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Abstract

Driver fatigue is an important contributor to road accidents, and fatigue detection has major

implications for transportation safety. The aim of this research is to analyze the multiple

entropy fusion method and evaluate several channel regions to effectively detect a driver’s

fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entro-

pies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as fea-

tures compared with autoregressive (AR) modeling by four classifiers. Second, we captured

four significant channel regions according to weight-based electrodes via a simplified chan-

nel selection method. Finally, the evaluation model for detecting driver fatigue was estab-

lished with four classifiers based on the EEG data from four channel regions. Twelve

healthy subjects performed continuous simulated driving for 1–2 hours with EEG monitoring

on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of

98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified

the effectiveness of the proposed method, indicating that the multiple entropy fusion fea-

tures are significant factors for inferring the fatigue state of a driver.

Introduction

Detection of driver fatigue using electronic and information technology is a meaningful

research topic for driving safety assistance systems [1, 2]. Driver fatigue is one of the most

important factors in traffic accidents. After driving for an extensive period, people experience

fatigue, which decreases their reaction times during emergencies and contributes to casualty

accidents. Some studies reveal that 15%-20% of all fatal traffic accidents are related to driver

fatigue, and recent statistics estimate that 1,200 deaths and 76,000 injuries can be attributed to

fatigue-related crashes annually [3]. Thus, promoting technologies for the detection or preven-

tion of driver fatigue is crucial.

The emergence of artificial intelligence and the rapid development of electronic and infor-

mation technology provide opportunities for detecting driver fatigue. Numerous methods,

including subjective and objective detection methods, have been proposed in recent years [4–

10]. However, recognition rates that are based on subjective detection methods are greatly

influenced by a driver’s own judgment or the actions of other drivers, and real-time detection
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of driver fatigue is difficult. Measurements of driver fatigue based on objective detection meth-

ods are categorized as vehicle driving parameters, such as speed, lane tracking, and steering

wheel rotation, using electronic sensors [11]; driver behavior characteristics, such as eye clo-

sure, blink rates and facial expressions, using video imaging techniques [12, 13]; and driver

physiological parameters, such as electrocardiogram (ECG), electrooculogram (EOG), electro-

myogram (EMG) and electroencephalogram (EEG) [14, 15]. If we aim to detect a driver’s

fatigue state in advance and do not consider the influence of individual behaviors, light and

the angle of image acquisition, the use physiological parameters for detecting driver fatigue is

beneficial. For the direct reaction of the brain status, EEG is the most common and effective

method for identifying driver fatigue [16].

Various computational approaches based on EEG data have been developed for observing

and analyzing driver fatigue [17–20]. Recently, entropy has been extensively applied in the

analysis of EEG signals because an EEG signal is a complex, unstable, and nonlinear signal

[21–25]. Entropy is a nonlinear measure that reflects the degree of uncertainty in a given sys-

tem, which enables it to be exploited for measuring the level of chaos of nonlinear time series

data, providing distinguishable variation for normal and abnormal brain signals. In recent

years, studies based on the measurement of entropies have been expanded in several different

fields, and new concepts of entropy, such as sample entropy, approximate entropy, wavelet

entropy, log energy entropy, Renyi’s entropy and fuzzy entropy, have been applied. These mea-

sures have been employed to analyze physiological time series data, such as fatigue EEG data

and other biological data. Xiong characterized driver fatigue level using two types of entropy—

approximate entropy and sample entropy—via a support vector machine (SVM) classifier

[26]. Chai applied an independent component in an entropy rate-bound minimization analy-

sis to separate EEG fatigue data, AR modeling as features extraction and a Bayesian neural net-

work as a classification algorithm, obtaining an accuracy of 88.2% [27]. Zhang extracted the

wavelet entropy and sample entropy of EEG, including the wavelet entropy of EOG and the

approximate entropy of EMG, to estimate the driving fatigue stages; the resulting accuracy was

high, reaching approximately 96.5%–99.5% using an artificial neural network [28]. However,

few studies have employed the multiple entropy fusion analysis method based on EEG signals

to study driver fatigue detection, which may be a promising application of EEG-based systems

for assessing and analyzing fatigue in driving safety.

In this paper, we present an EEG-based system to effectively detect a driver’s fatigue state

by analyzing the effects of multiple entropy fusion and calculating four entropies as features.

To provide improved performance and a more robust detector of fatigue states, AR modeling

as feature extraction was employed in comparison with the multiple entropy fusion method

using training and testing data by four common classifiers, i.e., SVM, BP, random forest (RF)

and K-nearest neighbor (KNN). According to a simplified channel selection method, we cap-

tured four significant channel regions to improve the classification effect using fewer elec-

trodes. An EEG-based system is of potential benefit for driver fatigue detection in relevant

areas and may have a complementary role in existing methods. Fig 1 shows the operation pro-

cess of an EEG-based fatigue detection system, which primarily includes data acquisition and

preprocessing, feature extraction and parameter optimization in data modeling and process-

ing, innovation and results analysis in model outputs.

Materials and methods

1. Subjects and experimental task

Twelve young, healthy men, whose ages ranged from 19–24 years, participated in a highway-

driving simulator experiment. All participants were recruited from Jiangxi University of
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Technology and were asked to refrain from any type of medicine and stimuli, such as alcohol

or coffee, during the experiment. The participants were able-bodied persons and had normal

sleep time. Prior to the experiment, the participants practiced a driving task for 5 minutes to

become acquainted with the experimental procedures and purposes. All experimental proce-

dures were performed with a static driving simulator in a controlled lab environment. This

study was approved by the Academic Ethics Committee of Jiangxi University of Technology.

A sustained-attention driving task was performed by each subject on a static driving simu-

lator (the ZY-31D car driving simulator produced by Peking ZhongYu CO., LTD from Daxing

district in Beijing) with a wide screen composed of three 24 inch monitors, as shown in Fig 2.

On the screen, a customized version of the Peking ZIGUANGJIYE software ZG-601 (car driv-

ing simulation teaching system V9.2) was shown. The driving environment selected for this

study was a highway with low traffic density; the driving task was started at 9 a.m. After a 5

minute practice session, each subject was given 10 minutes away from the simulator to engage

Fig 1. A flowchart to show the operation process of EEG-based fatigue detection system.

https://doi.org/10.1371/journal.pone.0188756.g001

Fig 2. Snapshot of the experimental setup. See the text for further explanation. Notes: the individual in this

manuscript has given written informed consent (as outlined in PLOS consent form) to publish these case details.

https://doi.org/10.1371/journal.pone.0188756.g002
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in unconstrained movement within the laboratory. Then, the subjects commenced approxi-

mately 1–2 hours of driving after a quick check of all instrumentation.

2. Data recording and preprocessing

To record EEG data with two phases, first, when the driving lasted 20 minutes, the last 5 min-

utes of EEG signals were recorded and labeled as the normal state; second, when the continu-

ous driving lasted 40–100 minutes until the self-reported fatigue questionnaire results

indicated that the subject was in a driving fatigue state, the Chalder Fatigue Scale and Li’s Sub-

jective Fatigue Scale [29, 30] were employed, and the last 5 minutes of EEG signals were

recorded and labeled as the fatigue state. All channel data were referenced to two electrically

linked mastoids at A1 and A2, digitized at 1000 Hz from a 32-channel electrode cap (including

30 effective channels and 2 reference channels) based on an international 10–20 system and

stored in a computer for the offline analysis. Eye movements and blinks were monitored by

recording the horizontal and vertical EOG signals.

After the EEG signals were collected, the main steps of data preprocessing were performed

by the Scan 4.3 software of Neuroscan [31]. The raw signals were filtered by a 50 Hz notch fil-

ter and a 0.15 Hz to 45 Hz band pass filter to remove the noise. Then, 5 minutes of EEG data

from thirty electrodes were sectioned into 1 s epochs to produce approximately 300 epochs.

With the 12 participants, a total of 3600 units of data were formed for the normal state, and

3600 units of data were formed for the fatigue state. The data were randomly and equally

divided into training and testing datasets for feature extraction and classification.

Three methods were employed to validate fatigue occurrence: (i) video monitoring of phys-

iological signs of fatigue, such as blinking, head nodding, eye fixation and pupil size, which

was verified by EOG analysis of blink rate and eye closure; (ii) performance decrements such

as increased crash rates and deviation off the road; and (iii) a self-reported fatigue question-

naire, including the Chalder Fatigue Scale and Li’s Subjective Fatigue Scale, which have been

validated in many studies for identifying the fatigue condition [9, 26, 32–35]. The question-

naire included 24 questions, including “Do you have problems with tiredness?”, “Do you need

to rest more?”, “Do you have difficulty concentrating?”, “Do you experience blurred vision?”,

“Do you feel unresponsive?”, and “Do you feel driving speed changing frequently?” Every

question had four choices rated on a four-point scale (-1–2), i.e., better than usual (-1), no

more than usual (0), worse than usual (1) and much worse than usual (2). A high fatigue score

presented a high level of driving fatigue.

In this process, the EEG signals for two different states (normal and fatigue) were consid-

ered. Fig 3 shows sample EEG signals obtained from FP1 and FP2 electrodes in one trial,

which revealed a significant difference between the normal state and fatigue state of the EEG

signals. However, the detection of two different states by this visual distinction is difficult. The

use of characteristic parameters to detect a fatigue state may be more effective and scientific.

Therefore, in this paper, we considered multiple entropies as parameters for detection by cal-

culating four entropies as features based on different electrodes in different trials.

3. Feature extraction and classifiers

Entropy is extensively applied to assess the uncertainty of a system. In recent years, various

entropies have been expanded in several different fields [36]. As a nonlinear parametric that

quantifies the complexity of a time series, entropy can be used to evaluate nonlinear, unstable

and dynamic EEG signals [37]. Spectral entropy (PE) is calculated by applying the Shannon

function to the normalized power spectrum based on the peaks of a Fourier transform; the cal-

culation algorithm is described in [38]. Approximate entropy (AE) was proposed by Pincus
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[39]; AE is calculated in a time domain without phase-space reconstruction of a signal and is

more suitable for short-length time series data. Sample entropy (SE) was proposed by Richman

and Moorman [40]; similar to AE, SE is less sensitive to changes in data length, with larger val-

ues corresponding to greater complexity or irregularity in the data. The calculation algorithms

of AE and SE are clearly defined in [41]. Fuzzy entropy (FE) can achieve stable results for dif-

ferent parameters and offer better noise resistance using the fuzzy membership function,

which is clearly defined in [21]. With an efficient representation of EEG signals, the method

using AR model parameters as features by Yule-Walker equations [42, 43] was applied for

comparison with the multiple entropy fusion method.

In these four entropies, AE, SE and FE are three m bedding entropy-based complexity

parameters, where m and r are the dimensions of phase space and similarity tolerance, respec-

tively. A large similarity tolerance will cause a loss of useful information. However, if the simi-

larity tolerance is underestimated, the sensitivity to noise will be significantly increased. Many

studies indicate that the values of m and r can been selected in two sections: [2, 4] and [0.1,

0.9]. As reported in [44], an m of 2 and an r of 0.2 times the standard deviation of the time

series were the most popular choice when the time series length exceeded 200. In the present

study, m = 2 and r = 0.2�SD were adopted, where SD denotes the standard deviation of the

time series. Likewise, AR modeling requires the selection of the model order number. The

method for selecting the order number in this study will be described later in the paper.

To optimize the detection quality with a time-saving approach, the features were normal-

ized for each participant by scaling between -1 and 1 and adopting min-max normalization.

The routine for the normalization process is expressed as follows:

-For all segments,

1. A feature vector is built using the concatenation process, which concatenates the features.

Fig 3. Sample EEG signals of normal state and fatigue state: (a) For normal state from FP1 electrode; (b) For normal state from FP2 electrode;

(c) For fatigue state from FP1 electrode; (d) For fatigue state from FP2 electrode.

https://doi.org/10.1371/journal.pone.0188756.g003

Using EEG to detect driver fatigue

PLOS ONE | https://doi.org/10.1371/journal.pone.0188756 December 8, 2017 5 / 19

https://doi.org/10.1371/journal.pone.0188756.g003
https://doi.org/10.1371/journal.pone.0188756


2. The min-max normalization of each feature xi, i = 1,. . .,n, is computed as follows:

x0i ¼ ðnewMax � newMinÞ
xi � xmin

xmax � xmin
þ newMin ð1Þ

where xmin and xmax are the minimum value and maximum value in this feature sequence,

respectively, and newMin = -1 and newMax = 1.

3. The normalized features are saved.

When the min-max normalization is applied, each feature that lies within the new range of

values will remain the same. Min-max normalization has the advantage of preserving all rela-

tionships in the data [45]. After concatenating and normalizing the features, a feature-level

fusion was explored to improve the detection results. In this study, we applied four classifiers,

namely, SVM, BP, RF and KNN. These classifiers are briefly explained.

(a) Support vector machine (SVM). An SVM classifier is a supervised classification tech-

nique [46]. The basic idea of the SVM is to transform the data into a high-dimensional feature

space and determine the optimal separating hyper-plane using a kernel function. In the case of

nonlinear classification, kernels, such as radial basis functions (RBFs), are used to map the

data into a high-dimensional feature space. The majority of studies use RBF as the kernel. In

this paper, we also used RBF as the SVM kernel function and its two uncertain parameters—

the penalty parameter c and the kernel parameter g—which will be described later in the paper

according to a grid search approach [47].

(b) Back propagation neural network (BP). BP is one of the most popular techniques in

the field of neural networks [48]. This approach utilizes the methods of mean square error and

gradient descent to align the modification to the connection weight of network. Using a neural

network toolbox to build a three-layer BP neural network, the input layer contains 120 neu-

rons, the output layer contains one neuron and the number of hidden layer nodes is 20. A Sig-

moid function is employed as the transfer function of a hidden layer, and the Levenberg-

Marquardt function serves as the training function.

(c) Random forest (RF). RF is a popular machine learning algorithm that has been suc-

cessfully employed in various fields [49]. RF is a combination of tree predictors, where each

tree depends on the values of a random vector that is independently sampled with the same

distribution for all trees in the forest. Combining multiple trees produced in randomly selected

subspaces has been shown to significantly improve the prediction accuracy. In this study, the

number of trees and the number of input variables at each split are 500 and 22, respectively,

which is similar to the default values in the MATLAB toolbox.

(d) K-nearest neighbor (KNN). KNN is a supervised learning technique in which a new

sample is classified based on K-nearest neighbors in the training samples [46]. When deter-

mining the classification decision, the class of this new sample depends on the classes of one or

several nearest samples, which is related to a very small number of nearest samples. Therefore,

a KNN classifier may be suitable when many crossing or overlapping samples exist in the

datasets.

Results

1. Optimizing parameters and comparisons of entropy at different

combinations

For developing a new detector and estimating its potential application value, the detection

quality must be properly examined. The leave-one-out (LOO) cross-validation approach is an

almost unbiased estimation [50]. The success rate with the LOO method was also used to
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optimize the two uncertain parameters—c and g—in the RBF-based SVM classifier and select

the AR model order number. The obtained results are shown in Fig 4, from which (a) when

c = -1 and g = -5, the SVM classifier reaches its optimized status with the training data, (b)

when the AR model order number is 10, the best accuracy is achieved whether using the train-

ing data or testing data.

Compared with the case in which the AR model was used as a feature extractor, the combi-

nation of multiple entropies improved the classification performance. To evaluate the perfor-

mance influence on different combined entropies, we calculated the results of different

entropy fusion between PE, AE, SE and FE as features via the SVM classifier. Fig 5 illustrates

the results by showing the average Acc over all subjects for different combined entropies. A

significant increase in the mean Acc value was determined based on testing data for a single

entropy between PE and AE, PE and SE, and PE and FE in Fig 5(A). A significant increase in

the mean Acc value was also observed when two or three entropies were fused, as shown in Fig

5(B) and 5(C). Fig 5 reveals that the multiple entropy fusion method exhibits better perfor-

mance and robustness.

2. Classification and PR-ROC results

In this study, four entropies between normal periods and fatigue periods were calculated for

each subject. Results based on training and testing data by four common classifiers were

obtained. The well-known performance indicators [51], including the sensitivity (Sn), specific-

ity (Sp) and accuracy (Acc), were employed to evaluate the quantified results. The success rates

obtained by the LOO approach for detecting driver fatigue using each classifier based on the

training and testing data are listed in Table 1. To facilitate the comparison with the multiple

entropy fusion method, the corresponding results employing the AR model parameters as fea-

tures are also given. The highest average Acc of 97.6% was obtained with Sn and Sp: Acc values

of 97.6% and 97.6% were obtained based on the training data, and Acc values of 96.8%, 96.4%

and 97.0% were obtained based on the testing data. With a BP classifier, Acc values of 96.8%,

97.0%, 96.5%, 92.9%, 93.6% and 92.3% were obtained by employing a BP classifier based on

the training and testing data. The corresponding rates were obtained using AR model parame-

ters as features on the same datasets. Table 1 also demonstrates the better success rates of Acc,

Fig 4. Using the search method to optimize two parameters of SVM classifier and the order number of AR model with the LOO method:

(a) The optimal values of c = 2^-1 and g = 2^-5; (b) The optimal AR model order number is 10.

https://doi.org/10.1371/journal.pone.0188756.g004
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Sn and Sp obtained by the SVM, RF and KNN classifier, respectively, which indicates that the

performance of detecting fatigue based on the multiple entropy fusion method is not only very

high but also very robust.

Fig 6 provides a graphic display of the classification quality for driving fatigue via a preci-

sion–recall (PR) curve and the receiver operating characteristic (ROC) curve [52–53]. For the

classification in this paper, high precision indicates that a small number of the normal state

samples were mislabeled as fatigue state samples, whereas high recall indicates that a small

number of fatigue state samples were mislabeled as normal state samples. The ROC curves plot

Fig 5. Classification results and performance comparison using different entropy fusion. Statistical analysis refer to the average Acc

over all subjects (*p < .05, **p < .01): (a) For using single entropy; (b) For using two types of entropies; (c) For using three types of entropies; (d)

For using all entropies.

https://doi.org/10.1371/journal.pone.0188756.g005

Table 1. Four classifiers performance obtained by fusing entropy feature in comparison with AR parameter feature based on the training and test-

ing data.

Classifiers Selected features using entropy Selected features using AR

Training Data Testing Data Training Data Testing Data

Acc Sn Sp Acc Sn Sp Acc Sn Sp Acc Sn Sp

SVM 97.0 96.8 96.7 95.6 95.0 95.7 93.9 93.7 94.1 91.3 92.3 90.2

BP 97.6 97.6 97.6 96.8 96.4 97.0 96.8 97.0 96.5 92.9 93.6 92.3

RF 96.9 96.9 97.0 95.2 95.6 95.0 93.3 93.0 93.5 92.7 92.4 92.9

KNN 95.3 95.1 95.4 94.2 94.3 93.9 85.0 85.9 84.0 84.2 85.6 82.8

https://doi.org/10.1371/journal.pone.0188756.t001
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the true positive rate (i.e., Sn) as a function of the false positive rate (i.e., Sp), revealing how the

number of correctly classified fatigue state samples varies with the number of incorrectly clas-

sified normal state samples. The areas under both the ROC curve and PR curve for detecting

driving fatigue in our system represent a distinct improvement, which also indicates that

detecting fatigue based on the multiple entropy fusion method is feasible.

3. Determination of the significant electrodes

The EEG datasets considered in this study are derived from 30 electrodes of EEG records.

Since not all electrodes carry the information of interest, the electrode selection is necessary to

decrease computational complexity. In this study, a simplified electrode selection method for

calculating the Acc-based weight value of each electrode was proposed to determine the signif-

icant electrodes. The main steps for obtaining the weight value V of the i-th electrode are illus-

trated as follows:

1. Calculate the Acc(i) of each single i-th electrode using the multiple entropy fusion method

based on the training data by the SVM classifier.

2. Similar to step 1, after obtaining the accuracy of each single electrode, recalculate the Acc

(ij), namely, the accuracy of each pairwise combined electrode in all 30 electrodes but only

using the i-th and j-th electrodes to extract the entropy features for obtaining its accuracy,

with i6¼j and Acc(ij) = Acc(ji).

3. Calculate the weight value V of the i-th electrode using the following equation:

Vi ¼

AccðiÞ þ
X30

j¼1;j6¼i

ðAccðijÞ þ AccðiÞ � AccðjÞÞ

30
ð2Þ

for i = 1 to 30 electrodes.

Fig 6. The PR and ROC curves to show the classification quality.

https://doi.org/10.1371/journal.pone.0188756.g006
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With this process, the average weight value V of each electrode for each subject was

obtained, as shown in Fig 7. The variation of different electrodes is distinct. The weights of the

T6, P3, TP7 and O1 electrodes is remarkably higher than the weights of the FC4, C3, P4 and

F8 electrodes, which indicates that each subject for driving fatigue has different priority chan-

nels. Ten types of representative electrodes based on the weight value V for each subject are

given in Table 2. The T6 electrode attains the largest average weight value of 0.95, and the

average weight values of the top ten electrodes exceed 0.84. The top ten electrodes naturally

formed four channel regions—A, B, C and D—as clearly discussed for additional analysis

below.

Discussion

Entropy is generally accepted as an index for measuring the degree of uncertainty of a given

system. As reported in [54], the degree of uncertainty for brain activity signals exhibited signif-

icant differences between a normal state and a fatigue state of driving. For the promiscuity and

robustness, we presented an EEG-based system to detect driver fatigue by analyzing the effect

of multiple entropy fusion according to four common entropies: PE, AE, SE and FE. Consider-

able progress in distinguishing these states and capturing four channel regions has been

achieved with the use of detectors employed in the study of brain entropy.

To obtain the characteristics of a time series for classification, four common entropy mea-

sures are computed from EEG brain signals. PE uses the power spectrum of a signal to estimate

the regularity of a time series. Oscillation rhythms with a pattern of PE can emerge due to a

Fig 7. The weight value V of each electrode according to a simplified electrode selection method was plotted.

https://doi.org/10.1371/journal.pone.0188756.g007
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change of signals and support real-time monitoring by the low-load computation of PE. Com-

pared with PE, AE requires a shorter data segment input for calculation and has certain noise

immunity. AE measures the randomness or regularity of a time series in multiple dimensions

and is extensively applied in the field of EEG analysis. The algorithm of SE is similar to the

algorithm of AE. SE measures the predictability of consequent amplitude values of the EEG

based on information about previous amplitude values, and its calculation is not dependent on

the length of the data. The low sensitivity of SE to missing signal data produces a very small

effect on the calculated value of SE. Rigas [55] proposed a methodology that fused a set of fea-

tures, including PE and AE, for recognition of a driver’s state and yielded a maximum detec-

tion accuracy of 88%. Even when Chen [56] adopted the fusion of four nonlinear methods by

extracting PE, AE, SE and Renyi entropy from EEG and a blink feature from EOG, the accu-

racy was only 97.3%. In our paper, we employed PE, AE, SE and FE as features to detect driver

fatigue. The results are satisfactory: an accuracy of 98.3%, a sensitivity of 98.3% and a specific-

ity of 98.2%. Fig 5 reveals that FE is the most important measure in detecting driver fatigue in

our EEG-based system, with some significant differences among measures. Using a fuzzy

membership function for computing the vector similarity, FE offers better noise resistance and

is extensively employed in many fields [57]. Compared with existing research methods for

driver fatigue [58], the entropy measure is a useful tool for EEG analysis because it can con-

sider the effectiveness and robustness of an offline analysis in a real-time driving environment

in the future.

Future systems should utilize wearable devices with fewer electrodes to provide fatigue

warnings, which will affect the comfortableness and convenience of a system. Thus, electrode

selection optimization should be applied to system algorithms to improve their quality of

detection. For optimal channels, the Acc-based weight value calculated by Eq 2 should be

employed. The top ten significant electrodes for each subject are listed in Table 2, namely, T6,

P3, TP7, O1, Oz, T4, T5, FCz, FC3 and CP3. Xiong [26] classified driving fatigue and noted

significant differences both for AE and SE on P4, P3, Pz and Oz. As reported in [59], the high-

est correlation was observed for channels Oz and O1, which were employed to improve the

system performance of drowsiness detection. The ability to optimize electrode selection in

advance of analyzing the electrodes involved in the system computation provides an opportu-

nity to decrease computational complexity. Several researchers have adopted an optimal elec-

trode strategy for determining the significant electrodes. Li [17] introduced a grey relational

Table 2. Top ten electrodes based on the weight value V for each subject.

Electrode T6 P3 TP7 O1 Oz T4 T5 FCz FC3 CP3

Sub1 0.91 0.89 0.87 0.95 0.93 0.93 0.89 0.92 0.79 0.89

Sub2 1.01 0.92 1.01 0.98 0.99 0.81 1.01 0.79 0.84 0.90

Sub3 1.06 1.00 1.05 0.81 0.83 0.81 0.80 0.99 0.85 0.75

Sub4 0.99 0.91 1.05 0.88 0.80 0.72 1.05 0.74 0.86 1.02

Sub5 0.89 0.89 0.90 0.95 0.84 0.77 0.98 1.07 1.02 1.06

Sub6 1.03 0.62 0.92 0.67 0.85 1.05 0.85 0.63 0.69 0.59

Sub7 1.09 1.07 0.83 0.77 1.08 1.01 0.97 1.02 0.65 0.52

Sub8 0.68 0.77 0.86 0.82 0.83 0.78 0.90 0.67 1.05 0.73

Sub9 0.68 0.84 0.97 0.58 1.01 0.78 0.73 1.02 1.00 1.00

Sub10 1.13 1.10 0.91 1.12 0.68 0.90 0.54 0.52 1.00 0.80

Sub11 0.97 1.02 0.55 1.11 0.76 0.92 0.60 1.01 0.52 0.77

Sub12 0.95 0.99 0.89 1.07 1.05 0.83 0.99 0.88 0.87 1.06

Average 0.95 0.92 0.90 0.89 0.89 0.86 0.86 0.85 0.84 0.84

https://doi.org/10.1371/journal.pone.0188756.t002
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analysis to determine the relative optimal indicator from the alternative indicators of driver

fatigue, which treated Fp1 and O1 as the significant electrodes. Lee [60] also captured eight-

channel EEG readings based on the highest mutual information value for predicting the fatigue

level via Bluetooth wireless communication. Compared with their study, we reduced the noise

sensitivity, which rendered the multiple entropy fusion method stronger and robust in detect-

ing fatigue. From the standpoint of computational efficiency, the computational expense of

our study is less than that of the method described by Lee [60].

In addition to the variation of the different electrodes listed in Table 2 and Fig 7, we are

interested in the brain regions in which these select channels are located. Due to the impor-

tance of EEG-based multi-channel analysis, complicated behaviors from time series are

observed and some information is extracted in complex systems. Similarly, numerous multi-

channel time series analyses and EEG analyses have been performed; refer to [61, 62]. Using a

wavelet transform and k-means clustering, Gurudath [63] captured EEG signals for drowsy

driving detection via a multi-channel electrode system. Combining adaptive optimal kernel

time-frequency representation and a visibility graph, Gao [64] characterized the topological

structure of the networks generated by EEG signals for detecting epileptic seizures. In our

paper, the selected electrodes in each subject were mapped onto their corresponding locations

in the electrode cap, which also used channel topography for multi-channel analysis.

Fig 8 presents the weight-based channel topographies of twelve subjects. The colors indicate

the weight values of 30 electrodes as determined by Eq 2. Note that the values were subjected

to the standard conversion in Eq 1 for scaling between 0 and 1. Then, the uniform value was

set to zero when the value V<0.8; otherwise, 0.8 should be subtracted from the uniform value

because the average weight values of the top ten electrodes exceed 0.84, as listed in Table 2

(but retaining one decimal fraction in this case). As shown in Fig 8, for the larger weight value,

the selected electrodes are primarily located over certain parts of the cortex area for each sub-

ject. For example, the left and middle posterior regions have significant differences displayed

in Sub1, 2, 7, 10, 11 and 12, and the deep color of Sub1, 3, 6, 7 and 10 also emerged in the right

central region. The distribution of selected significant electrodes is not significantly scattered.

An interpretation of the distribution in the EEG brain regions is provided in Borghini’s work

[65], which reveals that these signal bursts were more dominant in the central and posterior

EEG channels during the monotonous driving task. From the standpoint of EEG rhythms,

delta and theta rhythms built up as fatigue increased, especially in the frontal and central areas,

and beta rhythms increased as alertness decreased, especially in the posterior regions [66]. To

evaluate the influence of the selected electrodes according to the weight-based channel selec-

tion method, the average weight values of 30 electrodes for 12 subjects are also used to draw

the brain topography shown in Fig 9(A). The deep colors that are primarily distributed in

these four regions, that is, the A, B, C and D regions, are simplified in the black and white dia-

gram shown in Fig 9(B). Similar gains of regional brain wave activity regarding fatigue can be

found in the work of Craig [67] and Simon [68]. In the diagram, the A and D regions describe

the left and middle posterior regions, respectively; the C region describes the right central

region; and the B region is the middle central region that emerged in Sub3, 5, 8, 9 and 12 in

Fig 8. The selected significant electrodes in these regions are the top ten electrodes listed in

Table 2. In addition, the Fp2 electrode may have potential applications when we use only one

electrode to detect fatigue level in real driving situations due to its deep color in Sub1, 2, 6

and 7 in Fig 8 and Fig 9(A). This finding demonstrates the effectiveness of the weight-based

channel selection method. Although Figs 8 and 9 revealed significant results, a causation

between the EEG activity of brain domains and driver fatigue was not observed due to the

complexity of the human brain and individual differences. The correlation of EEG activity or

brain lobes with driver fatigue should be investigated in future research with a very rigorous
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study protocol and authoritative clinical medical evidence. Our findings suggest that rigorous

and meticulous work should be continued in subsequent studies.

Table 3 lists the classification results of the selected channel regions A, B, C and D obtained

by our proposed method and the randomly selected region R; a comparison with these regions

Fig 8. The weight-based channel topographies of twelve subjects. Topographies demonstrate that the subject’s priority channels

according to the weight value V locate over which part of the cortex area. The color indicates the importance of a channel in our

classification, and the importance of a channel is determined by its weight value V for each subject. The Sub is the abbreviation of

subject.

https://doi.org/10.1371/journal.pone.0188756.g008
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was performed based on the weight channel selection method. The region R selected two adja-

cent electrodes each time; its results are the average results of the randomly selected region for

ten times. The highest average Acc of 98.3% was achieved with Sn and Sp of 98.3% and 98.2%,

respectively. The Acc achieved by a BP classifier based on the training data using four elec-

trodes in region A was higher than the Acc obtained using all electrodes in Table 1. The suc-

cess rates of other regions by our four classifiers yielded the same or better classification results

using fewer electrodes. We can conclude that the results of region R obtained poor perfor-

mance with a decrease of a few percent, which implies that our method can achieve satisfactory

performance using multiple entropy fusion with few electrodes based on the subject’s priority

channels.

In recent years, several research groups have addressed this problem using EEG signals to

study driver fatigue detection. The related classification performance adopted in their studies,

which is listed in Table 4, implies that our results based on fewer features of four electrodes

were better than the results of other several classification methods. Detecting driver fatigue in

traffic safety has a direct application for warning of driving fatigue, reducing excessive driving

and reducing casualties. Future research is recommend based on these two aspects: (i) the

Fig 9. A graphic comparison of four channel regions A, B, C and D formed by the top ten weight-based electrodes in Table 2: (a) A

topographic mapping of describing channel regions; (b) A black and white diagram of simplifying channel regions.

https://doi.org/10.1371/journal.pone.0188756.g009

Table 3. Classification results of the selected channel region based on the weight value V using proposed methods.

Classifiers Region A Region B Region C Region D Region R

Acc Sn Sp Acc Sn Sp Acc Sn Sp Acc Sn Sp Acc Sn Sp

SVM 96.7 96.2 96.9 94.0 92.8 95.2 92.2 91.7 93.4 93.5 93.9 93.1 87.2 86.0 87.7

BP 98.3 98.3 98.2 96.7 97.0 96.3 96.8 96.7 96.9 95.3 95.5 95.1 89.3 90.0 89.6

RF 96.4 96.9 96.0 93.7 92.9 94.5 94.0 93.6 94.4 93.3 94.2 92.5 86.7 86.9 86.3

KNN 93.7 93.0 94.2 91.4 90.2 92.7 90.5 90.7 89.9 90.7 90.9 91.3 85.7 85.5 86.3

https://doi.org/10.1371/journal.pone.0188756.t003
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variability of fatigue data over time and (ii) the real-world application of an EEG-based fatigue

monitoring system. The time variability of fatigue data should help to measure the uncertainty

in the data variables of a given system and capture the sensitivity of the obtained results [73,

74]. We performed an offline analysis on EEG datasets recorded from online experiments in

this study. Because the offline and online classifications have distinct characteristics, an addi-

tional study in a real-time online experimental environment should be conducted to confirm

our findings. Real-time fatigue-level detection with a wireless EEG device, such as a smart-

phone, tablet or cloud server, can be extensively employed in the future. Thus, a platform for a

mobile fatigue monitoring system that satisfies the requirements of real-time online modality

is needed. A global sensitivity and uncertainty analysis of a driver fatigue monitoring model/

system would be useful to capture the variability of the detection results in the future [75, 76].

According to Figs 8 and 9, different subjects have individual differences, which causes differ-

ent subjects to have different priority regions. To consider the individual differences and the

convenience of actual application of the method, we can use different priority channel regions

to select few electrodes to detect and alert driving fatigue in real-time driving conditions,

which would benefit a driving safety assistance system.

Conclusions

In this paper, an objective approach based on multiple entropy fusion analysis was proposed to

detect driver fatigue in an EEG-based system. To prove the effectiveness and robustness of the

proposed method, four common classifiers were actuated for training and testing data, multi-

ple entropy fusion for feature extraction was adopted, and a simplified channel selection

method was used for optimizing electrodes. The results indicated that this type of system has

potential for detecting driver fatigue since it achieved high success rates with only four elec-

trodes. The feasibility of an EEG-based system for driver fatigue detection in relevant areas or

at least a complementary role with existing methods is anticipated. However, some issues need

to be resolved in the future. The experiment must be validated with a larger pool of partici-

pants and real-world driving EEG data. Future research should focus on analyzing the effi-

ciency and convenience of different frequency bands using entropies for the real-time

detection of driver fatigue.
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