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Abstract A central tenet of skeletal muscle biology is the existence of an inverse relationship

between the oxidative fibre capacity and its size. However, robustness of this relationship is

unknown. We show that superimposition of Estrogen-related receptor gamma (Errg) on the

myostatin (Mtn) mouse null background (Mtn-/-/ErrgTg/+) results in hypertrophic muscle with a high

oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity.

We also examined the canonical view that oxidative muscle phenotype positively correlate with

Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres

from Mtn-/-/ErrgTg/+ mouse showed satellite cell deficit which unexpectedly did not affect muscle

regeneration. These observations 1) challenge the concept of a constraint between fibre size and

oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative

capacity of a muscle even when satellite cell numbers are reduced.
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Introduction
John Eccles and colleagues first applied the concept of ‘plasticity’ to skeletal muscle to describe the

effect of cross-innervation experiments in cats on the size and fibre characteristics of skeletal muscle

(Buller et al., 1960). Many factors have since been shown to profoundly effect on skeletal muscle

structure and function, including chronic electrical stimulation, exercise, diet and ageing

(Salmons and Vrbová, 1969; Hickson, 1980; Wade et al., 1990; Mitchell et al., 2012).

In mammalian skeletal muscle, fibres are broadly characterized as slow or fast fibres, where slow

fibres express the myosin heavy chain (MHC) isoform I, whereas fast fibres express MHC IIA, IIX and/

or IIB. Slow fibres generally have a smaller cross sectional area (CSA), contain more mitochondria

which sustain a high oxidative capacity, and a denser microvascular network than fast fibres that rely

predominantly on glycolysis for ATP production. Muscle fibres can change their phenotype, such as

the expression of MHC, mitochondrial content and capillary supply in response to external stimuli

(Pette and Staron, 1997, 2001).

We are beginning to understand some of the cellular, biochemical and molecular processes that

act to concord muscle structure and morphology to the functional demands placed on the muscle.

For instance, it has been shown that the development of the slow muscle fibre phenotype is largely

controlled by Protein Kinase C, Calcineurin/NFAT, AMP Activated Protein kinase (AMPK), peroxi-

some proliferator-activated receptor gamma co-activator 1-alpha (PGC-1a) and Sex determining

region Y-box 6 (Sox6) (Gundersen, 2011; von Hofsten et al., 2008). Recently, we have shown that

the Estrogenrelated receptor gamma (Errg) is robustly expressed in slow muscle and can promote

the formation of oxidative fibres in a PGC-1a independent manner (Narkar et al., 2011). Fast, glyco-

lytic muscle development on the other hand seems to involve the activation of the Akt signalling

pathway through the transcriptional regulation by molecules including Baf60c (also called Smarcd3)

and T-box 15 (Tbx15) (Meng et al., 2013, 2014; Lee et al., 2015). Lifting the inhibition of Akt sig-

nalling mediated by Myostatin is also a potent means of inducing the formation of glycolytic muscle

fibres (Trendelenburg et al., 2009). Additionally, a recent study has shown that the DNA binding

protein Nuclear Factor I X (Nfix) acts to inhibit the slow muscle phenotype (Rossi et al., 2016).

Myostatin (Mtn), a member of the Transforming Growth Factor Beta (TGF-b) family of secreted

proteins, is highly expressed in skeletal muscle (McPherron et al., 1997). It is a potent inhibitor of

skeletal muscle growth and its deletion results in a hypermuscular phenotype called ‘Muscle Dou-

bling’ seen in mice, cattle and even humans (McPherron et al., 1997; McPherron and Lee, 1997;

Schuelke et al., 2004). We and others have shown that the glycolytic muscles that develop in the

absence of Mtn have a mitochondrial deficit and a low specific force (Amthor et al., 2007;

Mendias et al., 2006).

A fundamental concept of skeletal muscle biology is the existence of the inverse relationship

between the oxidative capacity of a fibre and its cross-sectional area (CSA) that applies to muscles

as diverse as the limb, diaphragm and masseter muscle within an animal and even across species

boundaries (van Wessel et al., 2010; Degens, 2012; Van Der Laarse et al., 1997). This relationship,

in theory, ultimately imparts a constraint on the size that mitochondria-rich and therefore high O2 -

dependent oxidative fibres can attain before they become anoxic or adapt to a glycolytic phenotype

less reliant on O2 (Desplanches et al., 1996; Deveci et al., 2001). The metabolic properties of mus-

cle are believed not only to control fibre size but also the number of satellite cells. A number of cor-

relative studies have described the number of SC increases as a muscle becomes progressively

oxidative (Putman et al., 1999; Christov et al., 2007).

Here we investigated whether this suggested constraint between fibre size and oxidative capacity

can be broken and sought to develop large oxidative fibres without compromising function, such as

fatigue resistance. To that end, we developed a novel mouse line by introducing an Errg over-

expression allele driven by a skeletal muscle fibre promoter (Human a -Skeletal Muscle Actin)

(Muscat and Kedes, 1987) that enhances the oxidative capacity (Narkar et al., 2011) into a hyper-

trophic Mtn-/- background. Based on the concept of a constraint between the CSA and oxidative

capacity of a fibre we postulated three possible outcomes of the cross: (1) the Akt pathway that is

de-repressed due to the absence of Mtn would prevail and lead to hypertrophic, but glycolytic

fibres; (2) oxidative features would be imparted by the Errg programme that would follow the inverse

size relationship and lead to mitochondria-rich fibres which could be smaller than wild-type
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(Rangwala et al., 2010); (3) the constraint is broken in this strain and results in the development of

hypertrophic yet oxidative fibres.

The main observations of the study are firstly that the muscles of Mtn-/-/ErrgTg/+ mice have large

fibres with a larger than expected oxidative capacity, breaking the constraint of the inverse size-oxi-

dative capacity relationship. This was attained through the activation of the Akt pathway, increased

myoglobin gene expression, relocation of mitochondria to the sub sarcolemma and hyper-capillarisa-

tion of the muscle. We show that these modifications not only bring about normalization of many

ultrastructural abnormalities in the hypertrophic muscles of Mtn-/- mice, but the Mtn-/-/ErrgTg/+ mice

even outperform wild type mice during an incremental exercise test. Secondly that the hypertrophic

oxidative muscles from the Mtn-/-/ErrgTg/+ mice do not follow the dogma regarding metabolism and

satellite cells number. We actually show that the metabolic reprogramming in this study led to a

decrease in satellite cell number. However, this deficit did not impact at all in terms of the muscle’s

ability to regenerate. We believe this highlights the importance of the microcirculation during regen-

eration and has major clinical implications.

Results

Body and skeletal muscle mass
Introduction of Errg in a skeletal muscle-specific manner into the Mtn-/- background to generate dou-

ble transgenic Mtn-/-/ErrgTg/+ resulted in viable, fertile offspring that were born at the expected

Mendelian ratios. Firstly, we found that the HSA promoter used induced robust over-expression of

Errg in the Mtn-/- background (Figure 1A). The body mass of WT, Mtn-/- and Mtn-/-/ErrgTg/+ animals

was similar at 12 weeks of age (Figure 1B). However, the EDL, gastrocnemius, soleus and TA

muscles were in both Mtn-/- and Mtn-/-/ErrgTg/+ approximately 43%, 44%, 47% and 70% larger than

their WT counterpart, respectively (Figure 1C–F). Importantly, there was no significant difference in

mass for any of the muscles from Mtn-/- and Mtn-/-/ErrgTg/+ mice (Figure 1C–F).

Exercise capacity
Using the running to exhaustion protocol on a treadmill, we found that Mtn-/- mice performed worse

than WT. However the Mtn-/-/ErrgTg/+ ran for approximately 80% longer than the Mtn-/- and 25%

longer than the WT mice (Figure 1G).

Force generating capacity
We found that the maximal isometric tetanic force generated by the EDL of Mtn-/- was not signifi-

cantly different from that of the WT mice, despite the larger muscle mass (Figure 1H). The tetanic

force generated by Mtn-/-/ErrgTg/+ EDL was, however, greater than that of the EDL from both WT

and Mtn-/- mice. We next calculated the Specific Force (sPo), the tetanic force per muscle mass. The

sPo of the EDL of Mtn-/- mice was lower that of the other groups, with that of the Mtn-/-/ErrgTg/+

mice being significantly greater than Mtn-/- mice, but not normalized to WT levels (Figure 1I). We

also examined the force generating capacity of the soleus. The tetanic force of Mtn-/- soleus muscle

was significantly lower than those of WT. There was no difference in this parameter between the

soleus muscles of WT and Mtn-/-/ErrgTg/+ (Figure 1—figure supplement 1A). The specific force of

the soleus showed the same overall profile as that of the EDL but did not reach statistical signifi-

cance, possibly due to low sample size (Figure 1—figure supplement 1A).

Muscle fibre number, area and MHC profile
The increased muscle mass in Mtn-/- mice are due to both hypertrophy and hyperplasia. We found

that the introduction of Errg into Mtn-/- did not significantly change the number of fibres normally

seen in Mtn-/- EDL (Figure 2A–B) or soleus muscles (Figure 2—figure supplement 1A–B) both of

which were greater than in WT. The fibre sizes were equivalent in the EDL of Mtn-/- and Mtn-/-/

ErrgTg/+ mice. Of particular note was that the MHCIIB fibres in the EDL were approximately 270%

larger in both Mtn-/- and Mtn-/-/ErrgTg/+ compared to WT (Figure 2B). The other notable result was

the smaller size of MHCIIA fibres in Mtn-/-/ErrgTg/+ than Mtn-/-, but they were still larger than those

in the WT (Figure 2B).
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Figure 1. Concomitant skeletal muscle hypertrophy and tissue specific expression of ERRg and resultant fatigue resistant characteristics. (A) ERRg

mRNA levels. (B) Body and (C–F) skeletal muscle mass in wild type (Wt), myostatin null (Mtn) and ERRg transgenic mice on the myostatin null

background (Mtn:Eg). (G) Exercise tolerance test on a mouse treadmill. (H–I) Contractile properties of the EDL muscle. Specific force denotes tetanic

force normalized to wet muscle mass. N = 5 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison

tests, *p<0.05.

Figure 1 continued on next page

Omairi et al. eLife 2016;5:e16940. DOI: 10.7554/eLife.16940 4 of 25

Research article Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.16940


Introduction of Errg into Mtn-/- caused a partial reversal of MHC profile of Mtn-/- towards the WT

condition in all muscles examined (Figure 2C and Figure 2—figure supplement 1A and C). This

conversion was only detected within the MHCII subtypes but did not extend to normalization of the

proportion of MHCI fibres; in the soleus of Mtn-/-/ErrgTg/+, the proportion of MHCIIB fibres was

lower than that in Mtn-/- while that of MHCIIA fibres was higher. Nevertheless, both Mtn-/- and

Mtn-/-/ErrgTg/+ display a lower proportion of MHCI fibres in the soleus muscle than WT (Figure 2C).

Next, we examined the mechanism underpinning fibre enlargement. We found that the levels of

phosphorylated Akt (an inducer of anabolism) were higher in the muscle of Mtn-/- and Mtn-/-/

ErrgTg/+ compared to WT (Figure 2D). A similar relationship was discovered for its downstream tar-

get 4EBP1 (Figure 2D). Akt not only promotes protein synthesis but also suppresses catabolism

partly by phosphorylating and thereby inactivating FoxO3. We found that deletion of Mtn resulted

in an increased ratio of the inactive:active (phosphorylated:non-phosphorylated) form of FoxO3.

However, in muscles of Mtn-/-/ErrgTg/+ mice the levels of inactive FoxO3 were lower than in that of

the Mtn-/- (Figure 2D).

Oxidative fibre profiling and vascular organisation
In all muscles examined, the intensity of the SDH staining (measure of oxidative activity) of fibres

was lower in muscle from Mtn-/- compared to WT (Figure 3A and Figure 3—figure supplement

1A–B). However, upon over-expression of Errg , the intensity of SDH staining in fibres of

Mtn-/- muscle was restored to that of WT. Indeed, also the number of SDH positive fibres was higher

than that seen in even the WT muscles albeit not significantly so (Figure 3A and Figure 3—figure

supplement 1C). Introduction of Errg into Mtn-/- also caused normalization of the number PAS posi-

tive fibres (Figure 3A and Figure 3—figure supplement 1D). The capillary to fibre ratio (C:F); was

lowest in the muscles of Mtn-/- mice and highest in those of the Mtn-/-ErrgTg/+ mice (Figure 3B).

Metabonomics
The muscle metabolite profile was characterized by 1H NMR spectroscopy. To identify any metabolic

variation driven by the genotypic differences, principal components analysis (PCA) was applied to

these profiles. A clear clustering was observed in the scores plot comparing all three genotypic

groups demonstrating that they had distinctive metabolite profiles (Figure 3C). Comparing the met-

abolic signature of the Mtn-/- muscle to the Mtn-/-/ErrgTg/+ showed clear differences between the

two groups (Figure 3C) characterised by significantly greater levels of muscle lactate in Mtn-/- muscle

compared to that of the Mtn-/-/ErrgTg/+ consistent with a greater glycolytic phenotype. Furthermore

the levels of creatine/phosphocreatine were also more pronounced in the muscle from

Mtn-/- compared to Mtn-/-/ErrgTg/+. Errg modification led to higher taurine and anserine content in

the muscle of these animals.

Therefore, histochemical and NMR muscle profiles of the three genotypic groups provide further

evidence that Errg modification of Mtn-/- results in a remodeling of phenotype to a state that differ-

entiates it not only from Mtn-/- but also WT.

Metabolic gene profile
Key molecular and cellular features that would explain the metabolic profile of Mtn-/-/ErrgTg/+ muscle

were defined. In the first instance, we examined key regulators of energy metabolism. We found

that Errg over-expression induced changes in levels of two key transcriptional regulators of metabo-

lism; Perm1 and Pgc1a in Mtn-/- muscle (Figure 4A).

Next, we examined the expression of key regulators of glucose and fatty acid oxidation (Glut1,

Glut4, Pdk4 and Had, Lpl and Cycs respectively). We found that Glut4 and Pdk4 were lower in

Mtn-/-/ErrgTg/+ compared to Mtn-/-. Moreover, Had and Lpl, was higher in Mtn-/-/ErrgTg/+ than in

Figure 1 continued

DOI: 10.7554/eLife.16940.002

The following figure supplement is available for figure 1:

Figure supplement 1. Contractile properties of the soleus.

DOI: 10.7554/eLife.16940.003
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Figure 2. Musclespecific expression of ERRg maintain the hyperplasia in the myostatin null background and normalizes myosin type II phenotype. (A)

Representative immunohistochemical images for MHC IIA and IIB staining in the EDL muscle. (B) EDL total fibre number and myofibre cross sectional

Figure 2 continued on next page
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Mtn-/-. Of particular note was the finding that the expression of markers of fatty acid metabolism,

Had and Lpl, were not only higher in Mtn-/-/ErrgTg/+ than in Mtn-/- but also than in the WT condition

(Figure 4A).

Oxidative metabolism relies on oxygen that can be stored in muscle by myoglobin. Secondly, oxi-

dative metabolism generates destructive radicals which can be broken down by enzymes including

catalase. We found that expression of myoglobin, which facilitates the diffusion of oxygen, and cata-

lase, an anti-oxidant enzyme, were higher in the muscle of Mtn-/-/ErrgTg/+ than in WT and Mtn-/-

mice (Figure 4A).

Then we investigated genes that control oxidative energetics and examined the expression of

molecules controlling fat metabolism (fatty acid transport and uptake molecules: Cd36, Slc25a20,

Fatp1, Fabp3 and regulators of fatty acid oxidation: Acadl, Acadm). We found that all six genes

were expressed to a higher degree in Mtn-/-/ErrgTg/+ than in Mtn-/- and WT mice (Figure 4A).

We established if the differences in oxidative metabolism between Mtn-/- and Mtn-/-ErrgTg/+ in

muscle were mirrored by factors related to the microvascular supply to the muscle. We found that

the expression of endothelial mitogenic factors (Vegfa165, Vegf189 and Ffg1) was lower in

the muscles of Mtn-/- than WT mice, but similar in those of Mtn-/-ErrgTg/+ and WT mice (Figure 4B).

Therefore, the musclespecific expression of Errg in Mtn-/- mice not only normalizes its metabolic

molecular profile but also results in a better microvascular supply of the muscle.

Ultra-structure
The ultra-structure of muscle in the three cohorts were examined. Using transmission electron

microscopy, we found a number of abnormalities in the structure of muscle from Mtn-/- mice hetero-

geneously sized sarcomeres, misaligned and disrupted Z-Lines, large inter-sarcomeric spaces and

altered mitochondrial distribution and size (Figure 5A). In contrast, the muscle from Mtn-/-/ErrgTg/+

largely lacked these abnormalities (Figure 5A). We found that the density of mitochondria in both

sub-membrane and intrafusal locations was decreased significantly following the deletion of Mtn.

However, the expression of Errg significantly increased the mitochondrial density at both locations

compared to Mtn-/- and at the major site, the sub-membrane region, increased it even compared to

WT. Mitochondrial hypertrophy has been postulated to compensate for decreased mitochondrial

number or function. Hypertrophy is thought to either protect against apoptosis or for functional

mitochondria to fuse with aberrant ones resulting in the maintenance of cell function (Frank et al.,

2001; Ono et al., 2001). Mitochondrial hypertrophy was evident in both compartments in muscle

from Mtn-/- (Figure 5B–E) and was normalized by Errg in the sub-membrane region (Figure 5D).

These results show that the deletion of Mtn leads to numerous ultra-structural abnormalities.

Over-expression of Errg in the Mtn-/- prevents almost all the ultra-structural abnormalities.

Myonuclear organization and satellite cell
We next examined the features of individual muscle fibres to determine the effect of Errg in Mtn-/-

mice. We found, that deletion of Mtn resulted in fewer satellite cells compared to WT and that the

number of satellite cells was even lower in the muscles of the Mtn-/-/ErrgTg/+ mice (Figure 6A,C and

D). Next, we determined proliferation and differentiation characteristics of satellite cells in the three

cohorts. We found that following 48 hr of culture, the number of progeny had increased in all the

genotypes but the proportional relationship found in uncultured fibres persisted (Figure 6E–F). Dur-

ing the 48 hr period of culture, satellite cells not only divide but also form clusters (Figure 6G–H).

We found that the number of clusters were similar in fibres from WT and Mtn-/- (Figure 6G), but

Figure 2 continued

area (CSA, mm2). (C) EDL, soleus and superficial TA muscle fibre type composition (D) Protein expression of key regulators that control anabolism

(pAKT, p4EBP1) and catabolism (pFoxO3) in the gastrocnemius muscle. N = 5 male twelve-week old mice per group; One-way ANOVA followed by

Bonferroni’s multiple comparison tests, *p<0.05, #p<0.01, ¥p<0.001.

DOI: 10.7554/eLife.16940.004

The following figure supplement is available for figure 2:

Figure supplement 1. Reprogramming of the soleus myostatin null muscle by ERRg .

DOI: 10.7554/eLife.16940.005
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Figure 3. Musclespecific expression of ERRg normalizes the metabolic and capillary profile of myostatin null mice. (A) SDH staining and quantification

of EDL and soleus muscles of Wt, Mtn and Mtn:Eg mice. N = 5 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s

Figure 3 continued on next page
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there were fewer clusters in the Mtn-/-/ErrgTg/+-derived cultures. The number of cells per cluster was

highest in WT and lowest in the Mtn-/- with that of the Mtn-/-/ErrgTg/+ in between the

two (Figure 6H). Finally, we found deletion of Mtn and the introduction of Errg did not impact on

the process of differentiation (Figure 6I).

Myonuclear number and organization were then determined. First, there were significantly more

myonuclei in the fibres of Mtn-/-/ErrgTg/+ compared to WT (Figure 6A–B). Secondly, we examined

the distribution of myonuclei within a fibre. This is thought to be a regulated process since myonuclei

position is important to minimize issues related to macromolecule movement in larger cells. There-

fore the degree of regulation is inversely proportional to random positioning of the nuclei

(Bruusgaard et al., 2003). In order to quantify this, we calculated the distance to the nearest

Figure 3 continued

multiple comparison tests, *p<0.05, #p<0.01, ¥p<0.001. (B) Muscle capillary density as determined by CD31 staining. (C) Pair-wise comparisons of the

metabolic profiles obtained from the gastrocnemius muscle from WT, Mtn and Mtn:Eg mice. Principal components analysis (PCA) scores plots

comparing WT, Mtn and Mtn:Eg; WT and Mtn:Eg; as well as Mtn and Mtn:Eg); (% variance in the parenthesis). Colour loadings plots shown for PC1 of

the model comparing Mtn and Mtn:Eg. Product of PC loadings with standard deviation of the entire data set coloured by the square of the PC loading.

DOI: 10.7554/eLife.16940.006

The following figure supplement is available for figure 3:

Figure supplement 1. Reprogramming of the tibialis anterior muscle of myostatin null mice by ERRg.

DOI: 10.7554/eLife.16940.007

Figure 4. Molecular reprogramming of myostatin null muscle by ERRg and its ability to promote capillary formation by the expression of angiogenic

factors. (A) Gene expression levels of transcriptional regulators, glucose metabolism regulators, oxidative metabolism genes, antioxidant and oxygen

handling genes and fat metabolism genes. (B) Angiogenic gene expression. ‘a’ denotes changed significantly from WT and ‘b’ denotes changes

significantly from Mtn. N = 5 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, p<0.05.

DOI: 10.7554/eLife.16940.008
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neighbour for the nuclei located at the periphery of single fibres from WT, Mtn-/- and Mtn-/-/ErrgTg/+

mice. Confocal stacks of single fibres labelled with DAPI (Figure 6J) were used to generate the 3D

coordinates of each nucleus in a fibre (Figure 6K) using Imaris software. Using custom made soft-

ware, a simulation of randomly and optimally distributed nuclei was compared to the actual distribu-

tion (see Materials and methods). The WT fibres displayed an improvement from a random

distribution of 20%. However Mtn-/- and Mtn-/-/ErrgTg/+ fibres had distributions that were more ran-

dom, with significantly lower improvements of 10% and 4%, respectively (Figure 6L). These results

show that the expression of Errg in the Mtn-/- does not normalize key features related to either the

satellite cells, myonuclei number of their positioning.

Figure 5. Musclespecific expression of ERRg normalizes ultra-structural abnormalities myostatin null mice. (A) Transmission electron microscopy images

in longitudinal and transverse sections of WT, Mtn and Mtn:Eg muscle, scale 0.5 mm. Note the large spaces (red arrow) disrupted Z-lines (red

arrowhead) and non-uniform sarcomere width (yellow arrows). (B) Quantification of submembrane mitochondrial density. (C) Quantification of Intrafusal

mitochondrial density. (D) Quantification of submembrane mitochondrial size. (E) Quantification of intrafusal mitochondrial size. N = 3 male twelve-week

old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, *p<0.05.

DOI: 10.7554/eLife.16940.009
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Figure 6. Oxidative muscle developed through ERRg in the muscle of myostatin null mice shows depletion of satellite cells and increased myonuclie

content. (A) Single EDL muscle fibres stained with DAPI to visualize myonuclei. (B) Quantification of myonuclear number in EDL fibres. (C) Quiescent

Figure 6 continued on next page
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Skeletal muscle regeneration
Thus, far all the changes in muscle resulting from the over–expression of Errg in theMtn-/- were bene-

ficial except for a lower number of satellite cells. In this section we determined the consequence of

this deficit on the ability of skeletal muscle to regenerate, a process reliant on satellite cells. To that

end, we induced injury of the TA using cardiotoxin and the progression of regeneration assessed at

three crucial time points; day three (D3) as the process of debris clearance is ongoing and regenera-

tion of fibres begins, day six (D6) when robust fibre regeneration can be quantified and day fourteen

(D14) when debris clearance has been completed.

At D3 the muscle clearance of dying fibres was slowest in Mtn-/- compared to the other two geno-

types (Figure 7A–B). Clearance is mediated in part by macrophages and we found that the density

of macrophages was highest in the muscle of Mtn-/-/ErrgTg/+ compared to either Mtn-/- or WT

(Figure 7C–D). Furthermore, we found that the TA from Mtn-/-/ErrgTg/+ at the early stages of gener-

ation contained the highest number of committed muscle cells (Figure 7E–F).

By D6, there was a greater degree of regeneration (size of newly formed eMHC+ fibres) in Mtn-/-/

ErrgTg/+ compared to either Mtn-/- or WT (Figure 7G–H) and a more advanced removal of dying

fibres in Mtn-/-/ErrgTg/+ than in Mtn-/- (Figure 7I–J). We also found evidence for a lower amount of

cell death in the regenerating areas of Mtn-/-/ErrgTg/+ than Mtn-/- or WT mice (Figure 7K–L). At D6

macrophage activity was still high in the muscle of Mtn-/-/ErrgTg/+ compared to either Mtn-/- or wild

type (Figure 7M–N) as were the number of committed (Myo+/Pax7-) muscle progenitor cells

(Figure 7O–P). Precocious differentiation could lead to an exhaustion of cells which would ultimately

attenuate fibre size. To examine this line of thought we examined damaged muscles at an advanced

stage of regeneration (D14). We found further evidence for accelerated regeneration in the Mtn-/-/

ErrgTg/+ compared to either Mtn-/- or WT gauged by a decrease in the density of fibres still express-

ing eMHC (Figure 7—figure supplement 1A). Importantly, there was no deficit in the size of newly

regenerated fibre in the muscle of Mtn-/-/ErrgTg/+ mice (Figure 7—figure supplement 1B). These

results show that even though the muscles of Mtn-/-/ErrgTg/+ have fewer satellite cells than the

muscles of the WT and Mtn-/- mice, their muscle regenerating capacity exceeds that of both

Mtn-/- and WT mice.

Non-genetic post-natal induction of oxidative skeletal muscle growth
Our newly generated hypermuscular, hyper-oxidative mouse line (Mtn-/-/ErrgTg/+) displays a number

of characteristics that make them attractive both in terms of physiology and regeneration. However,

the muscle phenotype in these models is largely established during embryonic and post-natal devel-

opment. Therefore, we next established if similar phenotypes could be obtained via non-genetic

modifications. To do so, we inhibited Mtn at post-natal stages in ErrgTg/+ mice (which displays an

increased oxidative profile) by weekly injections of soluble activin receptor IIB protein (sActRIIB),

which has been shown to antagonize signalling mediated by myostatin and related-proteins.

Following 8 weeks of weekly injections we found that sActRIIB caused an increase in the body

mass of both WT and ErrgTg/+ mice (Figure 8A). Examination of isolated muscles showed an increase

in muscle mass of approximately 70% in the EDL of WT and 44% in ErrgTg/+ above age-matched

control animals (Figure 8B). Other muscles examined showed a similar increase in muscle mass (Fig-

ure 8—figure supplement 1A). The increase in muscle mass was not due to an increase in fibre

number (data not shown) but due to hypertrophy of all MHC fibre types (Figure 8—figure supple-

ment 1B). There was no change in the MHC fibre type composition following the injection of sAc-

tRIIB in either genotype (Figure 8C and F). However, we found that injection of sActRIIB induced a

decrease in the oxidative capacity of the muscle in WT mice as indicated by a decreased proportion

Figure 6 continued

satellite cells stained for Pax7 on freshly isolated (T = 0 hr) muscle fibres from the EDL (arrowhead). (D) Quantification of satellite cell number on freshly

isolated EDL fibres. (E) Single muscle fibres after 48 hr in cell culture stained for DAPI, Pax7 and MyoD (arrowhead). (F) Quantification of total number of

cells on muscle fibre at 48 hr. (G) Quantification of satellite cell clusters at 48 hr. (H) Cluster size at 48 hr on muscle fibres. (I) Profiling of differentiation

at 48 hr. (J) Confocal stacks of single fibres labelled with DAPI to study myonuclear organization. (K) Virtual reconstruction of single muscle fibres,

colour encondes distance in the z-plane. (L) Improvement in myonuclear organization, where 0% denote a random distribution. Fibres were from 4 male

twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, *p<0.05, #p<0.01, ¥p<0.001.

DOI: 10.7554/eLife.16940.010
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Figure 7. Skeletal muscle regeneration is accelerated by the expression of Errg in myostatin null mice through enhanced macrophage and satellite cell

activity. Skeletal muscle regeneration in response to cardiotoxin injury. (A) Muscle necrotic fibres visualized by IgG staining at Day 3 (arrows). (B)

Figure 7 continued on next page
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of SDH+ fibres (Figure 8D and G). Strikingly, sActRIIB did not cause a reduction in the proportion of

SDH+ fibres in ErrgTg/+ (Figure 8D and G). The increased oxidative capacity of the muscle was

accompanied with a rise in the number of capillaries serving each fibre in the muscle from ErrgTg/+

but not WT mice (Figure 8E and H and Figure 8—figure supplement 1D). These results show that

it is possible to induce substantial muscle enlargement while maintaining oxidative capacity, chal-

lenging the generally accepted dogma that the size and oxidative capacity of a fibre are, because of

diffusion constraints, inversely related.

Discussion
The main observations of this study are firstly that substantial hypertrophy can occur without a con-

comitant reduction in fibre oxidative capacity. This observation challenges the dogma that there is a

trade-off between muscle fibre size and oxidative capacity. Secondly, our results challenge the

notion that slow oxidative muscle has a higher number of satellite cells than those that are fast

glycolytic.

A number of studies have shown that deletion of myostatin leads to the development of hypertro-

phic muscle. Although such enlarged muscles appear essentially normal at the histological level, their

ability to generate tension is impaired, particularly during prolonged periods of work (Amthor et al.,

2007; Mendias et al., 2006; Relizani et al., 2014). The higher than normal fatigability of the muscle

could be attributable to the lower number of mitochondria consequent to deletion of myostatin in

the germline (Amthor et al., 2007).

To alleviate this mitochondrial deficit in Mtn-/- mice, we introduced the expression of Errg into

skeletal muscle. This gene is highly expressed in tissues with a high oxidative capacity, such as

the heart, kidneys, brain and slow oxidative skeletal muscle where it has been demonstrated to trig-

ger mitochondrial biogenesis (Hong et al., 1996; Heard et al., 2000; Giguère, 2008; Narkar et al.,

2011). Introduction of Errg overexpression that would increase oxidative capacity on a Mtn-/- back-

ground that is associated with hypertrophy would challenge the trade-off that is thought to exist

between oxidative capacity and fibre size (Van Der Laarse et al., 1997; Degens, 2012).

One of the key features of Mtn-/- muscle is the lower SDH activity, indicative of a low oxidative

status. This combination of a low oxidative capacity and a large fibre size fits nicely with the concept

of the trade-off between fibre size and oxidative capacity. It also is associated with a larger propor-

tion of type IIB fibres than seen in muscles from WT mice. Here we show that even though the mus-

cle mass and fibre sizes did not differ between Mtn-/- and Mtn-/-/ErrgTg/+ mice, the latter had a

higher SDH activity.

The higher SDH activity in Mtn-/-/ErrgTg/+ than Mtn-/- mice was associated with a partial normalisa-

tion of the MHC fibre profile; a decrease in the proportion of IIB fibres in all muscles examined.

What was conspicuous, however, was the absence of normalization of the proportion of MHC I

fibres. We believe that this is significant and reveals a key feature of the influence of a metabolic

programme on muscle physiology. We suggest that the oxidative programme, here driven by Errg ,

readily converts IIB to IIA fibres but is that it is unable to induce the transition to type I MHC

Figure 7 continued

Quantification of dying fibre size at Day 3. (C) Macrophage infiltration in the TA muscle using an F4.80 antibody at Day 3 (arrows). (D) Quantification of

macrophage density in damaged muscle. (E) Myogenic progenitors at Day 3. Pax-7 detection in green, MyoD expressing cells in red (arrows). (F)

Quantification of uncommitted muscle cells (Pax-7+/MyoD-), precursor (Pax-7+/MyoD+) and committed (Pax-7-/MyoD+) muscle cells at Day 3. (G)

Expression of embryonic myosin heavy chain on Day 6 (arrows). (H) Quantification of regenerating muscle fibres at Day 6. (I) Necrotic fibres at Day 6

detected via infiltrated fibre IgG profiling (arrows). (J) Quantification of dying muscle fibres at Day 6. (K) Cleaved caspase 3 staining at Day 6 as a

marker of apoptosis (arrows). (L) Quantification of apoptotic density at Day 6. (M) Macrophage infiltration in the TA on Day 6 (arrows). (N) Quantification

of macrophage infiltration at Day 6. (O) Myogenic progenitors on Day 6. Pax-7 detection in green, MyoD expressing cells in red (arrows). (P)

Quantification of uncommitted muscle cells (Pax-7+/MyoD-), precursor (Pax-7+/MyoD+) and committed (Pax-7-/MyoD+) muscle cells at Day 6. N = 4/5

male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, *p<0.05, #p<0.01, ¥p<0.001.

DOI: 10.7554/eLife.16940.011

The following figure supplement is available for figure 7:

Figure supplement 1. Characterisation of regenerating tibialis anterior muscle at day 14.

DOI: 10.7554/eLife.16940.012
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Figure 8. Post-natal inhibition of myostatin in the muscle-specific ERRg mice leads to hypertrophic muscle with enhanced oxidative and vascular

features. (A) Body mass in 12-week-old mice after an 8 week treatment regime. (B) EDL muscle mass after sACtRIIB treatment. (C) Muscle fibre type

Figure 8 continued on next page
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isoforms. Energy status (ATP/ADP or phosphocreatine) has been implicated as a determinant of

the MHC fibre type with high levels inducing ever more fast forms in keeping with their myofibrillar

ATPase activity (Conjard et al., 1998; Bottinelli et al., 1994). We show here from our NMR profiling

that indeed the muscle of Mtn-/- has high levels of phosphocreatine, which would be in keeping with

the high ATPase activity of Type IIB fibres found in its muscle. Furthermore, we show Errg over-

expression in the muscle of Mtn-/- normalizes this feature yet does not lead to the formation of I

fibres. This observation adds to a growing body of evidence that the type II programme is plastic

and adaptable whereas the Type I fibres are more resistant to change (Sutherland et al., 1998) and

may not be part of the IIB !IIX !IIA continuum. Indeed a number of studies have questioned

whether the ‘final step’ (conversion of Type IIA to I) is even possible. Development of type I fibres

has been described in a number of conditions, for example following Chronic low-frequency stimula-

tion (CLFS) (Peuker et al., 1999; Kwong and Vrbová, 1981). However, these studies never exam-

ined whether Type I were formed as a consequence of the remodeling of Type II fibres or through

the formation of new fibres, a process that would require satellite cells. Indeed the development of

Type I fibres following extended CLFS can only be induced to significant levels when accompanied

by robust myofibre regeneration (Pette et al., 2002; Maier et al., 1988). Taken together, these

studies imply that myostatin signalling acts at an embryonic/foetal stage of muscle development to

pattern a subpopulation of satellite cells/muscle precursors in a muscle specific manner to form Type

I fibres. The protocol of over-expressing Errg used in this study is unable to influence this process.

One of the intriguing aspects of the Mtn-/- phenotype is the concurrence of a larger muscle mass

and a low oxidative capacity, as also reflected by a low mitochondrial content (Amthor et al., 2007).

As mentioned above, this association corresponds with the prediction of the concept of a trade-off

between muscle fibre size and oxidative capacity. There could, however, also be another function

for the high glycolytic capacity. For instance, the Warburg Effect is the observation that most cancer

cells rely on glycolysis even in the presence of oxygen (Warburg et al., 1927) for the production of

a intermediates essential for the building blocks of any cell including nucleic acids, lipids and pro-

teins (Deberardinis et al., 2008). In a similar way, glycolysis in the muscles of Mtn-/- mice may sup-

port the high levels of protein synthesis required for the initial muscle hypertrophy and maintenance

of the large muscle mass. An interesting point is that such cells are not only dependent on glycolysis

but also often have decreased oxidative phosphorylation capacity (Petros et al., 2005). Where the

similarities between the Warburg Effect in cancer cells and findings from this study differ is the out-

come following an intervention that promotes oxidative metabolism. In cancer cells such an interven-

tion reduces cell growth (Wang and Moraes, 2011) while we have shown with Errg overexpression

on a Mtn-/- background not only re-establishes the oxidative capacity but also maintains the hyper-

trophic state. Consistent with the oxidative metabolic phenotype of the Mtn-/-/ErrgTg/+ mice are the

higher levels of taurine and anserine observed in the NMR metabonomic analysis, since taurine is

positively correlated with the oxidative capacity of muscle tissues (Dunnett et al., 1997). Anserine is

b-alanine and histidine related dipeptide with antioxidant properties commonly found in skeletal

muscle of many animals (Kohen et al., 1988). Thus, it may act as a scavenging agent of the byprod-

ucts arising from elevated oxidative activity in the muscle of Mtn-/-/ErrgTg/+ mice.

A number of studies have suggested that fibres that rely on oxidative phosphorylation limit their

size in order that oxygen from the capillaries diffuses efficiently into the cells and to the mitochon-

dria for ATP production (Kinsey et al., 2007; Van Der Laarse et al., 1997; van Wessel et al.,

2010). The large fibres with a low oxidative capacity in Mtn-/- mice conform to this concept and have

a low capillary supply per fibre. During compensatory hypertrophy the time course of angiogenesis

Figure 8 continued

profiling with MHCIIA (green) and MHCIIB (red) antibodies. (D) Oxidative enzyme profiling using SDH histochemistry. (E) Muscle capillary density

profiling with CD31 antibody. Quantification of (F) MHC EDL fibre type, (G) SDH positive fibres, (H) capillary density. Intrafibre staining in the Errg

muscle in (D) is artefact and was ignored in all quantification procedures; One-way ANOVA followed by Bonferroni’s multiple comparison tests,

*p<0.05.

DOI: 10.7554/eLife.16940.013

The following figure supplement is available for figure 8:

Figure supplement 1. Muscle characterisation after post-natal inhibition of myostatin in the muscle specific ERRg mice.

DOI: 10.7554/eLife.16940.014
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and fibre hypertrophy are similar (Egginton et al., 1998; Plyley et al., 1998) and the capillary supply

to a fibre is related to the size of the fibre (Ahmed et al., 1997; Degens et al., 1994). Such a cou-

pling between the fibre size and capillary supply seems to be altered in the Mtn-/- mice in such a

way that they have fewer capillaries than expected for the size of the fibre. However, over-expres-

sion of Errg in either WT or Mtn-/- drives a robust angiogenic gene programme, increases the num-

ber of capillaries per fibre and ultimately muscle blood flow as shown previously (See Figure 3B and

(Narkar et al., 2011; Matsakas et al., 2012b). An important finding here is that the angiogenesis

programme promoted by muscle expression of Errg is responsive to change in fibre size so that

when a fibre grows, it stimulates the formation of blood vessels presumably to ensure optimal perfu-

sion (Figure 8H). Two additional modifications take place, an increase in myoglobin transcription

and increasing the density of mitochondria at the sarcolemma that would sustain large oxidative

fibres developed as a consequence of Errg in the Mtn-/- background. These outcomes have been

postulated to prevent a decline in maximum steady state power as an oxidative fibre increases size

(Hickson, 1980; Heard et al., 2000).

In this study, we show that the muscle hypertrophy that develops following germline deletion of

Mtn has many ultrastructural abnormalities including splitting of sarcomeres, misaligned Z-lines and

alteration in mitochondrial distribution and morphology. The maintenance of muscle structure is

largely mediated by mechanisms that remove unwanted proteins and organelles through either the

proteasome or autophagic pathways (Sandri, 2013; Bonaldo and Sandri, 2013). Furthermore,

deregulated proteasome activity or autophagy leads to muscle wasting in a number of diseased con-

ditions (Sandri et al., 2004; Carmignac et al., 2011). As these pathways are involved in anabolic

processes, it seems intuitive that they should be tuned down in order to support muscle growth.

Indeed, we show that the activity of a key regulator of these processes, FoxO3 is suppressed in the

absence of Mtn. However, we show that Errg expression in muscle leads to a substantial normaliza-

tion of the ultrastructure Mtn-/- skeletal muscle as well an improvement in the specific force. Most

importantly, we show that a more physiological measure of muscle function- fatigability, is not only

normalized but exceeds the value of WT mice. Our data demonstrate that the suppression of FoxO3

activity is alleviated by Errg. We suggest that the molecular and organelle clearance programmes

being mediated by FoxO3 are generally not anabolic but are rather there to maintain cellular

homeostasis. However, when its activity is attenuated, it leads to an accumulation of structural

abnormalities that compromises muscle function. Nevertheless, not all features of the Mtn-/- muscle

were normalised by Errg expression; Myonuclei in Mtn-/- and Mtn-/-/ErrgTg/+ were more disorganized

than those in WT fibres. Proper nuclear positioning is probably required for normal muscle function,

possibly due to irregular size and spacing of myonuclear domains (Metzger et al., 2012) and myo-

nuclear disorganization is observed both in ageing skeletal muscle and in models of muscular dystro-

phies (Bruusgaard et al., 2006; Meinke et al., 2014). Additionally, accretion of myonuclei is a

prerequisite for maintaining specific force during hypertrophy and mitochondrial protein systems

have been suggested to play a role in defining myonuclear domain size in rodents (Liu et al., 2009).

The increased number of myonuclei and increased synthesis of mitochondria in the Mtn-/-/ErrgTg/+

mice might compensate for the observed disorganized myonuclei, restoring specific force and

ultrastructure.

Finally, our study gives a new perspective on the relationship between metabolism, satellite cell

numbers and their activity during regeneration. A number of studies have implied that slow muscles

contain more satellite cells than fast (Putman et al., 1999; Christov et al., 2007). In this study, we

show that at least in the EDL as the fibres transitioned from Type IIB to Type IIA, the number of asso-

ciated satellite cells was significantly reduced. One possible explanation for this finding is by taking

into account the concomitant increase in the number of nuclei in the myofibre. Here, the relationship

is opposite to satellite cell fibre number. We postulate that the absence of myostatin promotes myo-

blast fusion at the expense of satellite cell. Furthermore, that over-expression of Errg exacerbates

this relationship. Severe depletion of satellite cell numbers has been reported to severely retard the

process of muscle regeneration (Schuster-Gossler et al., 2007; Vasyutina et al., 2007). Here, we

show that the depletion of satellite cells to less than 50% of their normal levels does not impact on

skeletal muscle regeneration since they have a vast capacity to generate precursors which in most

situations are never realized fully (Collins et al., 2005). Instead, we suggest that oxidative environ-

ment established by Errg is the key determinant in accelerating regeneration. Our work supports

previous work showing that oxidative metabolism supports muscle regeneration (Lowrie et al.,
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1982; Matsakas et al., 2012b, 2013) and are in agreement with a number of studies showing that

genetic manipulations leading to a greater oxidative capacity accelerate muscle regeneration

(Li et al., 2007; Hussain et al., 2013). One possible explanation for our results is our finding that

Errg promotes hyper-vascularization. Angiogenesis is a key determinant in the muscle regeneration

process. We suggest that the reduction of satellite cell is off-set by the ability to promote vasculari-

zation and clearance of the necrotic tissues, allowing the small number of satellite cells to expand

greatly to enact rapid repair. This hypothesis is supported by our data investigating both macro-

phage density and the generation of myoblast in the Mtn-/-/ErrgTg/+ mice. Many studies have found

that programmes of muscle repair are often at the expense of satellite cells which are not available

for future cycles of degeneration/regeneration (Castets et al., 2011). We will investigate this avenue

of research in the future by conducting a second round tissue damage in the three genetic lines

described here. Encouragingly, our data show that although there was an increase in the number of

myogenic precursors (Pax7+/MyoD+) as well as committed cells (Pax7-/MyoD+) in the Mtn-/-/

ErrgTg/+ compared to WT at D6, this was not at the expense of cells with satellite cell character

(Pax7+/MyoD-).

In summary, our work challenges the dogma of an inverse relationship between muscle fibre size

and oxidative capacity. The deviation from this relationship may be realized by the increased capil-

larisation and myoglobin content of the muscle and redistribution of mitochondria to a subsarcolem-

mal location. These adaptations were not associated with the loss of muscle force generating

capacity and in fact even resulted in improved exercise capacity. It is likely that the increased micro-

vascular network plays a crucial role in muscle regeneration as the Mtn-/-/ErrgTg/+ mice had even

lower satellite cell numbers than Mtn-/- mice, yet a regenerative capacity that even exceeded that of

WT mice. In future we will determine whether it confers other advantages in particular the ability to

confer resistance to obesity and sarcopenia.

Materials and methods

Ethical approval
The experiments were performed under a project license from the United Kingdom Home Office in

agreement with the Animals (Scientific Procedures) Act 1986. The University of Reading Animal Care

and Ethical Review Committee approved all procedures. Animals were humanely sacrificed via

Schedule 1 killing between 8:00–13:00.

Animal maintenance
Healthy C57Bl/6 (WT), Mtn-/-, Mtn-/-/ErrgTg/+ and ErrgTg/+ mice were bred and maintained in accor-

dance to the Animals (Scientific Procedures) Act 1986 (UK) and approved by the University of Read-

ing in the Biological Resource Unit of Reading University. Mice were housed under standard

environmental conditions (20–22˚C, 12–12 hr light–dark cycle) and provided food and water ad libi-

tum. We used male mice that were 4–5 months old at the start of the study. Each experimental

group consisted of 3–12 mice. Mtn-/- and ErrgTg/+ mice were a gift of Se-Jin Lee (John’s Hopkins

USA) and Ronald Evans respectively (Salk Institute for Biological Studies, La Jolla, USA). Post-natal

muscle growth was induced in one month-old males WT and ErrgTg/+ mice that were injected twice

weekly intraperitoneally with 10 mg/kg of the soluble activin receptor IIB (sActRIIB-Fc) for a period

of two months. Each experimental group consisted of 5–6 mice.

Exercise fatigue test
Mice were acclimatised to running on a treadmill in three sessions (10 m�min�1 for 15 min followed

by a 1 m�min�1 increase per minute to a maximum of 12 m�min�1) (Columbus Instruments Model

Exer 3/6 Treadmill, Serial S/N 120416). Exhaustion was determined by exercising the mice at

12 m�min�1 for 5 min, followed by 1 m�min�1 increases to a maximum of 20 m�min�1until the mouse

was unable to run.

Muscle tension measurements
Dissection of the hind limb was carried out under oxygenated Krebs solution (95% O2 and 5% CO2).

Under circulating oxygenated Krebs solution one end of a silk suture was attached to the distal
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tendon of the extensor digitorum longus (EDL) and the other to a Grass Telefactor force transducer

(FT03). The proximal tendon remained attached to the tibial bone. The leg was pinned to a Sylgard-

coated experimental chamber. Two silver electrodes were positioned longitudinally on either side of

the EDL. A constant voltage stimulator (S48, Grass Telefactor) was used to directly stimulate the EDL

which was stretched to attain the optimal muscle length to produce maximum twitch tension (Pt).

Tetanic contractions were provoked by stimulus trains of 500 ms duration at, 10, 20, 50, 100 and

200 Hz. The maximum tetanic tension (Po) was determined from the plateau of the frequency-tension

curve. Specific force was estimated by normalising tetanic force to EDL muscle mass (g).

Histological analysis and immunohistochemistry
Following dissection, the muscle was immediately frozen in liquid nitrogen-cooled isopentane and

mounted in Tissue Tech freezing medium (Jung) cooled by dry ice/ethanol. Immunohistochemistry

was performed on 10 mm cryosections that were dried for 30 min before the application of block

wash buffer (PBS with 5% foetal calf serum (v/v), 0.05% Triton X-100). Antibodies were diluted in

wash buffer 30 min before use. Details of primary and secondary antibodies are given in

Supplementary file 1. F4/80 was detected using the Vector Laboratories ImmPRESS Excel Staining

Kit. Morphometric analysis of fibre size was performed as previously described (Matsakas et al.,

2012a).

Succinate dehydrogenase (SDH) staining
Transverse EDL muscle sections were incubated for 3 min at room temperature in a sodium phos-

phate buffer containing 75 mM sodium succinate (Sigma), 1.1 mM Nitroblue Tetrazolium (Sigma)

and 1.03 mM Phenazine Methosulphate (Sigma). Samples were then fixed in 10% formal-calcium and

cleared in xylene prior to mounting with DPX mounting medium (Fisher). Densitometry of the sam-

ples was performed on a Zeiss Axioskop2 microscope mounted with an Axiocam HRc camera. Axio-

vision Rel. 4.8 software was used to capture the images.

Transmission electron microscopy
To identify the distribution of the mitochondria in the muscle fibres, biceps and extensor carpi radia-

lis muscle were removed cut in pieces of 1 mm3 and immerse fixed in 4% PFA and 2.5% glutaralde-

hyde in 0.1 M cacodylate buffer pH 7.4 (4˚C, 48 hr). Tissue blocks were contrasted using 0.5% OsO4

(Roth, Germany; RT, 1.5 hr) and 1% uranyl acetate (Polysciences, Germany) in 70% ethanol (RT, 1 hr).

After dehydration tissue blocks were embedded in epoxy resin (Durcopan, Roth, Germany) and

ultrathin sections of 40 nm thickness were cut using a Leica UC6 ultramicrotome (Leica, Wetzlar, Ger-

many). Sections were imaged using a Zeiss 906 TEM (Zeiss, Oberkochen, Germany) and analysed

using ITEM software (Olympus, Germany).

1H NMR spectroscopy-based metabonomic analysis
Polar metabolites were extracted from the gastrocnemius muscle using previously described proto-

cols (Beckonert et al., 2007). Briefly, 40–50 mg of muscle tissue was snap frozen in liquid nitrogen

and finely ground in 300 mL of chloroform: methanol (2:1) using a tissue lyzer. The homogenate was

combined with 300 mL of water, vortexed and spun (13,000 g for 10 min) to separate the aqueous

(upper) and organic (lower) phases. A vacuum concentrator (SpeedVac) was used to remove the

water and methanol from the aqueous phase before reconstitution in 550 mL of phosphate buffer

(pH 7.4) in 100% D2O containing 1 mM of the internal standard, 3-(trimethylsilyl)-[2,2,3,3,�2H4]-pro-

pionic acid (TSP). For each sample, a standard one-dimensional NMR spectrum was acquired with

water peak suppression using a standard pulse sequence (recycle delay (RD)-90˚-t1-90˚-tm-90˚-
acquire free induction decay (FID)). RD was set as 2 s, the 90˚ pulse length was 16.98 ms, and the

mixing time (tm) was 10 ms. For each spectrum, 8 dummy scans were followed by 128 scans with an

acquisition time per scan of 3.8 s and collected in 64 K data points with a spectral width of 12.001

ppm. 1H nuclear magnetic resonance (NMR) spectra were manually corrected for phase and baseline

distortions and referenced to the TSP singlet at d 0.0. Spectra were digitized using an in-house MAT-

LAB (version R2009b, The Mathworks, Inc.; Natwick, MA) script. To minimize baseline distortions

arising from imperfect water saturation, the region containing the water resonance was excised from
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the spectra. Principal components analysis (PCA) was performed with Pareto scaling in MATLAB

using scripts provided by Korrigan Sciences Ltd, UK.

Protein expression by western blotting
Frozen muscles were powdered and lysed in a buffer containing 50 mM Tris, pH7.5, 150 mM NaCl,

5 mM MgCl2, 1 mM DTT, 10% glycerol, 1%SDS, 1%Triton X-100, 1XRoche Complete Protease Inhibi-

tor Cocktail, 1X Sigma-Aldrich Phosphatase Inhibitor Cocktail 1 and 3. Then, the samples were

immunoblotted and visualized with SuperSignal West Pico Chemiluminescent substrate (Pierce).

Blots were stripped using Restore Western Blotting Stripping Buffer (Pierce) according to the manu-

facturer’s instructions and were reprobed if necessary. Details of antibodies are given in

Supplementary file 1.

Quantitative PCR
Tissue samples were solubilised in TRIzol (Fisher) using a tissue homogeniser. Total RNA was pre-

pared from skeletal muscles using the RNeasy Mini Kit (Quigen, Manchester, UK ). Total RNA (5 mg)

was reverse-transcribed to cDNA with SuperScript II Reverse Transcriptse (Invitrogen) and analyzed

by quantitative real-time RT-PCR on a StepOne Plus cycler, using the Applied Biosystems SYBR-

Green PCR Master Mix. Primers were designed using the software Primer Express 3.0 (Applied Bio-

systems). Relative expression was calculated using the DDCt method with normalization to the

housekeeping genes cyclophilin-B, hypoxanthine-guanine phosphoribosyltransferase (hprt) and glyc-

eraldehyde-3-phosphate dehydrogenase (GAPDH). Specific primer sequences are given in

Supplementary file 1.

Myonuclear organisation
For visualizing myonuclei, fibres were mounted with ProLong Diamons Antifade Mountant with DAPI

(Molecular Probes, P36962), and a confocal microscope (Olympus FluoView 1000, BX61W1, Olym-

pus, Japan) was used to observe single muscle fibres. Pictures were taken in confocal planes, sepa-

rated by z-axis steps varying between 0.4 and 2 mm according to the optical thickness and the

desired Nyquist sampling frequency. Confocal microscope images used for mapping of Euclidean

positions of myonuclei were processed and analysed using Imaris (Bitplane) and ImageJ (NIH,

Bethesda, MD, USA).

For each muscle fibre, an idealized circular cylinder segment with constant radius was con-

structed, and the distance from each nucleus to its nearest neighbour was calculated.

In order to measure how ordered the nuclei distribution for a particular fibre is, the mean nearest

neighbour distance was calculated for the experimental data, as well as for the random and optimal

distribution using parameters from the experiment. We denote the experimental, random and opti-

mal means by ME, MR and MO. An ’orderness-score’, g(ME), was then calculated as:

gðME;MR;MOÞ ¼
ME�MR

MO�MR

Further details and availability of custom made software, please contact j.c.bruusgaard@ibv.uio.no.

Satellite cell culture
Single fibres from EDL were isolated using 0.2% collagenase I in DMEM medium and either fixed or

cultured for 48 and 72 hr as previously described (Otto et al., 2008).

Skeletal muscle regeneration
Skeletal muscle damage was induced by injecting 30 ml of 50 mM cardiotoxin in the tibialis anterior

(TA) muscle of one limb while the contralateral TA of the other limb was injected with 30 mL PBS to

serve as an internal control. The degree of muscle regeneration was assessed on day 3 and day 6

post-injury.

Statistical analysis
Data are presented as mean ± SE. Significant differences between two groups were performed by

Student’s t-test for independent variables. The normality of the data for two samples was checked
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with a Kolmogorov–Smirnov test (a = 10%). Differences among groups were analysed by one-way or

two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison tests as appro-

priate. In the case of non-homogeneous variances (Lavene’s test; p<0.05) for a variable, ANOVA was

performed using the square root of the observations. Statistical analysis was performed on SPSS

18.0 (Chicago, IL). Differences were considered statistically significant at p<0.05.
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