 parts, namely training and testing or 
we can call it validation data. This means that every image has experi-

enced a role as training and testing or in this case we call validation. The 
3-fold cross validation illustration is described in the image in Fig. 2.

The results of the 3-fold cross validation in this study are as follows 
in Table 12.

The first test using the cross validation technique, it produces an 
average accuracy of 66% which is shown in Table 12, with the compo-

sition of the growing skin is predicted to be correct 3, wrong 3 of the 
total validation data 6, so the accuracy is 50%, rotten wood eyes are 
7

Fig. 2. Illustration of 3-fold cross validation.

Table 12. The result of accuracy, precision & recall.

Accuracy

Type Fold 1 Fold 2 Fold 3

Growing Skin 50% 50% 83,3%

Rotten Wood Eyes 100% 100% 100%

Healthy Wood Eyes 50% 83,3% 83,3%

Mean 66% 77,8% 88,9%

Table 13. The result of RGB to L*a*b color convertion.

Types RGB L*a*b

Early Blight

Late Blight

predicted to be correct 6, false 0 from the total data validation 6, so the 
accuracy is 100% and healthy wood eyes are predicted to be correct 3, 
wrong 3 from the total validation data 6, so the accuracy is 50%.

The second test using the cross validation technique, it produces an 
average accuracy of 77.8%, which is superior to the first test shown in 
Table 13, with the skin composition predicted to be true 3, wrong 3 
of the total data validation 6, so the accuracy is 50%, rotten knots are 
predicted to be correct 6, wrong 0 from the total validation data 6, so 
that the accuracy is 100% and healthy knots are predicted to be correct 
5, one of the total validation data is 6, so the accuracy is 83.3%.

The third test using the cross validation technique, it produces an 
average accuracy of 88.9% superior to the first and second tests shown 
in Table 16, with the composition of the growing skin is predicted to 
be true 5, one of the total validation data is 6, so that the accuracy 
83.3%, rotten wood eyes are predicted to be true 6, false 0 from the 
total validation data 6, so that the accuracy is 100% and healthy wood 
eyes are predicted to be correct 5, one of the total validation data is 6, 
so the accuracy is 83.3%.

The 3-fold cross validation carried out, we can see that in Fig. 3, the 
most optimal value is the value of the 3rd fold cross validation, which 
produces an average accuracy of 88.9% which can be categorized as 
good. When compared with the distribution of previous training and 
testing data, it is still superior, namely achieving an average accuracy 
of 95.33%. Therefore, the authors propose the distribution of training -
testing as much as 60% - 40%.
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Fig. 3. Illustration of 3-fold cross validation.

Table 14. The result of K-means segmentation.

Types L*a*b K-means

Early Blight

Late Blight

4.8. How about validation by another dataset?

Another dataset used to test the reliability of the proposed model, in 
this case, uses a similar type of dataset, namely flawed images, but the 
object is different, namely potato leaf defects obtained from the public 
dataset website, namely Kaggle. Considering the wood defect dataset 
that is available and can be acquired for free, it is still difficult to find. 
This test is carried out with the same composition, namely 18 images 
per class and there are 2 classes of leaf defects that are treated the same 
as that done on the wood defect dataset.

1. RGB to L*a*b Color Conversion

The following are the results of applying the proposed model to the 
test dataset, namely the potato leaf defect dataset. Color conversion 
is carried out to facilitate the segmentation process, such as in wood 
defect images, here are the results of the RGB color conversion into the 
L * a * b color space in the potato leaf defect image.

In Table 13, we can see the results of the change in the image of 
potato leaf defects whose color space is changed from RGB to L * a * b, 
the defect area looks darker than other areas, as happened in the wood 
defect image.

2. K-Means Segmentation

After converting the color space, segmentation is then performed to 
separate the defect areas using k-means, the results are as illustrated in 
the Table 14.

In Table 14, we can see the results of changes in the image of potato 
leaf defects segmented by k-means which were previously in the L*a*b 
color space, the area taken is an important area, namely the part of the 
leaf that is affected by defects.

3. Feature Extraction
8

Table 15. Feature extraction results (EB).

metric ecce.. cont.. corr.. energy homog..

0.37352 0.55194 0.63387 0.94868 0.27692 0.86526

0.53539 0.86224 0.59358 0.93057 0.25843 0.85574

0.27369 0.64349 0.83059 0.89150 0.26793 0.83096

0.07941 0.41121 0.65123 0.95852 0.36533 0.92086

0.28734 0.83009 0.56213 0.92482 0.30194 0.87220

0.34282 0.86135 0.44330 0.87174 0.27995 0.87483

0.19453 0.63586 0.80612 0.90614 0.27741 0.83854

0.60102 0.64012 0.80756 0.89666 0.21782 0.82873

0.53421 0.79517 0.58056 0.91533 0.28320 0.85895

1.01457 0.74787 0.46952 0.95963 0.30067 0.88037

0.13815 0.32437 0.75316 0.92449 0.34002 0.86194

EB (Early Blight).

Table 16. Feature extraction results (LB).

metric ecce.. cont.. corr.. energy homog..

0.46515 0.42244 0.57051 0.90808 0.35171 0.86942

0.27131 0.48696 0.59976 0.89118 0.31713 0.85707

0.17672 0.83020 0.52401 0.86980 0.50194 0.89478

0.38035 0.74105 0.43102 0.87342 0.29809 0.87229

0.19595 0.53013 0.38244 0.92228 0.33720 0.89821

0.39449 0.74127 0.43647 0.90734 0.38091 0.88943

0.51368 0.25294 0.50059 0.86365 0.36407 0.87258

0.55481 0.82165 0.32094 0.90903 0.30904 0.89836

0.14386 0.86179 0.20813 0.92381 0.48454 0.93617

0.32861 0.95655 0.33653 0.93463 0.39689 0.91896

0.37036 0.92498 0.36868 0.91414 0.37781 0.89760

LB (Late Blight).

After segmentation, feature extraction is carried out to create a 
database of training data using GLCM with 6 features, namely metric, 
eccentricity, contrast, correlation, energy, and homogeneity to see the 
value of texture and shape features.

Table 15 shows the value of each feature in each Early Blight potato 
leaf defect image with an average feature value of 0.39770, the aver-

age value of the eccentricity feature is 0.66397, the average value of 
the contras feature is 0.64833, the average feature value correlation 
0.92074, the average energy feature value is 0.28815 and the average 
homogeneity feature value is 0.86258.

Table 16 shows the value of each feature in each Late Blight potato 
leaf defect image with an average feature value of 0.34503, the aver-

age value of the eccentricity feature is 0.68818, the average value of 
the contras feature is 0.42537, the average feature value correlation 
0.90158, the average energy feature value is 0.37448 and the average 
homogeneity feature value is 0.89135.

4. Identification

After the training database is formed, identification of the testing 
data is carried out using the euclidean distance, following the results of 
the program testing.

From Table 17, it can be seen that the results of program testing are 
7 early blight images and 7 late blight images which are used as testing 
data. From 7 images of early blight types, all images can be identified 
correctly, then from 7 images of late blight, there are 6 images identified 
correctly and 1 image identified as early blight, so that the confusion 
matrix is formed as follows in Table 18.

In Table 18, we can see the confusion matrix from the results of pro-

gram testing (Table 21), where the calculations for the success of the 
early blight types are 7 images identified correctly and for late blight 
types 6 images are identified correctly and 1 image is identified incor-

rectly. Accuracy is calculated from the number of correctly identified 
images divided by all data.
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Table 17. Program testing result.

Testing data Actual Identification Information

1 EB EB True

2 EB EB True

3 EB EB True

4 EB EB True

5 EB EB True

6 EB EB True

7 EB EB True

8 LB LB True

9 LB LB True

10 LB LB True

11 LB EB False

12 LB LB True

13 LB LB True

14 LB LB True

EB (Early Blight), LB (Late Blight).

Table 18. Confusion matrix.

Prediction

Actual EB LB Total

EB 7 0 7

LB 1 6 7

EB (Early Blight), LB (Late Blight).

Table 19. Accuracy.

Class Accuracy

Early Blight 100%

Late Blight 85,71%

Mean 92,86%

Table 20. Result of 3-fold cross validation other datasets.

Accuracy

Type Fold 1 Fold 2 Fold 3

Early Blight 66,67% 83,33% 83,33%

Late Blight 33,33% 66,67% 83,33%

Mean 50% 75% 83,33%

Table 19 shows that the accuracy of early blight by 100% from 
the calculation results of 7/7x100% and the accuracy of late blight of 
85,71% from the calculation results of 6/7x100%, so the average ac-

curacy is 2,86% in the identification of potato leaf defects segmented 
by k-means, extracted with 6 GLCM features, namely metric, eccentric-

ity, contrast, correlation, energy, and homogeneity, and identified by 
calculating the closest distance between each value of the testing data 
feature on the value of each training data feature using the euclidean 
distance method.

5. Validation

Validation is also carried out in experiments using other datasets, 
such as what has been done on a wood defect image using cross valida-

tion, to be precise 3 fold cross validation, here are the results of each 
fold in Table 20.

From the first test using the cross validation technique, it produces 
an average accuracy of 50% shown in Table 20, with the composition 
of early blight predicted to be correct 4, wrong 2 of the total validation 
data 6, so the accuracy is 66.67%, late blight is predicted to be correct 
2, 4 of the total validation data is 6, so the accuracy is 33.33% so that 
the average accuracy is 50%.

From the second test using the cross validation technique, it pro-

duces an average accuracy of 75% better than before, which is shown 
in Table 20, with the early blight composition predicted to be true 5, 
9

Fig. 4. Result of 3-fold cross validation other dataset.

Table 21. Image rotations.

Level Accuracy

0 degrees

45 degrees

90 degrees

120 degrees

180 degrees

one of the total validation data is 6, so the accuracy is 83.33%, late 
blight is predicted to be true 4, wrong 2 from the total validation data 
6, so the accuracy is 66.67% so that the average accuracy is 75%.

From the third test using the cross validation technique, it produces 
an average accuracy of 83.33% better than the previous, which is shown 
in Table 20, with the composition of each type is the same, namely 5 
is predicted to be correct, one of the total validation data is 6, so that 
the average accuracy is 83.33%. From Fig. 4, the 3-fold cross validation 
carried out, we can see that the most optimal value is the value of 
the 3rd fold cross validation, which produces an average accuracy of 
83.33% which can be categorized as good.

When compared with the distribution of previous training and test-

ing data, it is still superior, namely achieving an average accuracy of 
92.86%. Therefore, the authors propose the distribution of training-

testing as much as 60% - 40%. These results are the same as those 
obtained in the wood defect dataset so that the reliability value of the 
proposed model is good enough in identifying defects, wood defects 
are raised to pay attention to the importance of wood and increase the 
wood dataset that can be used for research.

4.9. How about validation with augmentation dataset

In an effort to reproduce the dataset so that the dataset can be tested 
many times to measure the reliability of the model being built, we ro-

tate the image with several sizes as augmented dataset as follows in 
Table 21.

In each image data testing, image rotation was performed 4 times, 
namely 45 degrees, 90 degrees, 120 degrees, and 180 degrees so that 
the image augmentation produced 84 new images and a total of 138 
images. Through the same steps, the new dataset resulting from image 
rotation is carried out with the following accuracy in Table 23.

Table 22 shows the confusion matrix from the results of program 
testing where the calculation for the success of growing skin defects 
is 21 images, and 7 images is identified incorrectly, for rotten wood 
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Table 22. Confution matrix of augmenting image.

Prediction

GS RWE HWE Total

GS 21 2 0 28

Actual RWE 0 18 0 28

HWE 7 8 28 28

GS (Growing Skin), RWE (Rotten Wood Eye), HWE (Healthy Wood Eye).

Table 23. Accuracy.

Class Accuracy

Growing Skin 75%

Rotten Wood Eye 64%

Healthy Wood Eye 100%

Mean 80%

eyes are 18 images correct identified and 10 images are incorrect and 
all image of healthy wood eyes are identified correctly. Accuracy is 
calculated from the number of correctly identified images divided by 
all data as follows in Table 23.

In the results achieved by testing using our augmentation images, we 
can see that the average is 80%, which means that it is not so far from 
the accuracy value obtained from testing data with normal rotation.

When compared with the previous research on the same object, the 
accuracy value of this study is still superior. The following is a discus-

sion of the previous research.

This research is not the first to be conducted. There have been sev-

eral researchers who have done the same thing before, some of which 
are:

1. The research with the title of “Study on The Identification of The 
Wood Surface Defects Based on Texture Features” conducted by 
Xie YongHua and Wang JinCong is to identify wood surface de-

fects by performing feature extraction that combines the Tamura 
and GLCM method on 5 features, namely Angular Second Moment, 
Contrast, Correlation, Entropy, and Variance to identify 3 types of 
wood defects, namely dead knots, piles, and slipknot with classifi-

cation using the BP neural network classifier where it produced 
an accuracy of 92.67% [10]. It also discusses the Markov Ran-

dom Field segmentation which is a widely adopted probabilistic 
method in several segmentations that utilizes spatial information 
from images based on the Markov process. This process is based 
on a stochastic modeling approach and works well on images with 
various uncertainties such as noise, degradation, and incorrect in-

formation on partial data [31, 32, 33].

2. The research with the title of “Identification of Wood Defects Based 
on LBP Features” by Zhang Yi Xiang et al. identified wood defects 
by extracting 4 features, namely Correlation, Chi-Square Coeffi-

cient, Intersection Coefficient, and Bhattacharyya distance on the 
comparison of the LBP and GLCM extraction method on 40 wood 
image samples with the BP neural network classification method 
and produced an accuracy of 93% on 3 types of wood defects [9]. 
The segmentation is done by image binarization which is a common 
tool for object image segmentation that differentiates the back-

ground in various applications such as automatic target tracking, 
object recognition, image compression, image analysis, and object 
separation [34]. Image binarization is a technique that converts 
gray level images to black-and-white images [35].

3. The research with the title of “Wood Defect Classification Using 
GLCM Based Features And PSO Trained Neural Network” by R. 
Qayyum et al. succeeded in identifying knot defects on wood sur-

faces whose dataset was obtained from the website of Oulu Univer-

sity, Finland by extracting GLCM features and applying PSO to the 
Neural Network classification by producing an MSE value in the 
10
Fig. 5. Result of 3-fold cross validation other dataset.

training of 0.3483 and accuracy on testing of 78.26% [9]. Fuzzy 
min-max neural network segmentation has been used to segment 
images and to simplify image analysis over the past few years. To 
speed up the image segmentation process, FMMIS does not use all 
the pixels of the analyzed image but only uses a few input pixels 
called seeds to grow hyperboxes [36, 37].

4. The research with the title of “Study on Image Recognition and 
Classification of Wood Skin Defects Based on BOW Model” by Fan 
Yang et al. introduced and classified bark defects by extracting fea-

tures using the HOG (Histogram of Oriented Gradient) method, and 
identification and classification with SVM based on kernel Gaus-

sian Kernel (Gaus), Polynomial Kernel (Poly), Chi-Square Kernel 
(Chi), and Histogram intersection kernel function (Hist) on 4 types 
of bark defects, namely Dead knot, Slipknot, Crack, and Hole got 
an average accuracy of 85, 4% [38].

5. The research with the title of “Classification of Wood Defect Images 
Using Local Binary Pattern Variants” by Rahillda Nadhirah Noriz-

zaty Rahiddin et al. conducted a classification of wood defects by 
analyzing textures using LBP variants, namely LBP basic, LBP in-

variant rotation, LBP uniform, and LBP uniform invariant rotation 
uniform and performed a classification of ANN, KNN, and J48 De-

cision Tree with the dataset produced an accuracy of 65.4% [8].

6. Research entitled Tree species classification based on image anal-

ysis using Improved-Basic Gray Level Aura Matrix by researchers 
from Malaysia they classified wood species using the Improved-

Basic Gray Level Aura Matrix (I-BGLAM) method on 136 features 
with 52 types of wood and Classifying using a Support Vector Ma-

chine (SVM) with a composition of 80 training images and 20 
testing images and produces an accuracy of 97.01% [39].

7. Research in point 6 is continued with the title Wood Species Recog-

nition System based on Improved Basic Gray Level Aura Matrix as 
feature extractor by extracting features using 136 features with the 
Improved Basic Gray Level Aura Matrix (I-BGLAM) method and 
classified using a Support Vector Machine (SVM) with 90 training 
data images and 10 testing data images repeated 30 times and re-

sulted in an average accuracy of 99.84% [40].

Based on the success of each case in previous research, we can see it 
in the following graph in Fig. 5. In the graph above we can see that the 
highest accuracy is obtained by using the Improved-Basic Gray Level 
Aura Matrix (I-BGLAM) model as a feature extractor and classification 
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using SVM at points 6 and 7. In this case it cannot be compared with 
our study because the topic raised was the classification of wood species 
not wood defects. It is written to introduce another method as feature 
extractor. Points 1 to 5 have the same topic, namely the classification 
of wood defects, the most widely used model as an extractor feature 
is GLCM because to take the value of texture and shape features in 
the defect area, the success achieved is not superior to the research 
we conducted by proposing euclidean. distance to identify the type of 
defect. Although this method is not a new method, it is quite reliable in 
doing its job and a simple, easy-to-understand model is preferred.

5. Conclusion

Based on the existing problems regarding the determination of wood 
quality which is closely related to wood defects, the role of technology 
is needed to help identify wood defects. Research in the field of image 
processing that has been carried out on 54 images of swietenia mahag-

oni wood defects with 3 types of wood defects, namely growing skin 
defects on the wood ends, rotten wood eyes on the body, and healthy 
wood eyes on the body which were taken directly by the researcher and 
were processed for identification. The best segmentation was previously 
selected by comparing the results of the segmentation of k-means and 
thresholding methods, and the best segmentation was selected, which 
is performing the segmentation technique using the k-means method, 
extracting the GLCM features on 6 metric features, namely eccentricity, 
contrast, correlation, energy, and homogeneity, and identifying them 
by calculating the shortest distance between the feature value of data 
testing and data training (database training) using the Euclidean dis-

tance method and produced an average accuracy of 95.33% on 21 test 
images. The results are that of 7 images of wood skin defects, 6 were 
identified as true and 1 as false. Of 7 images of rotten knots, 7 were 
identified as true, and of 7 images of healthy knots, 7 were identified 
as true. This research has also been successfully implemented in an ap-

plication made by using MatlabR2015a. Cross validation is also applied 
to test the reliability of the proposed model. Cross validation is carried 
out with k-3 because this is suitable for small datasets. By using 3-fold 
cross validation, the optimal average accuracy is 88.90%. Validation 
with other similar datasets was also carried out by identifying potato 
leaf defects resulting in an average accuracy of 92.86% with the most 
optimal 3-fold cross validation value achieved an average accuracy of 
83.33%. So it can be concluded that the division with the composition 
of training data 60% and testing data 40% is considered better in this 
study. In the 60-40 division it is also supported by measuring the perfor-

mance of the F1 score and getting a value of 0.95 is very good because it 
is close to the perfect value, namely 1. Testing with wood datasets was 
also carried out by performing image augmentation so that the small 
wood image increased, with rotations of 45 degrees, 90 degrees, 120 
degrees, and 180 degrees which resulted in 84 new data points with 
a total of 138 images and resulted in an average accuracy of the test 
augmentation image was 80%. That is the limitation of this study. The 
further research proposes to do augmented images by zooming and ver-

tical and horizontal flipping or others technique so that more datasets 
and classification with current trend classification methods such as ma-

chine learning and even deep learning.
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