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Abstract: Cartilage loss due to osteoarthritis (OA) in the patellofemoral joint provokes pain, stiffness,
and restriction of joint motion, which strongly reduces quality of life. Early diagnosis is essential for
prolonging painless joint function. Vibroarthrography (VAG) has been proposed in the literature as a
safe, noninvasive, and reproducible tool for cartilage evaluation. Until now, however, there have been
no strict protocols for VAG acquisition especially in regard to differences between the patellofemoral
and tibiofemoral joints. The purpose of this study was to evaluate the proposed examination and
acquisition protocol for the patellofemoral joint, as well as to determine the optimal examination
protocol to obtain the best diagnostic results. Thirty-four patients scheduled for knee surgery due to
cartilage lesions were enrolled in the study and compared with 33 healthy individuals in the control
group. VAG acquisition was performed prior to surgery, and cartilage status was evaluated during
the surgery as a reference point. Both closed (CKC) and open (OKC) kinetic chains were assessed
during VAG. The selection of the optimal signal measures was performed using a neighborhood
component analysis (NCA) algorithm. The classification was performed using multilayer perceptron
(MLP) and radial basis function (RBF) neural networks. The classification using artificial neural
networks was performed for three variants: I. open kinetic chain, II. closed kinetic chain, and III.
open and closed kinetic chain. The highest diagnostic accuracy was obtained for variants I and II for
the RBF 9-35-2 and MLP 10-16-2 networks, respectively, achieving a classification accuracy of 98.53, a
sensitivity of 0.958, and a specificity of 1. For variant III, a diagnostic accuracy of 97.79 was obtained
with a sensitivity and specificity of 0.978 for MLP 8-3-2. This indicates a possible simplification of the
examination protocol to single kinetic chain analyses.

Keywords: vibroacoustic signal; osteoarthritis; patellofemoral joint; kinetic chain; artificial neural
networks; multilayer perceptron

1. Introduction

The knee joint consists of two separate but connected joints, namely the tibiofemoral
and patellofemoral joints (PFJ). Both joints work in conjunction and enable the knee joint
to play vital role in walking, which is crucial for daily activities. The patella and patellar
groove of the femur are covered with typical hyaline cartilage. Hyaline cartilage is a
highly specialized tissue devoid of nerve endings and vessels. During daily activities, the
cartilage in the patellofemoral joint is subjected to high loads, especially during kneeling,
squatting, and ascending and descending stairs [1]. The forces on the joint are variable and
depend on the degree of knee flexion and whether the foot is in contact with the ground [2].
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Chondrocytes account for 1–5% of dry cartilage mass [3]. Due to the sparse distribution
of chondrocytes and the lack of vessels, cartilage has a very limited healing potential [4].
Moreover, the superficial cartilage layer is responsible for withstanding shearing forces,
which act on the cartilage during daily activities. Injury to the superficial layer leads to
the irreversible cartilage derangement of deeper cartilage layers [5]. Wear of the hyaline
cartilage can be caused by multiple factors including obesity, repetitive deep knee flexion,
or malalignment of the PFJ [6]. The central part of the patella has the thickest cartilage
layer in the human body [7], which is a result of the continuous loads exerted during daily
activities. The loads in the PFJ increase with the knee flexion angle [8]. This continuous
overload can easily lead to the disruption of the superficial and deeper layers of cartilage,
which inevitably leads to the development of osteoarthritis (OA) [9]. The main symptoms of
OA are pain and the limitation of the function of the affected joint. Until now, no treatment
to restore damaged hyaline cartilage has been proposed. The prevalence of PFJ joint space
narrowing is radiologically apparent in 33.7% of men and 26.1% of women >60 years of
age [10].

Various methods of treatment, including conservative and surgical measures have
been proposed for the treatment of OA [11–14]. The end stage disease is indicated for
arthroplasty. Even though arthroplasty is considered as a gold standard for the end stage
disease, after the 24-month followup, nearly 20% of patients were not satisfied with the
procedure [15]. Therefore, researchers seek other treatment options, especially joint preserv-
ing and biological treatment in order to delay the need for arthroplasty as long as possible.
To achieve that, OA has to be diagnosed at the early stages, so that adequate treatment
can be implemented. Diagnosis of OA is usually established on conventional X-ray with
the use of the Kellgren-Lawrence 0–4 scale [16]. This scale reflects adaptive changes in the
subchondral bone presenting as osteophytes and joint space narrowing [17]. Therefore,
such evaluation is adequate for monitoring the disease but not suitable for early detection of
chondral lesions. An ultrasound has also been proposed as an imaging modality to evaluate
cartilage status; however, the ability to detect early chondral degeneration does not differ
significantly from a conventional X-ray [18]. Magnetic resonance imaging (MRI) is the
imaging modality used most frequently for detection of chondral lesions. Over the decades,
the availability of MRI has increased; nevertheless, the waiting time is still long, and the
examination is expensive, requiring dedicated radiologists for proper image evaluation.
Moreover, the published sensitivity of detection of chondral lesions differ from 45% to 94%
between authors [19,20]. Our own research has shown that MRI grossly underestimates
the chondral lesion grade, and diagnostic accuracy increases with the increase in chondral
lesion grade [21,22]. MRI became the modality of choice among orthopedic surgeons and
general practitioners without recognition of its deficiencies. Up to 20% of patients referred
for a knee MRI have not had a previous physical examination [23]. Moreover, some authors
show that an MRI acquired before planned arthroscopic intervention does not change the
course of treatment and has little impact on overall costs of the procedure [24].

The development of diagnostic tools providing an alternative to classical imaging diag-
nostic methods, enabling inexpensive, noninvasive, and precise diagnosis of osteoarthritis
even at an early stage seems to be extremely important in clinical practice. Automatic diag-
nosis of diseases using machine learning methods is now widely used in medicine [25–29].
Machine learning is most commonly is utilized in radiology for object detection, segmenta-
tion, and classification [30] A growing interest can also be observed in nuclear medicine,
where machine learning is utilized, e.g., for the glomerular filtration rate in SPECT/CT [31].
Neurology is another field in which machine learning is gaining recognition for the early di-
agnosis of Alzheimer disease [32]. In orthopedics, ANNs are proposed as methods for risk
calculation in patients with hip fractures [33]. As shown, machine learning methods have
gained interest throughout the medical field, and the use of numerical methods may prove
to also be a valuable tool to extend the methods used to assess damage to joint structures.
In particular, machine learning and deep learning methods may prove useful especially



Sensors 2022, 22, 3765 3 of 24

in cases that require solving classification, detection, and related problems without the
involvement of a radiologist [34–36].

During normal movements of the knee joint, both intra-articular and extra-articular
structures can produce vibrations or sounds as they move relative to each other [37,38].
The sound generated by the knee joint during movement (flexion or extension) is called
a vibroarthrographic (VAG) signal [38–40]. Changes in the mechanical properties and
structure of the articular cartilage surface, such as the appearance of bumps, cracks, or
cartilage defects in the successive stages of degenerative changes affect the vibroacoustic
signals recorded during movement of the knee joint [41–43]. These signals are generated
by transient elastic waves resulting from sudden stress redistribution in the material and
can be recorded from the surface of the knee [44]. In 1902, Blodgett [45] published his
paper on the correlation between the sounds generated by the knee joint on auscultation
and OA. Throughout the 20th and 21st centuries, numerous groups of researchers have
developed this method of assessing articular cartilage from both acoustic [46–52] and
vibrational signals [53–58]. Vibroarthrography (VAG), which is a measurement of the
vibrations or sounds generated during joint movement, has achieved >90% accuracy in
detection OA in the knee joint [59]. Despite many years of work, there are no clear criteria
for using vibroacoustic diagnostics in everyday clinical practice. Moreover, according to
the literature, there is a wide discrepancy among researchers in both classification methods
and the obtained results. Diagnostic accuracy in different studies ranges from 68.9% [60] to
100% [61]. Even greater differences are found in sensitivity, which in the case of screening
modality is of paramount value. Depending on the classification methods, the same authors
obtained sensitivity ranging from 0.711 [55] to 1 [61]. Such differences in obtained results
require further studies to find the best classification methods and examination protocol,
which could then be implemented in clinical practice.

The purpose of this study is to evaluate the usefulness of acoustic signals generated
by the patellofemoral joint during motion for sequences recorded in an open and closed
kinetic chain as a potential tool for the diagnosis of osteoarthritis. The aim is also to select
an optimal testing protocol that will provide the best diagnostic results while simplifying
the testing procedure. For this purpose, an attempt was made to use ANN to classify the
cases based on selected measures of acoustic signals treated as potential indicators of the
state of articular cartilage damage in different variants of kinetic chains. MLP and RBF
type networks were used for classification. A significant contribution is also the fact that
the study, in addition to a typical physical examination and diagnostic imaging, includes a
precise intraoperative assessment of the degree and location of cartilage damage, which
has not been used in previous studies. This work extends the authors’ previous work with
data for new anatomical locations (patella) and provides information on the utility of the
proposed testing protocol. In the future, this may enable the development of a diagnostic
method that allows for precise diagnosis of the degree of cartilage damage, taking into
account its location and allowing for the diagnosis of other typical injuries to structures
within the knee joint such as ligaments or meniscus.

2. Materials and Methods

Vibroacoustic assessment, referred to as vibroarthrography for joint diagnosis, may be
an alternative to the classic diagnostic methods used in the evaluation of typical injuries
to knee joint structures [62,63]. This method is based on the analysis of vibroacoustic
signal. It is often used in machine diagnostics due to the fact that it is a nondestructive
method allowing for continuous monitoring of a moving object. A normal knee joint with
a smooth and well-lubricated cartilage surface should move fluently and quietly, whereas a
diseased joint with a “rough” and poorly-lubricated cartilage surface may move unevenly,
producing vibrations and acoustic signals [48]. Analysis of the vibrations and sounds
generated by a moving knee joint can help to better understand the associated pathological
conditions [64] and, ultimately, provide a valuable diagnostic tool. However, due to the



Sensors 2022, 22, 3765 4 of 24

lack of clear guidelines and developed testing protocols, as well as the lack of dedicated
diagnostic equipment, this method has not yet been widely used in clinical practice.

2.1. Participants

In total, 67 patients were included in this study. The study group consisted of 15 males
and 19 females, and the control group consisted of 9 males and 24 females. In the control
and study groups, the mean age was 24.10 (years) and 56.15 (years) respectively. Detailed
participant group characteristics are shown in Table 1. All patients and healthy volunteers
signed written consent prior to participation in the study. Identical questionnaires were
filled out by both groups, and identical physical examination was performed. In the
control group, signals recorded for both knee joints (66 total) were analyzed, while in the
study group, only the operated knee joint (34 total) was taken into account. The physical
examination in study group was performed one day prior to surgery, and VAG acquisition
was performed immediately after physical examination in both groups. All patients in the
study group were qualified for surgical treatment based on their medical history, physical
examination, and radiological findings, after detailed evaluation performed by a specialized
orthopedic surgeon. The study group consisted of two subgroups, patients qualified for
arthroscopic treatment and patients qualified for total knee replacement. All patients in
the TKR (Total Knee Replacement) subgroup showed significant chondral lesions in the
knee joint, whereas in the arthroscopic subgroup, several patients showed no chondral
lesions and were treated for other intraarticular lesions such as meniscal or ligamentous
tears. Exclusion criteria from the control group included: any previous history of trauma
or joint disease and any positive finding on physical examination prior to VAG acquisition.
The study received approval from the Bioethics Committee of the Medical University of
Lublin consent number KE-0254/261/2019.

Table 1. Characteristics of the study participants.

Study Group N Males/
Females

Age
(years ± SD)

Height
(m ± SD)

Weight
(kg ± SD) BMI Tegner-Lyshom

Score

Healthy control (HC) 33 9/24 24.10 ± 5.56 1.71 ± 0.09 65.16 ± 15.10 21.95 ± 3.09 100 ± 0.0
Osteoarthritis (OA) 34 15/19 56.15 ± 12.99 1.69 ± 0.09 89.08 ± 14.30 31.19 ± 4.83 38.59 ± 12.96

2.2. Physical Examination

Medical history was collected from all patients and healthy participants. Limb align-
ment and any signs of joint swelling or pain on palpation in both groups was noted. Passive
as well as active range of motion (ROM) were evaluated in each group. Following that,
special tests were introduced such as the McMurray, Apley, and Thessaly [65–67] for evalu-
ation of meniscal lesions. Varus and valgus stress was applied to the knee joint in order to
detect any collateral ligament instability. The anterior cruciate ligament was evaluated with
the use of a lever sign, pivots shift, the Lachman test, and the anterior drawer test [68–71].
For evaluation of the patellofemoral joint (PFJ), palpation of the PFJ, patella shifting, and
the patellar grind test were introduced [72,73]. Based on the physical examination, initial
classification into the OA group was made for findings suggestive of damage to knee joint
structures. Any positive physical examination findings, on the other hand, were treated as
exclusion criteria for the HC group.

2.3. Surgical Treatment

Both arthroscopic and TKR surgeries were performed in a typical manner by orthope-
dic surgeons trained and specialized in this field. For arthroscopy, a typical 30-degree scope
was utilized and standard anteromedial and anterolateral portals created for instrument
placement. After introduction of the scope into the joint cavity, a standardized knee evalu-
ation was performed with the probing of cartilage. The degree of cartilage damage was
evaluated according to the International Cartilage Repair Society (ICRS) guidelines [74,75].
The same classification was used for evaluation of chondral lesions during TKR; however,
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in those surgeries evaluation was performed without magnification of the arthroscope. In
this study, we have not included any TKR with patellar resurfacing; therefore, the patellar
cartilage was evaluated in situ, and the patellar groove of the femur was evaluated after
resection of the articular surface. This approach was based on a surgical technique that was
not altered for this study. Arthroscopic and direct visualization of the cartilage provide
the best evaluation method, which was shown in exemplary views from an arthroscopic
evaluation of a PFJ in Figure 1 and direct visualization during TKR in Figure 2.
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2.4. Signal Acquisition

Data acquisition required construction of a proper measuring system dedicated to the
task. The proposed solution included the following components:

• Orthesis with a rotary encoder and vibration transducer;
• Microcontroller with peripherals for signal acquisition;
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• Computer with data recording software.

Bone vibrations were converted to electrical signals by a dedicated CM01B solid body
microphone [76] placed on the patella as shown in Figure 3. This device allowed for
conversions of signals in the 10 Hz to 2 kHz bandwidth. Knee rotation was measured using
a rotary encoder from Bourns [77], which provided a 10-bit continuous digital output based
on rotation of an embedded magnet in 360 degrees, ten times per second. Additional hard
stops were placed on the orthesis joint, limiting the rotation between 0 and 90 degrees. The
analog data from the microphone were sampled by an Atmega2560 8-bit microcontroller
with an analog to digital converter with 10 bits of precision. The sampling rate used
was 1400 Hz with 10-bit resolution. Acoustic signals were recorded during lower limb
movement in an open and closed kinetic chain. A kinetic chain is an engineering concept
used to describe human movement that finds widespread use in clinical applications
including sports medicine, rehabilitation, prosthetics, and orthotics [78]. We can define
an open kinetic chain as a combination of sequentially arranged joints in which the distal
segments are free to move, an example being the movement of the knee in a sitting position.
The movements of the individual segments are independent of each other in this case.
A closed kinetic chain is a system in which the distal segment is not free to move. The
motion of one segment causes a specific motion of the other segments, and each segment
is connected to at least two other segments [78]. For both closed and open kinetic chain
tests, the time of one cycle involving 90◦–0◦–90◦ movement was approximately 2 s. Signals
were recorded for 10 complete repetitions of the described procedure. Obtaining a uniform
length of the recorded signals was not possible due to the variability resulting from the
individual limitations of the test subjects. The stream of vibration and rotation data was
sent via a serial/usb interface. Patient safety was ensured by means of galvanic isolation
using an ADuM4160 USB 2.0 isolator chip [79]. The power source for the device was an
11.1 V 3 s Li-Ion battery. The main modules of the system are shown in Figure 4. Data were
recorded by a computer and saved as a comma-separated values file. Both open and closed
kinematic chains were used during measurements.
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Examples of normalized signals for healthy and injured knees in the time and fre-
quency domain for OKC and CKC recorded with a sensor placed on the patella are shown
in Figure 5.
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Figure 5. Examples of normalized signals for healthy (HC) and injured knees (OA) in the time and
frequency domain for open kinetic chain (OKC) and closed kinetic chain (CKC) recorded with a
sensor patella. Respectively: (a) HC OKC, (b) OA OKC, (c) HC CKC, and (d) OA CKC.

2.5. Signal Preprocessing

VAG waveforms are not free from certain disturbances and artifacts such as data
series before and after movements, random noise, or electrical network interference. Before
starting the data analysis, it was necessary to reduce these, so they did not affect the
obtained results. In the first stage, the initial signal preparation procedure involved cutting
the signal in the regime of the limb movement cycles. It was carried out on the basis of the
signal from the encoder, indicating the start and end of the movements. The raw signal
was subjected to the reduction in irrelevant time series using the automatic slope detection
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procedure, which detects the beginning and end of the work cycles in the encoder signal. At
the second stage of signal preparation, frequency filtering was performed using the EEMD
(Ensemble Empirical Mode Decomposition) algorithm. This tool is widely used in cleaning
biomedical signals [80–83], including those directly related to VAG analyses [58]. It is
related to the high efficiency of artifact reduction in the form of hard to avoid random noise.

The modal decomposition procedure was introduced by Huang [84], which has be-
come an effective tool for filtering and analyzing nonlinear and nonstationary signals, a
challenge for researchers. It consists in distinguishing a series of time waveforms called
Intrinsick Mode Functions (IMFs) grouped in the area of specific frequency values. The
discussed algorithm consists of several stages. The first is to determine the arrays of local
extremas, maxima, and minima from the input signal x(t). In the next step, based on the
obtained results, two envelopes eup(t) and edow(t) are built using cubic spline interpolation.
The arithmetic mean of the envelope m1(t) is determined:

m1(t) =
eup(t) + edow(t)

2
, (1)

The mean m1(t) is subtracted from the input signal x(t), giving d1(t):

d1(t) = x(t)−m1(t), (2)

The function d1(t), often called proto-IMF [85], is considered a component of IMF when
it meets two conditions: the number of extremas d1(t) and the number of zero-crossings
are equal or differ by at most one, and, at each point d1(t), the average of the local maxima
and minima envelopes is zero. The received IMFs are frequency ordered components. The
subtraction of d1(t) as IMF results in the procedure being repeated for the rest of the signal:

h1(t) = x(t)− d1(t) (3)

until the assumed stoppage criterion is reached. The signal remaining after the procedure
is called the residual signal r(t).

The results obtained using the discussed classical EMD procedure, however, did
not always provide satisfactory results due to the occurring phenomenon of leakage of
frequency components between the IMFs. This phenomenon is known as the mode mixing
problem [86–88]. In order to limit its impact on the obtained results, a slightly different
approach was proposed, consisting in giving a noise-assisted signal to the input in each
attempt, enriched with the component white noise wn [89]:

yn(t) = x(t) + wn(t). (4)

During the experiment, the EEMD of the standard deviation parameters of the added
noise at 0.2 was used, and the number of ensemble trials was N = 100. The trend r(t), related
to deviations and distortions caused by sensor drift, was removed in the study of VAG
signals. The reduction in r(t) was the final stage of signal preprocessing. Each signal was
normalized to an amplitude range between 0 and 1. The signal purified in this way was
subjected to further tests, which are described in detail in the first part of the article.

2.6. Feature Extraction

The number of signal indices (parameters) used in vibroacoustic diagnostics is very
large. The selection of the signal measures used in this paper was based on a literature
analysis [90–94] and the previous experience of the authors presented in papers [51,52,95].

As with the femoral-tibial joint research described in Part I, 12 potentially useful
markers in detecting degenerative knee lesions were analyzed. Those are:
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• The mean value (MV) is one of the most popular intuitive descriptive statistics. It is
the sum of the values of a measurable characteristic divided by the number of units of
a finite statistical population.

x =
1
N

N

∑
i=1

xi (5)

where: xi is the value of the discrete signal at the nth point, n = 1, . . . , N; N is the
number of samples in the signal.

• The straightened average value (SA) is the average value from the absolute value;
the use of this parameter allows eliminating the phenomenon of the average value
approaching zero, especially visible for oscillatory signals.

x =
1
N

N

∑
i=1
|xi| (6)

• The root mean square (RMS) is defined as the square root of the mean square. This
parameter is not sensitive to sudden changes manifested by single peaks in the signal.

xRMS =

√√√√ 1
N

N

∑
i=1

xi
2 (7)

• The peak value (PV), also called the maximum value of the signal, as opposed to RMS,
is an indicator that is highly sensitive to rapid changes in the state of the test objects.

x̂ = max|xi| (8)

• The peak to peak value (PPV) is the amplitude measured from the largest top to the
largest bottom of the wave, unlike PV, the two extremes, smallest and largest, are
considered.

xPPV = |xmax − xmin| (9)

• The crest factor (CF) is a measure that gives the ratio of the peak value (PV) to the
RMS value of the signal.

xCF =
x̂

xRMS
(10)

• The impact factor (IF) is defined similarly to the CF, except that the denominator in
this case is the mean value (MV). Its diagnostic properties are also similar to those of
CF, but it is more sensitive.

xI =
x̂
x

(11)

• The shape factor (SF) is a measure giving the ratio of the RMS value to the mean of the
absolute value (SA).

xSF =
xRMS

x
(12)

• The variance (VAR) is a measure of the dispersion of the sample results around the
distribution center; it is the expected value of the square of the variance of a random
variable minus its population mean.

x2
VAR =

1
N − 1

N

∑
i=1

(xi − x)2 (13)

• Kurtosis (KUR) is a measure that describes the degree of concentration of outcomes
in a distribution. It is a fourth-order central moment. It provides information about
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the degree of similarity of the data scattered around the mean with respect to a
normal distribution.

xKUR =
1
N ∑N

i=1(xi − x)4[
1
N ∑N

i=1(xi − x)2
]2 (14)

• The M6A parameter is the sixth central moment normalized by the variance raised
to the third power. This coefficient is more sensitive to the presence of pulses in the
signal. It is defined as:

xM6A =
1
N ∑N

i=1(xi − x)6[
1
N ∑N

i=1(xi − x)2
]3 (15)

• The M8A parameter is known as the eighth central moment, normalized by the
variance to the fourth power. It is defined as:

xM8A =
1
N ∑N

i=1(xi − x)8[
1
N ∑N

i=1(xi − x)2
]4 (16)

A detailed description of the indicators is presented in Part I of this paper and earlier
papers by the authors [51,52,95,96].

2.7. Selection of Optimal Signal Features

Due to the different locations of the mounted sensors and the different characteristics
of the relative cartilage movement during the patellar tests, it was necessary to reduce the
parameters under analysis. Such a procedure, as already confirmed in the previous studies
presented in Part I, favors the increase in the generalizing abilities of the neuronal networks
while reducing the costs of calculations. OKC movement occurs in one primary axis and is
characterized by a rotary stress pattern in the joint; whereas, CKC is characterized by a linear
stress pattern, and joint motion occurs in multiple axes. Moreover, in OKC only one segment
of the joint is moving in comparison to CKC in which simultaneous movement occurs in
both knee segments. Therefore, VAG was performed in both closed and open kinetic chains
in order to address fully the complex biomechanics of the patellofemoral joint.

There are many methods for selecting optimal signal features. Commonly used
methods include techniques such as chi-square [97,98], tree-based feature selection [99,100],
Pearson’s correlation [101,102], LASSO [103–105], low variance [106], and recursive feature
elimination [107].

The Neighborhood Component Analysis (NCA) Algorithm was used to discard re-
dundant features in the analyzed issue. Optimal signal measures were selected separately
for each of the analyzed variants. NCA is a nonparametric method of selecting features
in order to maximize the accuracy of the regression and classification algorithms. The
discussed machine learning technique is used to classify multidimensional data into spe-
cific groups, in accordance with the given distance metric. It is based on looking for a
linear transformation of the input data, so that the average classification efficiency without
a single output is maximized. NCA is a method developed on the basis of the Nearest
Neighbor (KNN) algorithm [108,109].

Let us assume a specific training set as:

S = {(xi, yi), i = 1, 2, . . . , N}, (17)

where xi described d-dimensional vector, yi ∈ {1, 2, . . . , c} is its corresponding label, c is the
number of classes, and N is an observations number. The main task then is to determine the
weight vector w, allowing the selection of the nearest neighbor properties, which optimizes
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the classification. The weighted distance between the samples xi and xj is shown in the
equation [108,109]:

Dw
(
xi, xj

)
=

d

∑
l=1

w2
l

∣∣∣xil − xjl

∣∣∣, (18)

where wl is a weight associated with the l-th feature. It is necessary to determine the
probability of the correct classification pij [108,109]:

pij =

{
0, if i = j

κ(Dw(xi ,xj))
∑k 6=i κ(Dw(xi ,xk))

, if i 6= j
. (19)

The relationship between pij and the derived distance Dw is defined using the kernel
function κ, defined as:

κ(z) = exp
(
− z

σ

)
, (20)

where σ denotes the kernel width, which is the input parameter that affects the probability
of selecting each point as a reference point. The probability of correct classification could
be defined as [108,109]:

pi =
N

∑
j−1,j 6=i

yij pij, (21)

where

yij =

{
1, if yi = yj
0, otherwise

(22)

As mentioned earlier, one of the assumptions of NCA is to obtain the highest possible
classification efficiency by omitting one of the inputs. The approximate accuracy could be
written as [108,109]:

F(w) =
N

∑
i=1

pi. (23)

In order to maximize accuracy, the regularized objective term λ is introduced. Then,
F(w) can be written as [108,109]:

F(w) =
N

∑
i=1

pi − λ
d

∑
l=1

wl
2. (24)

For the best results, term λ is tuned via cross validation. The next step is to find the
derivative with respect to the gradient wl [108,109]:

∂F(w)

∂wl
= 2

(
1
σ ∑

i=1

(
pi ∑

k 6=i
pij

∣∣∣xil − xjl

∣∣∣−∑
j=1

yij pij

∣∣∣xil − xjl

∣∣∣)− λ

)
wl . (25)

The minimal classification loss is obtained for the best λ selection.

2.8. Artificial Neural Networks

Artificial neural networks (ANN) are one type of highly parameterized statistical
models. They are capable of mapping complex functions in a way similar to the operation
of brains of living organisms [110,111]. One of the most popular applications of neural
networks is solving classification problems. The network in this application is a tool that
allows assigning the studied objects to different classes [112,113].

Among the different types of neural networks, one of the most popular is the mul-
tilayer perceptron (MLP). It is characterized by a layered arrangement of neurons and
unidirectional data flow (from input to output) without feedback [114,115]. The training
of MLP-type networks is possible by using the backward error propagation method. The
input signals are multiplied by coefficients called synaptic weights and then summed. The
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excitation level, thus determined, becomes the argument of a transition function (activation
function) that calculates the output of the neuron.

A special variety of artificial neural networks are radial basis function (RBF) networks,
in which the hidden neuron implements a function that varies radially around a selected
center. These are unidirectional three-layer networks consisting of an input layer, a hidden
layer, and an output layer. The input neurons pass data to the hidden neurons, as in MLP
type networks. In the hidden layer, there are radial basis functions, which are equivalent to
the hidden neurons [116,117].

Artificial Neural Networks with radial basis functions (RBF) and multilayer percep-
tron (MLP) networks were used as a tool for case classification in the problem under
consideration [114,115].

The Statistica 13.1 package (Tulsa, OK, USA) containing modules including machine
learning and artificial neural networks was used for the calculations. Three classification
variants were considered in the analyzed problem. In each of them, in addition to the
selected features of acoustic signals recorded by a sensor located on the patella, parameters
such as age, sex, and BMI (Body Mass Index) were also considered as inputs. Variant I
included analysis of indices recorded in closed kinetic chain (sit to stand movement), variant
II included indices recorded in open kinetic chain (limb straightening and bending in free
hanging), while variant III included analysis of indices in both kinetic chains. Different sets
of subdivisions of data into teaching, validation, and testing sets, among others, 50-25-25
and 60-20-20 were tested; the results are presented for the subdivision in which data were
randomly divided into 70% for teaching, 15% for testing, and 15% for validation. At the
output, a simplified classification system for articular cartilage damage was proposed.
The classification involved assigning a set of features to one of two classes: 1. healthy
cartilage and 2. cartilage for further diagnosis and surgical treatment (grade I to IV damage
according to the ICRS scale).

3. Results and Discussion
3.1. Selection of Optimal Signal Features

The results of the selection of optimal signal measures for each of the three considered
variants, obtained using the neighborhood component analysis (NCA) algorithm, are
presented below.

For variant I (sensor located on the patella, motion in an open kinetic chain), the
following measures of acoustic signals were selected based on the analyses performed
using the NCA algorithm: mean value, peak value, interpeak value, impulsivity coefficient,
and variance. These measures were used as input data in variant I of the classification. The
results of selecting the optimal measures for variant I are shown in Figure 6.
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For variant II (sensor located on the patella, motion in a closed kinetic chain), the
following measures of acoustic signals were selected based on the analyses performed
using the NCA algorithm: mean value, peak value, interpeak value, impulsivity coefficient,
variance, and M8A. These measures were used as input data for the variant II classification.
The results of selecting the optimal measures for variant II are shown in Figure 7.
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Figure 7. Selection of optimal features for variant II (CKC).

For variant III (sensor located on the patella, motion in a closed and open kinetic
chain), the following measures of acoustic signals were selected on the basis of the analyses
performed using the NCA algorithm: mean value impulsivity coefficient and variance.
These measures were used as input data in variant III of the classification. The results of
the selection of optimal measures for variant III are shown in Figure 8.
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3.2. Classification

The results for the most accurate classifiers proposed by the automatic neural network
selection algorithm of the Statistica package for one case each of multilayer perceptron
(MLP) and radial basis function (RBF) networks, respectively, are presented below. The
detailed results of the learning, testing, and validation accuracy for each network in all the
analyzed variants are presented in Table 2. The accuracy of the network is given separately
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for the learning and test data. The accuracy measure used depended on the type of output
variable. For continuous variables (regression), it was the correlation coefficient, calculated
for learning, testing, and validation data (if such data were used). For qualitative variables
(classification), the relative number of cases correctly classified (relative to the total number
of cases) is reported.

Table 2. Accuracy of the MLP and RBF neural network for variant I (open kinetic chain), II (closed
kinetic chain), and III (open and closed kinetic chain).

Variant Network
Name

Accuracy
of Learning (%)

Accuracy
of Testing (%)

Accuracy
of Validation (%)

Learning
Algorithm

Error
Function

Activation
(Hidden)

Activation
(Output)

I MLP 9-40-2 89.71 100.00 85.71 BFGS 25 SOS Linear Exponential
RBF 9-35-2 98.53 85.71 100.00 RBFT Entropy Gauss Softmax

II MLP 10-16-2 98.53 100.00 100.00 BFGS 17 Entropy Logistic Softmax
RBF 10-40-2 97.06 92.86 100.00 RBFT Entropy Gauss Softmax

III MLP 8-3-2 97.79 100.00 96.43 BFGS 103 Entropy Tanh Softmax
RBF 8-14-2 91.91 96.43 96.43 RBFT Entropy Gauss Softmax

The data describing the network type and structure are shown in Table 2. The nu-
merical notation following the network type describes the number of neurons in the input
layer, the number of neurons in the hidden layer, and the number of network outputs,
respectively. The next three columns report the accuracy of the network, separately for
the learning and test data. The highest accuracy of learning (98.53%) was obtained for the
MLP network in Variant I and the RBF network in Variant II, while the lowest (91.91%) for
the RBF network in Variant III, which included the analysis of both kinetic chains. In the
case of testing accuracy, the highest value (100.00%) was observed for the MLP network in
all analyzed variants and the lowest value for the RBF network in variant I. The highest
value (100.00%) was observed for the RBF network in variants I and II as well as MLP
network in variant I. The lowest value was observed for MLP network in variant I. Detailed
information on the parameters such as the learning algorithm, error function, and activation
functions for individual networks for all variants considered are presented in Table 2. The
detailed results for classification in each group (HC and OA) and overall classification
accuracy for all three variants are presented in Table 3.

Table 3. Summary of the classification accuracy of the MLP and RBF networks for variant I, II and III.

Network Name HC OA Total

MLP 9-40-2
Total 45.00 23.00 68.00

Correct 43.00 18.00 61.00
Correct (%) 95.56 78.26 89.71

RBF 9-35-2
Total 45.00 23.00 68.00

Correct 44.00 23.00 67.00
Correct (%) 97.78 100.00 98.53

MLP 10-16-2
Total 45.00 23.00 68.00

Correct 44.00 23.00 67.00
Correct (%) 97.78 100.00 98.53

RBF 10-40-2
Total 45.00 23.00 68.00

Correct 43.00 23.00 66.00
Correct (%) 95.56 100.00 97.06

MLP 8-3-2
Total 89.00 47.00 136.00

Correct 88.00 45.00 133.00
Correct (%) 98.88 95.74 97.79

RBF 8-14-2
Total 89.00 47.00 136.00

Correct 85.00 40.00 125.00
Correct (%) 95.51 85.11 91.91
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The highest classification accuracy in the HC group of 98.88% of correctly assigned
cases was obtained for the MLP network in variant III, while the lowest accuracy was
obtained for the RBF network in the same variant. In the case of the OA group, the highest
accuracy of 100% of cases correctly assigned to the classes was obtained for the MLP
network in variant II as well as for the RBF network in variants I and II, while the lowest
(78.26%) was for the MLP network in variant I. The highest total classification accuracy
in both groups was achieved by the RBF networks for variant I and MLP for variant II;
it was 98.53% of correctly assigned cases. The RBF network with the best classification
performance had nine input neurons (nine input variables), thirty-five neurons in the
hidden layer, and two output neurons (assigning data to one of the two classes HC and
OA). The learning algorithm used was RBFT, the error function was Entropy, the activation
function in the hidden layer was the Gaussian function, and in the output layer, it was
Softmax. The MLP network with the best classification performance had ten input neurons
(ten input variables), sixteen neurons in the hidden layer, and two output neurons. The
learning algorithm used was BFGS 17, the error function was Entropy, the activation
function in the hidden layer was a logistic function, and in the output layer, it was Softmax.
The lowest accuracy was obtained for the MLP network in variant I, with 89.71% correctly
assigned to each class of cases.

A summary of the Receiver Operating Characteristic (ROC) curves for each classifier
for all variants analyzed is shown in Figure 9. Information on the area under the curves
and the threshold values for each curve are summarized in Table 4.
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Table 4. Area under the ROC curves and ROC threshold.
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MPL RBF MPL RBF MPL RBF
ROC area 0.986 1.000 1.000 1.000 0.995 0.979

ROC Threshold 0.533 0.480 0.470 0.437 0.866 0.620
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ROC curves are a graphical representation of the effectiveness of a predictive model
by plotting the qualitative characteristics of the binary classifiers produced from the model
using multiple different cutoff points. They are widely used in medicine to evaluate the
diagnostic accuracy of a test, to select the optimal test cutoff point, and to compare the
diagnostic accuracy of several tests [22,118]. ROC curves are also used in evaluating
techniques for machine learning. Classifiers that draw curves closer to the upper left corner
show better performance. As a reference point, a random classifier is expected to produce
points that are located along the diagonal. The closer the curve approaches the 45-degree
diagonal of the ROC plot space, the less accurate the test. The largest area under the ROC
curve of 1.00 was observed for the MLP network in variant II and the RBF network in
variants I and II, and the smallest area (0.979) was for the RBF network in variant III.

The accuracy of the classification demonstrates the good performance of this proposed
noninvasive diagnosis of articular cartilage injuries of the patellofemoral joint. The results
also indicate that MLP as well as RBF type networks performed well in solving the studied
problem. The results show that, similar to the diagnosis of femoral-tibial joint cartilage
damage, there was no improvement in classification quality with increased data from two
kinetic chains. In the case of the patellofemoral joint, very similar results were obtained for
variant I and II analyses. Based on these, it can be concluded that it is optimal to use the
test protocol for a single kinetic chain, and the reduced amount of data, in this case, did not
adversely affect the obtained results of calibration. This will shorten the study and reduce
the amount of data analyzed without compromising the quality of classification.

Those findings corresponded with our previous study, in which the evaluation pro-
vided excellent diagnostic accuracy reaching 96.32% for the tibiofemoral joint and one
kinetic chain. However, for the tibiofemoral joint the OKC showed higher, but not statisti-
cally significant, diagnostic accuracy in comparison to the patellofemoral joint, where CKC
showed the highest AUC reaching 1.00. This finding shows that for suspected OA in one
compartment of the knee joint one kinetic chain is sufficient; however, the combination of
VAG performed in both kinetic chains provided the best overall evaluation of the knee joint.
A comparison of the diagnostic results for different anatomic locations for all evaluation
variants analyzed is shown in Table 5.

Table 5. Comparison of diagnostic results for different anatomical locations for all variants.

Location Variant Network Name Accuracy (%) Sensitivity Specificity AUC Precision Recall F1 Score MCC

Femoral-Tibial
Joint

I MLP 13-9-2 96.32 0.957 0.967 0.996 0.936 0.957 0.946 0.918
RBF 13-43-2 89.71 0.867 0.912 0.960 0.830 0.867 0.848 0.771

II MLP 15-12-2 94.85 0.935 0.956 0.989 0.915 0.935 0.925 0.886
RBF 15-6-2 91.91 0.950 0.906 0.977 0.809 0.950 0.874 0.820

III MLP 15-24-2 93.70 0.928 0.941 0.977 0.875 0.928 0.901 0.855
RBF 15-5-2 89.63 0.806 0.948 0.974 0.898 0.806 0.849 0.773

Patellofemoral
joint

I MLP 9-40-2 89.71 0.900 0.896 0.986 0.783 0.900 0.837 0.766
RBF 9-35-2 98.53 0.958 1.000 1.000 1.000 0.958 0.979 0.968

II MLP 10-16-2 98.53 0.958 1.000 1.000 1.000 0.958 0.979 0.968
RBF 10-40-2 97.06 0.920 1.000 1.000 1.000 0.920 0.958 0.938

III MLP 8-3-2 97.79 0.978 0.978 0.995 0.957 0.978 0.968 0.951
RBF 8-14-2 91.91 0.909 0.924 0.979 0.851 0.909 0.879 0.819

The analysis of the obtained classification parameters shows that in addition to the
kinetic chain, the placement of sensors can affect the quality of the obtained classification
results. The best classification accuracy for all considered variants was obtained for the
patellofemoral joint at 98.53%, with a sensitivity of 0.958, and a specificity of 1.000. It was
obtained by the RBF network in variant I and the MLP network in variant II. In the case
of the femoral-tibial joint, the best classification performance was obtained for the MLP
network in variant I, where signals recorded in the open kinetic chain were analyzed. The
classification accuracy in this case was 96.32%, with a sensitivity of 0.957, and a specificity
of 0.967.

The F1-score is a measure of model precision on a dataset and is most commonly used
to evaluate binary classification systems. It is a way of combining model precision and
recall and is defined as the harmonic mean of model precision and recall [119]. The highest
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F1 score values of 0.979 were obtained for the patellofemoral joint for analyses in Variant I
and II. For the femoropopliteal joint, the highest value of 0.946 was obtained for the MLP
in Variant I.

The Matthews correlation coefficient (MCC) is a measure of the quality of binary (two-
class) classifications, introduced by Brian W. Matthews [120]. The Matthews correlation
coefficient is one of the most informative single scores to determine the prediction quality
of a binary classifier in the context of a confusion matrix [121]. It can be used even in
cases where the two classes have very different sizes. The highest MCC value of 0.968 was
obtained for the patellofemoral joint for single kinetic chains for the RBF-type network in
variant I and for the MLP in variant II. For the patellofemoral joint, the highest value of
0.918 was obtained for the MLP in OKC.

The results observed are consistent with the results obtained for the sensitivity and
F1 score. The difference in the results may be related to the level of vibration attenuation
by the skin (less influence in the case of the patella) and the amount of artifacts caused
by the muscles moving in the direct vicinity of the sensor (more influence in the case of
registration on the lateral and medial side at the level of the joint fissure). The classification
accuracy was slightly better for analyses in variants I and II, where motion was analyzed
in single kinetic chains for both the femoral-tibial and patellofemoral joints. The lack of
improvement in classification quality with the increased amount of data (two kinetic chains)
indicates that the testing protocol can be reduced to single kinetic chain analyses, and the
choice of chain is dependent on the sensor location.

Our findings also correspond with other authors in regard to diagnostic accuracy
where sensitivity ranged from 0.56 to 1, depending on sensors used and the signal process-
ing algorithms [60,61,122]. A comparison of the diagnostic results of the proposed method
with those reported in related works is summarized in Table 6. The data in this table are
arranged in ascending order of classification accuracy.

Table 6. Comparison diagnostic results of proposed method with other related works.

Authors Classification Methods Accuracy (%) Sensitivity Specificity AUC

Krishnan et al. [60] Logistic regression analysis 68.90 0.564 0.784 N/A
Umpathy and Krishnan [122] Linear discriminant analysis 76.40 0.789 0.745 N/A

Rangayyan and Wu [55] RBF 77.53 0.711 0.824 0.832
Mascarenhas et al. [123] Random forest 80.89 0.868 0.765 0.817

Sharma and Acharya [124] LS-SVM 89.89 0.914 0.889 N/A
Wu and Krishnan [125] Multiple classifier Fusion system 80.9 0.895 0.922 0.948

Rangayyan and Wu [126] RBF 82.02 0.711 0.902 0.820
Nalband et al. [127] LS-SVM 83.14 0.981 0.622 0.671

Wu et al. 45 Bayesian decision rule 86.67 0.750 0.936 0.910
Shidore et al. [128] SVM 87.69 0.857 0.838 0.926

Yang et al. [129] Bayesian decision rule 88.00 0.714 0.979 0.957
Cai et al. [53] Dynamic weighted classifier Fusion system 88.76 0.737 1.000 0.952

Rangayyan and Wu [130] RBF 89.89 0.921 0.882 0.917
Mu et al. [131] Strict 2-surface proximal classifier 91.01 0.947 0.882 0.950
Kim et al. [132] Back propagation neural network 95.4 0.920 0.987 N/A

Karpiński et al. [96] MLP, RBF 96.32 0.957 0.967 0.996
Proposed method MLP, RBF 98.53 0.958 1.000 1.000

Rangayyan et al. [61] RBF 100 1 1 0.961

As shown in Table 6, there has been a wide spread of results obtained by researchers.
Krishnan et al. [60] showed the lowest accuracy among all cited papers; however, during
this study, the researchers did not concentrate on the cartilage itself and evaluated all
intra-articular pathologies including ligament and menisci tears. Moreover, there was no
information about severity of the lesions, which could also affect the sensitivity of the
method in this study. Further, the classification method in this study was the simplest,
which could affect the overall results. RBF and MLP proved to be the most accurate in
evaluating cartilage status as presented in our studies and Rangayyan et al. [61]. Interest-
ingly, the same authors, based on the same classification and study group, showed different
results where diagnostic accuracy ranged from 77% [55] to 100% [61]. This shows that the
classification accuracy is strongly related to the signal preprocessing methods and the set
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of signal measures selected used on the classifier inputs. Our proposed method not only
shows high sensitivity and specificity for cartilage lesions but also is clinically applicable
due to the ease of the testing protocol. Patients are free to perform the test in their comfort
zone, while the range of motion required for testing is 0–90, which can be performed by
most patients with cartilage lesions. Moreover, movement time does not impede our results,
which was an issue in previous studies, where a set timeline of the study was proposed
for testing [61,129,132]. Selecting the best signal processing algorithm and examination
protocol is still a question to be answered in the future. Multiple different approaches have
been proposed in the literature [49,133], and further studies are required to establish a
future gold standard for VAG in knee evaluation.

3.3. Limitations of the Study and Future Plans

The limitation of this study is the use of a simplified classification model including
the assignment of results to only two groups: healthy cartilage and damaged cartilage,
without differentiating the degree of damage. The authors plan to conduct a study focused
on precise determination of the degree of cartilage damage by assigning the results to one
class of degree of damage according to the ICRS scale; however, a larger study group is
required to achieve this goal. Another potential limitation of this study is that the TKR
group patients presented high grade diffused cartilage lesions, for which sensitivity seems
be higher than for focal low grade lesions. Further limitations of the study also undoubtedly
include the variation in age between groups, and further studies need to be conducted in
groups with less variation. The study focused only on cartilage surface damage; whereas
in clinical practice, simultaneous damage to many different structures of the knee joint is
usually encountered.

Planned research will include expansion of the study group, extension of algorithms for
signal preprocessing, feature extraction, and methods for selecting optimal signal measures.
The authors plan to test various feature extraction methods for vibroacoustic signals such
as chi-square, tree-based feature selection, Pearson’s correlation, LASSO, low variance, and
recursive feature elimination. The authors also plan to test various classification methods
based on machine learning and deep learning methods. In future work, the results of
comparative analyses will be presented to determine the most important vibroacoustic
signal measures and optimal classification methods to create a test protocol that can be used
in the clinical evaluation of damage to cartilage and other structures of the knee joint. The
planned end result is to propose a simple testing protocol and assessment of joint condition
based on recorded vibroacoustic signals, possible to perform in any orthopedic practice.

4. Conclusions

In response to the increasing public concern about knee osteoarthritis, this paper
proposes a method for processing acoustic signals and selecting optimal signal measures
using the NCA algorithm. A classification accuracy of >95% was obtained for most of the
analyzed variants. The obtained results confirmed the thesis that inexpensive, noninvasive,
and, most importantly, effective diagnosis of damage to articular cartilage covering the
articular surfaces of the patellofemoral joint based on generated vibroacoustic signals is
possible. This confirms the validity of the assumptions made and the usefulness of the pro-
posed method created based on statistical parameters and machine learning. Application
of the NCA algorithm allowed for a reduction in the amount of input data, improvement in
the quality of classification, and reduction in the computation time. For the patellofemoral
joint, the best classification performance was obtained for separate analysis of signals
recorded for the open (OKC) and closed (CKC) kinetic chains. This suggests a simplifica-
tion of the testing protocol to limb movement in a single kinetic chain. Simplification of the
testing protocol and reduction in the requirements proposed in our study can ease clinical
application of the method in general practitioners’ and orthopedic clinics.
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57. Bączkowicz, D.; Majorczyk, E. Joint Motion Quality in Vibroacoustic Signal Analysis for Patients with Patellofemoral Joint
Disorders. BMC Musculoskelet Disord 2014, 15, 426. [CrossRef]

58. Wu, Y.; Chen, P.; Luo, X.; Huang, H.; Liao, L.; Yao, Y.; Wu, M.; Rangayyan, R.M. Quantification of Knee Vibroarthrographic Signal
Irregularity Associated with Patellofemoral Joint Cartilage Pathology Based on Entropy and Envelope Amplitude Measures.
Comput. Methods Programs Biomed. 2016, 130, 1–12. [CrossRef]

59. Andersen, R.E.; Arendt-Nielsen, L.; Madeleine, P. A Review of Engineering Aspects of Vibroarthography of the Knee Joint. Crit
Rev. Phys. Rehabil Med. 2016, 28, 13–32. [CrossRef]

60. Krishnan, S.; Rangayyan, R.M.; Bell, G.D.; Frank, C.B. Adaptive Time-Frequency Analysis of Knee Joint Vibroarthrographic
Signals for Noninvasive Screening of Articular Cartilage Pathology. IEEE Trans. Biomed. Eng. 2000, 47, 773–783. [CrossRef]

61. Rangayyan, R.M.; Oloumi, F.; Wu, Y.; Cai, S. Fractal Analysis of Knee-Joint Vibroarthrographic Signals via Power Spectral
Analysis. Biomed. Signal. Processing Control. 2013, 8, 23–29. [CrossRef]

62. Befrui, N.; Elsner, J.; Flesser, A.; Huvanandana, J.; Jarrousse, O.; Le, T.N.; Müller, M.; Schulze, W.H.W.; Taing, S.; Weidert, S.
Vibroarthrography for Early Detection of Knee Osteoarthritis Using Normalized Frequency Features. Med. Biol Eng. Comput.
2018, 56, 1499–1514. [CrossRef] [PubMed]

63. Tanaka, N.; Hoshiyama, M. Vibroarthrography in Patients with Knee Arthropathy. BMR 2012, 25, 117–122. [CrossRef] [PubMed]
64. Wu, Y.; Krishnan, S.; Rangayyan, R.M. Computer-Aided Diagnosis of Knee-Joint Disorders via Vibroarthrographic Signal Analysis:

A Review. Crit. Rev. Biomed. Eng. 2010, 38, 119. [CrossRef] [PubMed]
65. Apley, A.G. The Diagnosis of Meniscus Injuries; Some New Clinical Methods. J. Bone Jt. Surg Am. 1947, 29, 78–84.
66. McMurray, T.P. The Semilunar Cartilages. Br. J. Surg. 1942, 29, 407–414. [CrossRef]
67. Karachalios, T.; Hantes, M.; Zibis, A.H.; Zachos, V.; Karantanas, A.H.; Malizos, K.N. Diagnostic Accuracy of a New Clinical Test

(the Thessaly Test) for Early Detection of Meniscal Tears. J. Bone Jt. Surg. 2005, 87, 955–962. [CrossRef]
68. Torg, J.S.; Conrad, W.; Kalen, V. Clinical I Diagnosis of Anterior Cruciate Ligament Instability in the Athlete. Am. J. Sports Med.

1976, 4, 84–93. [CrossRef]
69. Paessler, H.H.; Michel, D. How New Is the Lachman Test? Am. J. Sports Med. 1992, 20, 95–98. [CrossRef]
70. Galway, H.R.; MacIntosh, D.L. The Lateral Pivot Shift: A Symptom and Sign of Anterior Cruciate Ligament Insufficiency. Clin.

Orthop. Relat. Res. 1980, 11, 45–50. [CrossRef]
71. Lelli, A.; Di Turi, R.P.; Spenciner, D.B.; Dòmini, M. The “Lever Sign”: A New Clinical Test for the Diagnosis of Anterior Cruciate

Ligament Rupture. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2794–2797. [CrossRef]

http://doi.org/10.1136/ard.2009.112599
http://www.ncbi.nlm.nih.gov/pubmed/20413570
http://doi.org/10.1038/s41598-021-98945-2
http://www.ncbi.nlm.nih.gov/pubmed/34599226
http://doi.org/10.1056/NEJM190201161460304
http://doi.org/10.1016/j.sna.2016.05.025
http://doi.org/10.1016/j.medengphy.2009.06.007
http://doi.org/10.1016/j.medengphy.2010.12.009
http://doi.org/10.1016/j.medengphy.2019.01.002
http://doi.org/10.1109/LSENS.2018.2871981
http://doi.org/10.1088/1742-6596/2130/1/012009
http://doi.org/10.1088/1742-6596/2130/1/012010
http://doi.org/10.1155/2013/904267
http://www.ncbi.nlm.nih.gov/pubmed/23573175
http://doi.org/10.1121/1.1413995
http://www.ncbi.nlm.nih.gov/pubmed/11785830
http://doi.org/10.1016/j.bspc.2009.03.008
http://doi.org/10.3390/s20175015
http://doi.org/10.1186/1471-2474-15-426
http://doi.org/10.1016/j.cmpb.2016.03.021
http://doi.org/10.1615/CritRevPhysRehabilMed.2016017185
http://doi.org/10.1109/10.844228
http://doi.org/10.1016/j.bspc.2012.05.004
http://doi.org/10.1007/s11517-018-1785-4
http://www.ncbi.nlm.nih.gov/pubmed/29392547
http://doi.org/10.3233/BMR-2012-0319
http://www.ncbi.nlm.nih.gov/pubmed/22684203
http://doi.org/10.1615/CritRevBiomedEng.v38.i2.60
http://www.ncbi.nlm.nih.gov/pubmed/20932239
http://doi.org/10.1002/bjs.18002911612
http://doi.org/10.2106/JBJS.D.02338
http://doi.org/10.1177/036354657600400206
http://doi.org/10.1177/036354659202000122
http://doi.org/10.1097/00003086-198003000-00008
http://doi.org/10.1007/s00167-014-3490-7


Sensors 2022, 22, 3765 22 of 24

72. Nijs, J.; Van Geel, C.; Auwera, C.; Van de Velde, B. Diagnostic Value of Five Clinical Tests in Patellofemoral Pain Syndrome. Man.
Ther. 2006, 11, 69–77. [CrossRef] [PubMed]

73. Malanga, G.A.; Andrus, S.; Nadler, S.F.; McLean, J. Physical Examination of the Knee: A Review of the Original Test Description
and Scientific Validity of Common Orthopedic Tests. Arch. Phys. Med. Rehabil. 2003, 84, 592–603. [CrossRef] [PubMed]

74. Cameron, M.L.; Briggs, K.K.; Steadman, J.R. Reproducibility and Reliability of the Outerbridge Classification for Grading
Chondral Lesions of the Knee Arthroscopically. Am. J. Sports Med. 2003, 31, 83–86. [CrossRef] [PubMed]

75. Brittberg, M.; Winalski, C.S. Evaluation of Cartilage Injuries and Repair. J. Bone Jt. Surg Am. 2003, 85 (Suppl. 2), 58–69. [CrossRef]
76. Contact Microphone CM-01B, Technical Data Sheet. 2015. Available online: https://www.te.com/commerce/DocumentDelivery/

DDEController (accessed on 16 February 2022).
77. Bourns®Encoders, Technical Data Sheet 2015. Available online: https://www.bourns.com/docs/technical-documents/technical-

library/sensors-controls/publications/Bourns_SC1180_Encoder_SF_Broch.pdf (accessed on 16 February 2022).
78. Karandikar, N.; Vargas, O.O.O. Kinetic Chains: A Review of the Concept and Its Clinical Applications. PMR 2011, 3, 739–745.

[CrossRef]
79. ADUM4160 Datasheet and Product Info|Analog Devices. Available online: https://www.analog.com/en/products/adum4160.

html (accessed on 5 February 2022).
80. Zhang, M.; Wei, G. An Integrated EMD Adaptive Threshold Denoising Method for Reduction of Noise in ECG. PLoS ONE 2020,

15, e0235330. [CrossRef]
81. Ghofrani, S.; Akbari, H. Comparing Nonlinear Features Extracted in EEMD for Discriminating Focal and Non-Focal EEG

Signals. In Proceedings of the Tenth International Conference on Signal Processing Systems, Singapore, 17 April 2019; Mao, K.,
Jiang, X., Eds.; SPIE: Singapore, 2019; p. 43.

82. Kumar, S.; Panigrahy, D.; Sahu, P.K. Denoising of Electrocardiogram (ECG) Signal by Using Empirical Mode Decomposition
(EMD) with Non-Local Mean (NLM) Technique. Biocybern. Biomed. Eng. 2018, 38, 297–312. [CrossRef]

83. Carvalho, V.R.; Moraes, M.F.D.; Braga, A.P.; Mendes, E.M.A.M. Evaluating Five Different Adaptive Decomposition Methods for
EEG Signal Seizure Detection and Classification. Biomed. Signal. Processing Control. 2020, 62, 102073. [CrossRef]

84. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode
Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. London. Ser. A
Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

85. Chaudhari, H.; Nalbalwar, S.L.; Sheth, R. A Review on Intrensic Mode Function of EMD. In Proceedings of the 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 12 March 2016; pp. 2349–2352.

86. Zhang, J.; Yan, R.; Gao, R.X.; Feng, Z. Performance Enhancement of Ensemble Empirical Mode Decomposition. Mech. Syst. Signal.
Processing 2010, 24, 2104–2123. [CrossRef]

87. Zheng, J.; Cheng, J.; Yang, Y. Partly Ensemble Empirical Mode Decomposition: An Improved Noise-Assisted Method for
Eliminating Mode Mixing. Signal. Processing 2014, 96, 362–374. [CrossRef]

88. Rilling, G.; Flandrin, P. One or Two Frequencies? The Empirical Mode Decomposition Answers. IEEE Trans. Signal Processing
2007, 56, 85–95. [CrossRef]

89. Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal.
2009, 1, 1–41. [CrossRef]
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