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Abstract

Speech and language changes occur in Alzheimer’s disease (AD), but few studies have

characterized their longitudinal course.Weanalyzedopen-ended speech samples from

a prodromal-to-mild AD cohort to develop a novel composite score to characterize

progressive speech changes. Participant speech from the Clinical Dementia Rating

(CDR) interview was analyzed to compute metrics reflecting speech and language

characteristics. We determined the aspects of speech and language that exhibited sig-

nificant longitudinal change over 18 months. Nine acoustic and linguistic measures

were combined to create a novel composite score. The speech composite exhibited

significant correlations with primary and secondary clinical endpoints and a similar

effect size for detecting longitudinal change. Our results demonstrate the feasibility

of using automated speech processing to characterize longitudinal change in early AD.

Speech-based composite scores could be used to monitor change and detect response

to treatment in future research.
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HIGHLIGHTS

∙ Longitudinal speech samples were analyzed to characterize speech changes in early

AD.

∙ Acoustic and linguistic measures showed significant change over 18months.

∙ A novel speech composite score was computed to characterize longitudinal change.

∙ The speech composite correlated with primary and secondary trial endpoints.

∙ Automated speech analysis could facilitate remote, high frequency monitoring in

AD.
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1 BACKGROUND

Changes to speech and language have long been observed in

Alzheimer’s disease (AD), 1–3 and recent advancements in natural lan-

guage processing have facilitated the measurement of these changes.

Digital speech assessment may lead to novel and more sensitive mark-

ers of AD symptoms and progression, enhancing current methods for

detecting and monitoring disease.4–6 Most recent research using nat-

ural language processing methods to analyze the speech and language

changes that occur inADhas focusedon cross-sectional differentiation

of participantswith AD versus healthy controls,7–12 with fewer studies

on longitudinal changes.13,14

Cross-sectional studies validate that digital approaches can identify

changes in speech and language occuring in AD. A next step is the iden-

tification of longitudinal changes that align with disease progression,

which is essential for the development of endpoints suitable for mon-

itoring change over time. Existing assessments of language abilities

are often subjective in nature, limited in sensitivity, and burdensome

in administration and scoring. Additionally, many existing assessments

rely on structured speech tasks, such as verbal fluency, which may be

less ecologically valid than analyzing spontaneous natural speech.15–17

As such, current studies and clinical trials may be insensitive to decline

with disease progression and/or potential improvements following

effective therapies. Leveraging digital technologies to develop a novel

speech-based endpoint could produce measures that are more sen-

sitive to subtle speech and language changes and better suited to

remote, lower burden, and higher frequency assessments. Such acces-

sible endpoints could promote more inclusive and efficient clinical

research that better captures the effects of disease progression or

successful intervention on speech and language behaviors in AD.18–20

In this study, we analyzed longitudinal speech recordings from an

early AD cohort and developed a novel composite measure to char-

acterize progressive changes to speech and language patterns. The

performance of this novel endpoint was compared to established clini-

cal and cognitive assessments to determine the utility of this approach

for developingnewmethods tomonitor diseaseprogression anddetect

response to treatment.

2 METHODS

2.1 Participants

We analyzed data from a subset of English-speaking US-based partic-

ipants in the Tauriel phase 2 trial of semorinemab (NCT03289143).21

All participants were 50-80 years old, met the National Institute

on Aging/Alzheimer’s Association core clinical criteria for proba-

ble AD dementia (mild AD) or mild cognitive impairment due to

AD (prodromal AD), demonstrated evidence of cerebral AD pathol-

ogy confirmed by amyloid-beta (Aβ) positron emission tomography

(PET) scan ([18F]florbetaben, [18F]florbetapir, [18F]flutemetamol, or

[18F]NAV4694 via visual read) or Aβ(1-42) levels [≤1000 pg/mL, Elec-

sys β-amyloid (1-42) cerebrospinal fluid (CSF) immunoassay; Roche

RESEARCH INCONTEXT

1. Systematic review: We searched databases including

PubMed and GoogleScholar for previous research relat-

ing to “speech”, “language”, “Alzheimer’s disease,” and

“mild cognitive impairment”.Whilemany studies on cross-

sectional differences in speech and language patterns in

AD exist, few measure longitudinal changes with disease

progression. Relevant studies are cited and summarized.

2. Interpretation: This study uses open-ended, naturalistic

speech and automated speech analysis methods to deter-

mine the aspects of speech and language that changeover

time in early AD. This study adds to previous research on

this topic by proposing a novel composite score reflecting

both acoustic and linguistic changes to speech that occur

in early AD and progress.

3. Future directions: The novel speech composite proposed

in this study requires further validation and replication

in larger and more diverse samples. Validation against

other measures of disease progression and comparisons

to longitudinal changes in healthy aging are also needed

to further verify the disease relevance of this measure.

Diagnostics, Penzberg, Germany], and had scores on the Mini Mental

State Examination (MMSE)22 of ≥20 points and a Clinical Demen-

tia Rating (CDR)23 Global Score of 0.5 or 1. Although this was a

double-blind, randomized, placebo-controlled trial, given the similar

performance of the semorinemab and placebo arms on all clinical out-

comemeasures,21 participants fromall study armswere combined into

a single group.

This study was approved by each center’s Institutional Review

Board/Ethics Committee and conducted in accordancewith theDecla-

ration of Helsinki and the International Conference on Harmonization

E6 Guidelines for Good Clinical Practice. All participants and/or their

legally authorized representatives providedwritten informed consent.

2.2 Clinical assessments

As part of the clinical trial design, participants were assessed by a

trained clinical rater at screening, baseline, and at 6-, 12-, 17-, and

18-month follow up assessments, between October 2017 and July

2020. Primary and secondary endpoints included cognitive and func-

tionalmeasures including theCDRSumofBoxes (CDR-SB), the13-item

version of Alzheimer’s Disease Assessment Scale-Cognitive Subscale

(ADAS-Cog13),24 theRepeatableBattery forAssessmentofNeuropsy-

chological Status (RBANS),25 the MMSE, and the Alzheimer’s Disease

Cooperative Study Group-Activities of Daily Living Inventory (ADCS-

ADL).26 Baseline demographics and cognitive assessment scores are

listed in Table 1.
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TABLE 1 Baseline demographics and scores on cognitive and
functional assessments.

Training

dataset

(n= 101)

Testing

dataset

(n= 29)

Sex, female n (%) 58 (57) 17 (59)

Age, mean years (SD) 69.3 (7.0) 68.8 (8.5)

Education, high school graduate or

more n (%)
100 (99) 29 (100)

Race/ethnicity, white n (%) 96 (95) 29 (100)

APOE status, ε4+ n (%) 77 (76) 19 (66)

CDR-SB, total score (SD) 4 (1.63) 4 (1.48)

ADAS-Cog, total score (SD) 28 (7.23) 26 (7.81)

RBANS, total score (SD) 64 (12.02) 68 (12.81)

MMSE, total score (SD) 23 (3.42) 24 (3.62)

ADCS-ADL, total score (SD) 69 (5.44) 70 (5.87)

Note: A separate sample (n = 29) from the same trial, matched on demo-

graphic and clinical characteristics, was held out as an independent test

dataset.

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale–

Cognitive Subscale; ADCS-ADL, Alzheimer’s Disease Cooperative

Study–Activities of Daily Living Scale.; CDR-SB, Clinical Dementia Rating–

Sum of Boxes; MMSE, Mini-Mental State Examination; RBANS, Repeatable

Battery for the Assessment of Neuropsychological Status; SD, standard

deviation.

2.3 Speech sample processing

Participants were audio recorded on tablet computers (Virgil platform,

WCG MedAvante-ProPhase, Hamilton NJ) as they completed the

CDR interview, which enabled passive collection of real-world speech

samples with no additional participant or assessor burden. Trained

transcriptionists listened to each interview and divided the audio into

segments based on the section of the CDR interview. Recordings were

diarized to isolate and identify the participant’s speech relative to the

interviewer’s speech. The participant’s speech was transcribed into

text transcripts, including identifiable words, unidentifiable words,

and filled (e.g., “um”, “uh”) and unfilled (i.e., silent) pauses. Transcrip-

tionists identified if CDR questions were skipped, repeated, or out

of order.

Transcriptionists flagged any recordings that: were void of partic-

ipant speech, contained non-English participant speech, or had very

poor audio quality (e.g., participant inaudible for more than 50% of the

recording); these recordings were not analyzed further. Of a total of

1100 audio samples processed, 178 recordings (16%) could not be ana-

lyzed: 113 (10%) due to poor audio quality, 53 (5%) due to inaudible or

missing participant speech, 6 (0.5%) due to spoken language other than

English, and 6 (0.5%) due to other errors.

Speech analysis focused on the section of the CDR interview in

which participants are asked to describe recent experiences within the

past week and month. These segments represent the most naturalis-

tic and open-ended speech captured in the CDR interview and were

found to contain the longest speech samples (mean audio duration in

seconds=216.64, SD=125.85 at study baseline). Segmented, diarized

audio samples, containing only the participant’s speech, and their

accompanying text transcripts were analyzed using the Winterlight

platform (www.winterlightlabs.com), which uses machine learning and

natural language processing techniques to generate over 500 indi-

vidual variables describing the speech and language patterns of any

speech recording. This pipeline performs data processing and feature

extraction using Python-based standard acoustic and language pro-

cessing libraries (e.g., spaCy, Stanford parser, Praat/Parselmouth27–30)

and custom code.

The extracted speech variables quantify the acoustic and linguis-

tic properties of speech, making it possible to measure acoustic (e.g.,

properties of the sound wave), lexical (e.g., rates and types of words

used), semantic (e.g., semantic relatedness of utterances), and syntac-

tic (e.g., grammatical constructions and complexity) features. Previous

research using this pipeline has used speech to distinguish partici-

pants with AD fromhealthy controls speech and explorewhich specific

features are associated with AD symptomatology.9,31–34

2.4 Statistical analysis

The dataset was split into training (78% of participants) and testing

(22%of participants) datasets, for the purposes of developing and test-

ing the composite score on independent data. Exploratory analyses

on the training dataset using linear mixed effects models were per-

formed to determine which aspects of speech and language exhibited

consistent changes over the 18-month duration of the trial. The test-

ing dataset was unseen during exploratory analyses and composite

development. For each speech feature, a linearmixedmodelwas tested

with fixed effects of time (baseline, 6-months, 12-months, 18-months),

age, sex, and level of education, and random intercepts by subject. Lin-

ear mixed effects models were also used to test the effect of time on

clinical and speech composite scores. Test-retest reliability was eval-

uated between screening and baseline assessments and between 17-

and18-monthassessmentsusing intraclass correlations (ICC).Correla-

tions between features, and between features and clinical scores, were

evaluated using Pearson correlations.

To combine the selected features into a composite score, positive or

negative equal weights were assigned to each feature, based on the

direction of the time effect in the linear model. To combine speech

features that have different units, each feature was z-scored by sub-

tracting the mean value of the speech feature across all participants

and timepoints, and then dividing by the standard deviation. Once all

the features were standardized as z-scores, their signs were adjusted

so that they all progressed in the same direction over time and they

were summed to form a single composite score.

Analyses were replicated in the test dataset to test the generaliz-

ability of results. Statistical analyseswereperformedusingRStatistical

Software version 4.1.1,35 with R packages tidyverse 1.3.1 36 for data

cleaning and processing, lmerTest 3.1-337 for linear mixed models,

irr 0.84.1 38 for intraclass correlation tests and ggplot2 3.3.539 for

visualizations.

http://www.winterlightlabs.com
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Use of nouns Use of particles Use of pronouns
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F IGURE 1 Longitudinal change in speech features. Mean change from baseline at each assessment for selected speech features with
significant linear change over the course of the study. Error bars represent 95% confidence intervals.

2.5 Data availability

Qualified researchers may request access to individual patient level

data through the clinical study data request platform (https://vivli.

org/). Further details on Roche’s criteria for eligible studies are avail-

able here: https://vivli.org/members/ourmembers/. For further details

onRoche’sGlobal Policy on theSharingofClinical Information andhow

to request access to related clinical study documents, see https://www.

roche.com/innovation/process/clinical-trials/data-sharing/.

3 RESULTS

3.1 Speech feature selection

The trajectory of individual speech features over time was examined

using linearmodels, selecting those that showedevidenceof consistent

longitudinal change over the duration of the trial for further analy-

sis. Nine speech features had effects of time significant at p < 0.001,

suggesting consistent and progressive change over the study period.

The trajectories of the selected nine speech features are shown

in Figure 1 and Table 2. Six of the features were linguistic features,

representing word length, word frequency, syntactic depth, use of

nouns, use of particles, and pronoun-to-noun ratio. Word frequency

was calculated by averaging the estimated frequency of each word

based on published norms,40 and syntactic depth was calculated by

averaging the number of levels in the syntactic tree representation

of each utterance. All of the trajectories are in the expected direc-

tions,with participants using shorter andmore frequentwords, simpler

sentence syntax, fewer nouns, and more particles and pronouns over

time. The threeother features represent acoustic aspects of the speech

sample derived from transformations of the power spectrum of the

recording. TheseMel-frequency Cepstral Coefficient (MFCC) features

correspond to the mean of the 11th MFCC coefficient (MFCC mean

11), the variance of the first derivative of the 11th MFCC coefficient

(MFCC var 25) and the variance of the first derivative of the 12th

MFCC coefficient (MFCC var 26).

As a validity check, intra-class correlations (ICC)were computed for

selected speech features based on the screening and baseline assess-

ments (up to 8-week interval per protocol), and the 17- and 18-month

sessions. The ICCestimates for thenine features showing linear change

over time ranged from 0.20 to 0.70 (Table 2). The MFCC variance fea-

tures had the highest andmost consistent ICC estimates (> 0.65 for all

comparisons) while the linguistic features had more variable ICC esti-

mates. The overall lower test-retest reliability of the linguistic features

is likely attributable to the open-ended, unstructured nature of the

speech task, with content varying across individuals and assessments.

To determine if selected features were measuring independently

changing aspects of speech and language, correlations were computed

between the selected speech features. Features had low to moderate

correlationswithone another (r=0.01–0.65),with the exceptionof the

twoMFCC variance features and the noun and pronoun-to-noun ratio

features, with both pairs having high correlations (r > 0.9). Since only

two pairs of features had high correlations, we determined that the

speech features were mostly independent from one another and were

largely measuring unique aspects of underlying speech and language

patterns.

3.2 Speech composite generation and validation

3.2.1 Composite score generation

The objective of this analysis was to create a novel composite score

combining the aspects of speech that changed over time in this study

cohort, aiming to maximize sensitivity to speech and language changes

https://vivli.org/
https://vivli.org/
https://vivli.org/members/ourmembers/
https://www.roche.com/innovation/process/clinical-trials/data-sharing/
https://www.roche.com/innovation/process/clinical-trials/data-sharing/
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TABLE 2 Effect of change over time, and test-retest reliability for selected speech features with significant linear effects of change over time.

Speech feature Effect of time ICC (Screening/Baseline)

ICC (17-/18-month

assessment)

MFCC variance 26 β=−0.013, p< 0.0001 ICC= 0.70, p< 0.0001 ICC= 0.67, p< 0.0001

Average word length β=−0.032, p< 0.0001 ICC= 0.35, p= 0.0002 ICC= 0.37, p= 0.001

MFCC variance 25 β=−0.013, p< 0.0001 ICC= 0.69, p< 0.0001 ICC= 0.67, p< 0.0001

Pronoun-to-noun ratio β= 0.015, p= 0.0001 ICC= 0.47, p< 0.0001 ICC= 0.33, p= 0.004

Use of particles β= 0.003, p= 0.0003 ICC= 0.30, p= 0.002 ICC= 0.38, p= 0.0009

Use of nouns β=−0.005, p= 0.0003 ICC= 0.49, p< 0.0001 ICC= 0.20, p= 0.05

Word frequency β= 0.017, p= 0.0004 ICC= 0.51, p< 0.0001 ICC= 0.38, p= 0.0009

Average syntactic depth β=−0.039, p= 0.0007 ICC= 0.42, p< 0.0001 ICC= 0.67, p< 0.0001

MFCCmean 11 β= 0.005, p= 0.0008 ICC= 0.29, p= 0.003 ICC= 0.29, p= 0.008

Abbreviations: ICC, intraclass correlations;MFCC,Mel-frequency cepstral coefficient.

that can be detected in early AD. As described in themethods, selected

speech features were standardized, assigned a positive or negative

weight based on the direction of the time effect, and summed to create

a composite score. The estimated test-retest reliability of the result-

ing composite score was ICC = 0.55 (p < 0.0001) between 17 and 18

months and ICC= 0.50 (p< 0.0001) between screening and baseline.

3.2.2 Comparison with clinical scores

To compare the effect of change over time for the speech composite

with other trial endpoints, all clinical scores and the speech compos-

ite score were standardized (z-scored) by subtracting the mean and

dividing by the standard deviation of each score across all partici-

pants and timepoints. The effect of change over time was tested for

all standardized scores using linear mixed models with fixed effects

of time, age, sex, and level of education, and random intercepts by

subject. Compared to clinical endpoints, the speech composite score

(β = 0.29, p < 0.0001) had similar effects of change over time to the

CDR-SB (β= 0.30, p< 0.0001) and ADCS-ADL (β=−0.30, p< 0.0001),

with a numerically larger effect of time than the ADAS-Cog (β = 0.22,

p < 0.0001), RBANS (β = −0.15, p < 0.0001), and MMSE (β = −0.23,

p< 0.0001) (Figure 2A).

Since the speech composite is ostensibly measuring language abil-

ities, comparisons were also made with the language subscores of the

clinical endpoints, including the Language Index (β=−0.19, p<0.0001)

from theRBANS, the Spoken LanguageAbility (SLA) (β=0.09, p=0.02)

and Word Finding Difficulty (WFD) scores (β = 0.12, p = 0.007) from

the ADAS-Cog, and a previously published language composite from

the ADAS-Cog41 (β = 0.16, p < 0.0001), which includes the SLA,

WFD, Naming Objects and Fingers, Language Comprehension, and

Remembering Test Instructions items. The speech composite score had

numerically greater effects of change over time relative to the other

available language scores (Figure 2B).

Significance testing of the differences between the time effects

across the different endpoints and subscores was conducted by com-

puting the 95% confidence interval of the time effect and comparing

across measures. The slope of change over time for the speech com-

posite was significantly greater than the slope for the RBANS and the

ADAS-Cog language subscales, but the other differences did not reach

significance (Figure 2C).

Correlations were computed between change in the speech com-

posite score and change in the clinical scores frombaseline to endpoint

(18 months). Change in the speech composite had the highest cor-

relations with change on the ADAS-Cog WFD (r = 0.49, df = 52,

p = 0.0002), CDR-SB (r = 0.45, df = 52, p = 0.0006), and ADAS-Cog

language composite (r = 0.44, df = 52, p = 0.0008), with increases in

all four scores indicating greater impairment (Figure 3A). Correlations

between the speech composite score and clinical scores at baseline

were also evaluated (Figure 3B). At baseline, the speech composite

score exhibited the strongest correlations with the CDR-SB (r = 0.37,

df = 98, p = 0.0002), MMSE (r = −0.32, df = 98, p = 0.001), and

ADCS-ADL (r = −0.29, df = 98, p = 0.003), again with higher speech

composite scores consistentwith greater impairment. All reported cor-

relations remain significant using an adjusted significance threshold of

α= 0.0056, Bonferroni-corrected for multiple comparisons.

3.2.3 Generalizability of speech composite

To test generalizability, the composite score was computed in the

held-out testing dataset. The testing dataset contained 29 subjects at

baseline and 21 subjects at endpoint. To calculate the speech compos-

ite, each component feature was standardized using the means and

standard deviations from the training set, signswere adjusted, and fea-

tures were summed to compute the composite score, which was then

z-scored using the mean and standard deviation from the training set.

All individual features had the same direction of change from baseline

to endpoint in the test and training datasets.

The overall effect of change over time on the composite score was

comparable in the testing dataset (β = 0.26, p < 0.0001), as were the

ICCvalues (screening-baseline: ICC=0.69, p<0.0001; 17–18months:

ICC = 0.64, p = 0.001), supporting the generalizability of the speech

composite to the held-out dataset, which was not used in selecting the
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F IGURE 2 Speech composite score. Mean change from baseline at each assessment for the speech composite score comparedwith (A) clinical
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represents estimated time effects (slopes) from linear mixedmodels using standardized values, along with the 95% confidence intervals (error
bars) for the estimated time effects. The 95% confidence interval for the composite score is indicated by dotted lines. The scores that have
significantly different effects of time compared to the speech composite score are colored in red.

component speech features. Importantly, the trajectory of change over

time also appeared similar in the testing dataset, albeit with greater

variance due to the smaller sample size (Figure 4).

4 DISCUSSION

In this study of individuals with prodromal-to-mild AD, an automated

speech processing pipeline was used to identify progressive changes

in speech and language patterns over an 18-month trial period and to

derive a new speech-based composite score from short, open-ended

speech samples. This composite score was designed to maximize

sensitivity to speech and language changes that occur in early AD, and

it could be used as an endpoint to track changes in language patterns

in future AD studies and trials. This measure is low-burden, requiring

only a few minutes of open-ended speech from the patient, and its

computation is objective, making it well-suited for remote or higher

frequency assessment. The analysis pipeline included human tran-

scribers to segment, diarize, and transcribe the audio with the highest

accuracy, but using automatic speech recognition (ASR) algorithms to

perform these steps could enable the computation of the composite

score to be fully automated, allowing faster processing and greater

scalability.

Exploratory, data-driven methods were utilized to identify speech

features showing longitudinal change. Many of the selected features

are consistent with previous research on speech and language changes

in AD. In previous works using the same processing pipeline,9,31 in

an independent sample of individuals with AD and healthy controls,

AD was associated with shorter word length, higher pronoun-to-noun

ratio, and reduced use of nouns. These findings are broadly consistent

with clinical observations of so-called “empty speech” inAD,which con-

tains fewer content words and more circumlocutions.1 In the present

study, these samemeasures were shown to progressively worsen over

time in early ADparticipants. Consistentwith these results, other prior

work has shown evidence for reduced semantic content and simplified

syntax in AD, consistent with the noun and pronoun features and the

reductions in syntactic depth.2,14,42–44 In a systematic review of classi-

fication studies differentiating AD from MCI and/or healthy controls

based on speech, changes to semantic and lexical features including

word length, word frequency, and use of word types (including nouns

and pronouns) were observed,11 consistent with the features show-

ing progression over time in this study. While the acoustic features
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F IGURE 3 Associations with clinical scores. Pearson
correlations calculated between speech composite score and
clinical and language scores, using (A) longitudinal change
scores and (B) baseline scores.
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F IGURE 4 Generalizability of the speech composite. Comparison
of the speech composite score in the training dataset and a held-out,
independent testing dataset (n= 29) from the same cohort. The
composite score had a similar trajectory of change from baseline over
18months and similar test-retest reliability in both datasets. Error
bars represent 95% confidence intervals.

identified in this study are less frequently reported in the literature

and are harder to interpret, changes to acoustic features and vocal

prosody have been consistently observed in AD, as evidenced by suc-

cessful classification of AD based only on acoustic features in previous

works.45–47

The selected variables cover several domains of speech and lan-

guage, including vocabulary, word types, syntax, and acoustics. These

differing variables may reflect different underlying deficits; for exam-

ple, the decrease in nouns could reflect semantic memory impairments

while simpler syntax could reflect overall cognitive decline. Further

work is needed to replicate and further validate the speech-based

composite score, the selected component variables, and link those to

underlying cognitive or neurological changes. Similarly, while we chose

to weight the variables equally in this study, assigning weights based

on the magnitude of each variable’s effect could help to tune the com-

posite and increase sensitivity. Our initial validation results showed

that novel speech composite score correlated with other measures of

cognition at baseline, and that the degree of longitudinal change cor-

related with change on other language subscales, but more specific

relationships remain a question for further study.

While these results are promising, there are a number of factors

that may limit their interpretation. First, a healthy control compari-

son group was not included in the analysis, so the possibility cannot

be eliminated that the observed longitudinal changes to speech and

language patternsmay reflect aging alone rather than disease progres-

sion. Future research should assess the composite score’s performance

in both healthy controls and across a range of AD severity. Second,

while the sample size was comparable or larger than most of the study

cohorts used in prior speech and language research in AD, it is still rel-

atively small for model building purposes, and this work would benefit
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from replication in a larger population. There may have been hetero-

geneity in the sample relating to AD phenotypes such as logopenic

progressive aphasia or posterior cortical atrophy. The inclusion cri-

teria for the study biased the sample toward a typical amnestic AD

phenotype, but we cannot rule out the possibility that a small num-

ber of logopenic progressive aphasia patients may have also been

included. Additionally, the sample consisted primarily ofwhite, English-

speaking participants in the United States with at least a high school

diploma. This sample does not adequately reflect the global diversity

of individuals with AD; different accents, as well as ethnic, educa-

tional, and linguistic backgrounds could have important implications

for the language patterns being studied. Further work should explore

whether the speech patterns observed in this study generalize to other

groups with broader demographic characteristics and/or languages

spoken. Finally, while the recent experience question in the CDR inter-

view is open-ended and naturalistic, it still uses a specific prompt and

was collected in a structured and controlled clinical interview set-

ting. If the observed changes to speech and language are detectable

in other forms of open-ended speech and other languages, this would

increase the flexibility of this measure for use in non-clinical settings

and broader cultural contexts.

To conclude, the results from this study represent the first steps

in developing a novel speech-based measure to characterize pro-

gressive acoustic and linguistic changes that occur in AD. Such a

measure could be used for disease detection and monitoring, and as

an endpoint in future clinical research. For example, short, remotely

administered, speech-based assessments could be collected over

the course of a clinical trial to monitor disease progression and

possible response to therapy. Further validation is required to repli-

cate, test the generalizability and clinical meaningfulness of this

measure.48–50
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