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It is our pleasure to introduce this Thematic Series on CO,
chemistry for the Beilstein Journal of Organic Chemistry
(BJOC). Today’s growing demand for energy, materials and
chemicals has prompted renewed interest in CO, chemistry.
More resource-efficient chemical processes are being imple-
mented, while we are facing the change from a fossil fuel-based
society to one that must rely on the sustainable use of renew-
able resources. Although there are many ways to harness renew-
able energy resources, much of the needed materials and chemi-

cals will continue to be carbon-based.

One of the most abundant renewable resources of carbon is
carbon dioxide (Figure 1). Carbon capture technologies are
being implemented [1] to capture a part of the yearly anthro-
pogenic CO, emission of 36,600 million metric tons of CO, [2].
If only a fraction of the captured CO; stream could be made
available for chemical production, a significant contribution to
the annual production of carbon-based materials and chemicals
could be supplied. Here, we offer the reader to relate these
figures with the annual production of polymeric materials of
280 million metric tons [3]. Remarkably, 110 million metric

tons of CO; per year for producing urea, methanol and salicylic
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acid are industrial reality today. These applications clearly illus-
trate the path forward. Due to the abundant availability of pure
CO, gas streams [1], it is only logical to promote a more wide-
spread use of carbon dioxide as chemical feedstock. Notably,
the use of CO, for manufacturing materials and chemicals is
still in its infancy.
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Figure 1: The carbon dioxide molecule.

Carbon dioxide (CO,) has long stirred the fascination of
chemists. A rich chemistry has evolved utilizing this molecule
in chemical synthesis [4]. Hitherto the low reactivity of the CO,
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molecule poses significant challenges to the utilization of
carbon dioxide in industrial applications. Thus, the CO, mole-
cule is commonly perceived to be highly inert. This perception
clearly stems from the high chemical stability of carbon
dioxide. However, the reactivity of the CO, molecule may be
underestimated. Carbon dioxide is isoelectronic to highly reac-
tive molecules such as isocyanates and ketenes (Figure 2). This
implies that reactivity and kinetic limitations may be encoun-
tered much less frequently in the chemical conversion of carbon
dioxide than generally assumed.
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Figure 2: Examples of highly reactive molecules that are isoelectronic
to carbon dioxide.

To overcome its thermodynamically low level, additional
energy is required to activate the CO, molecule. The threefold
reactivity (Figure 3) of CO, with a nucleophilic oxygen atom,
an electrophilic carbon atom and a m system provides the
chemist with many options. Likewise, a rich coordination chem-
istry to metal centres has been reported for CO, [5,6]. A forth-
coming path is the reaction of CO; to form energy-rich inter-
mediates that can subsequently transfer the CO, molecule to
target substrates [7]. The use of efficient catalysts is often
another requisite to direct the reaction pathways with high
selectivity to yield the desired target products and to overcome
kinetic limitations associated with certain slow elementary

steps.
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Figure 3: Threefold reactivity of carbon dioxide and examples for
different activation modes for CO; involving metal centres in homoge-
neous and heterogeneous catalysts [5,6].

This Thematic Series on CO; chemistry presents intriguing
approaches regarding different methodologies to activate carbon
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dioxide. One emerging field is the electrochemical fixation of
CO,, which can be applied in the synthesis of carboxylic acids
[8]. Also highly interesting is the combination of enzymatic and
photocatalytic approaches for activating CO, [9]. Bifunctional
catalyst systems are frequently needed and well-understood in
the synthesis of cyclic carbonates [10]. Activation of carbon
dioxide by inserting it into metal-alkoxide bonds allows for
subsequent applications in polymer synthesis such as the
copolymerisation of carbon dioxide with epoxides and other
co-monomers [11]. Here, the catalysis with cobalt complexes
still presents surprising effects [12]. More efficient systems for
CO, capture are being developed on the basis of amine-func-
tionalised ionic liquids where zwitterionic adduct formation is
the key to higher efficiency [13]. Furthermore, many physical
properties of carbon dioxide are outstanding, making supercrit-
ical carbon dioxide a solvent like no other [14].

Altogether, the articles in this Thematic Series present a
remarkable overview of opportunities in the field of CO, chem-
istry from many of its top practitioners. These opportunities are
harbingers of the many additional reactions, reactivity modes
and catalysts that remain to be discovered. Exploiting carbon
dioxide to create economic value will be the driving force for
the more widespread use of this fascinating molecule. In the
long term, we envision mankind creating an anthropogenic
carbon loop where CO; released at the end of the life span of
carbon-based goods of everyday life is again employed in the

production of new materials and chemicals.

We are highly grateful to the authors for their excellent contri-
butions towards making this Thematic Series as successful as

the previous editions.
Thomas E. Miiller and Walter Leitner
Aachen, April 2015
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