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ARTICLE INFO ABSTRACT

Background: Neurofibromatosis type I (NF1) is caused by heterozygous loss-of-function variants in the NF1 gene
encoding neurofibromin which serves as a tumor suppressor that inhibits RAS signaling and regulates cell prolif-
eration and differentiation. While, the only well-established functional domain in the NF1 protein is the GAP-
related domain (GRD), most of the identified non-truncating disease-causing variants are located outside of
this domain, supporting the existence of other important disease-associated domains. Identifying these domains
may reveal novel functions of NFI1.
Methods: By implementing inferential statistics combined with machine-learning methods, we developed a
novel NF1-specific functional prediction model that focuses on nonsynonymous single nucleotide variants
(SNVs). The model enables annotating all possible NF1 nonsynonymous variants, thus mapping the range of
pathogenic non-truncating variants at the codon level across the NF1 gene.
Findings: The generated model demonstrates high absolute prediction value for missense and splice-site varia-
tions (area under the ROC curve of 0.96) outperforming 14 other established models.
By reviewing the entire dataset of nonsynonymous variants, two novel domains (Armadillo type fold 1 and
2) were identified as being associated with pathogenicity (OR 1.86; CI 1.04 to 3.34 and OR 2.08; CI 1.08 to
4,04, respectively; P<.05). Specific exons and codons associated with increased pathogenicity were also detected
along the gene inside and outside the GRD domain.
Interpretation: The developed model, enabled better prediction of pathogenicity for variants in NF1 gene, as well
as elucidation of novel NF1-associated domains in addition to the GRD.
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1. Background

Neurofibromatosis type 1 (NF1, MIM #162200) is an autosomal
dominant neurocutaneous disorder with a birth incidence of 1 in 2-
2500 and disease prevalence of around 1 in 4000.

[13,49]. The disease is characterized by multiple café au lait macules
(CALM), skin-fold freckling, iris Lisch nodules and neurofibromas. In
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addition, there are a large number of disease complications, which can
affect any body system [15]. The disorder is caused by heterozygous
loss-of-function variants in the cytoplasmic protein neurofibromin.
The protein serves as a tumor suppressor that inhibits RAS signaling
and regulates cell proliferation and differentiation. The disease is caused
by loss-of function variants, resulting in an increased RAS activity. This
increase in RAS activity accounts for both tumorigenesis and neuronal
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Research in context

Evidence before this study

The American College of Genetics and Genomics recommends
that laboratories performing clinical sequencing seek and report
disease-causing variants in multiple functional genes including
NF1. Missense variants represent a major diagnostic issue in
NF1. Although many tools have been developed for prediction of
variant pathogenicity, most were developed and trained on the en-
tire genome. We hypothesize that this pan-genome approach may
miss important gene-specific attributes contributing to variant
functionality.

Added value of this study

Here we describe an exhaustive review of NF1 features associated
with increased likelihood of variant functionality. We implement
advanced machine learning algorithms in order to develop an
NF1-specific variant pathogenicity prediction tool which out-
performed all other scoring methods. Using the model, a score
was calculated for the entire spectrum of nonsynonymous vari-
ants across the gene.

Implications of all the available evidence

This high resolution prediction of pathogenicity allowed us to iden-
tify NF1 regions, never before described that may represent novel
NF1-therapy targets. This work demonstrates the benefit of gene-
centered analysis and may be applied to other functionally impor-
tant genes.

dysfunction (such as learning disabilities, attention deficits) by different
mechanisms (for review: [18,21,30]). Given the large size of the gene
and the protein (~327 kDa), and the fact that about 50% of cases are
caused by de novo variants, multiple disease causing variants have
been reported in the public domains. Most detected disease-causing
variants are stop-gain (truncating) and start-loss single nucleotide var-
iants (SNVs) and frameshift insertions and deletions which result in
protein truncation and a loss-of-function [37]. These variants generate
premature stop codons and are expected to lead to mRNA nonsense-
mediated decay and decreased protein level. Although some missense
and small in-frame variants may result in protein instability or alter
splicing and therefore result in decreased protein levels, most act
based on their functional effect at the protein level. While overall, mis-
sense variants account for <18% of pathogenic variants, they still repre-
sent a major diagnostic issue in NF1 [14,37].

So far, the only well-established functional domain in the NF1 pro-
tein is the RAS-GAP domain (also known as the GAP-related domain
(GRD)) encoded by exons (27-34). However, most of the non-
truncating disease-causing variants detected are located outside this
domain suggesting the existence of other important domains in the pro-
tein that are associated with protein loss-of-function either directly or
by disrupting the RAS-GAP domain [36]. The NF1 gene has one of the
highest mutation rates and therefore novel variants are likely to be
identified as incidental findings in unrelated sequencing studies. As
the American College of Genetics and Genomics recommends that labo-
ratories performing clinical sequencing seek and report disease-causing
variants in NF1 gene along with 59 other genes related to actionable dis-
orders [26], categorizing non-truncating variants as either pathogenic
or benign has important clinical implications.

Here we describe an exhaustive characterization of the entire
nonsynonymous variant spectrum in NF1. By implementing both

inferential statistical methods and machine learning methods, we
examined which genetic features are associated with variant pathoge-
nicity. We developed an NF1-specific functional prediction model that
focuses on nonsynonymous SNVs and compared its performance
against other established tools. We then use our prediction method to
score all possible NF1 nonsynonymous variants, thus mapping the
range of non-truncating variants predicted to be pathogenic across the
NF1 gene. This extensive high resolution prediction of pathogenicity en-
abled the elucidation of functional domains across the gene's entire
length. We demonstrate the utility of our method through examination
of the interaction regions between NF1 and SPRED1. SPRED1 (Sprouty-
related protein with an EVH1 domain) gene is a putative tumor sup-
pressor and an important interacting gene with NF1. Much like NF1,
SPRED1 is a negative regulator of Ras/MAPK signaling and acts by bind-
ing to neurofibromin inducing it's localization in the plasma membrane,
which subsequently down-regulates Ras-GTP levels [46]. Recent works
characterizing the association between NF1 and SPRED1 uncovered spe-
cific essential regions in the N and C terminal regions of the RAS-GAP
domain that are required for their interaction [11,22]. An in-depth re-
view of the predicted scores distribution in the N and C terminal regions
identified a higher rate of pathogenic variants occurring within these re-
gions and enabled high-resolution assessment of their limits down to
the codon level.

We provide a webserver describing the entire set of nonsynony-
mous and splice site SNVs in NF1 allowing the research and clinical com-
munity to explore various genetic annotations including variant
type, genetic region, population based allele frequencies, functional pre-
diction scores and our own model's final score (https://isakovlab.
shinyapps.io/NF1-VariantAnnotationServer/).

2. Methods
2.1. NF1 gene variant spectrum

The complete spectrum of NF1 SNVs includes 848,250 different var-
iants. We first annotated each variant by its pathogenicity status as ei-
ther pathogenic, benign or unknown. Pathogenic variants were
collected from the Leiden Open Variation Database (LOVD) database
[17]. Pathogenicity status is based on the LOVD version used to train
the model (05/2017). We note that pathogenicity status may change
over time and therefore the annotations used at the time of model de-
velopment should not be considered as the most up-to-date version.
In order to determine which variants are benign we considered each
variant's allele frequency in three different databases of healthy popula-
tions: The 1000 Genomes Project, The Exome Aggregation Consortium
(ExXAC) and the Genome Aggregation Database (gnomAD) [33,43].
Since NF1is an autosomal dominant disorder, any variant with an allele
frequency above 0 in any of these populations, and that was not previ-
ously marked as pathogenic was considered to be benign. Variants
that do not fall into either category, were considered as unknown.

2.2. Variant annotations

Known NF1 pathogenic variants were downloaded from LOVD [17].
Only nonsynonymous and synonymous SNVs with a status of pathogen-
ic or probably pathogenic were collected. Variant annotation was per-
formed using SnpEff [6] and included annotations gathered in dbNSFP
[35]. All variant and feature positions are reported using the
ENST00000356175 Ensembl transcript (NM_000267). Alternatively
spliced exons were not included in the analysis as the LOVD variants
were specified only in accordance to ENST00000356175. The SnpEff
tools allows for functional annotation of each variant (e.g whether it is
synonymous/nonsynonymous/stop-gain/etc.) The dbNSFP database,
adds various annotations to all potential nonsynonymous SNVs
and splice site SNVs, including prediction scores from 16 prediction
algorithms (SIFT [38], Polyphen2 [1], LRT [5], MutationTaster [42],
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MutationAssessor [41], FATHMM [44], MetaSVM, MetalR [10], CADD
[27], VEST [2], PROVEAN [4], M-CAP [24], MutPred [34], Eigen and Eigen
PC [23] and dbscSNV [25]) and eight conservation scores (phyloP46
way_ primate, phyloP46way_placental, phyloP100way_vertebrate [40],
phastCons46way_primate, phastCons46way_placental, phastCons
100way_veterbrate [45], GERP++ [8] and SiPhy [19]). Healthy popula-
tion databases included the 1000 genomes project [47], the Exome Ag-
gregation Consortium (EXAC) and the Genome Aggregation Consortium
(gnomAD) [33]. NF1 protein domain annotation was performed using
Interpro [16] and Nextprot [20].

2.3. Functional prediction model generation

The purpose of the prediction model is to predict whether a given
nonsynonymous or splice site variant is pathogenic or not. In order to
generate the model we collected only variants that fall into one of
these gene effect types (in accordance with sequence ontology terms
[12]): missense variant (N = 17,909), missense variant splice region
variant (missense variant within a splice site, within 1-3 bases of the
exon; N = 738), splice donor intron variant (A splice variant that chang-
es the 2 base pair region at the 5’ end of an intron; N = 126), splice re-
gion intron variant (intron variant within a splice site, within 3-8 bases
of the intron; N = 226), splice acceptor intron variant (A splice variant
that changes the 2 base region at the 3’ end of an intron; N = 116) and
splice region synonymous variant (synonymous variant within a splice
site, within 1-3 bases of the exon; N = 30). There are 19,145 such var-
iants across the NF1 gene, out of which, a total of 1463 variants were
used to generate the model. 436 (30%) of which were known to be path-
ogenic and 1027 were observed in healthy populations and therefore
deemed benign. The dataset was divided into two sets, one for the pur-
pose of training the model (75%) and the other for validation (25%).
Each variant in the dataset had 55 different features (i.e annotations) in-
cluding: the variant's gene effect, amino acid position, exon number, do-
main regions and rankscores corresponding to the aforementioned,
dbNSFP gathered, functional prediction and conservation scores. Cate-
gorical features were split into dummy variables resulting in 184 feature
annotations. In order to select the most informative features, fifty ran-
dom forest models were trained. Each model was trained on a different
randomly selected variant set comprising 70% of the data. Feature im-
portance was calculated by each model and overall feature importance
was determined by the mean importance score. The best feature subset
was identified by evaluating a Gradient Boosting Machine (GBM) model
trained on an iteratively growing subset of the highest scoring features.
The final feature set was composed of the top 75 features. Using the se-
lected feature set, four machine learning algorithms were evaluated
|GBM, Generalized Linera Model (GLM), Distributed Random Forest
(DRF) and eXtremely Randomized Trees (XRT)]. Briefly, 100 different
models were generated and a stacked ensemble learner of the best
performing model from each algorithm type was then generated. All
models were trained using 10-fold cross validation to minimize the log-
arithmic loss which penalizes classifiers that are confident about an in-
correct classification. Models were trained and validated using the H20
R package [31].

24. Statistical analysis

The effect of variant type on pathogenicity was assessed using the
Fisher's exact test. In cases where there was a variant type with only
pathogenic or benign variants, and there were >100 variants of that
type, odds estimations and their corresponding confidence intervals
were approximated by adding one to each cell in the contingency
table, penalizing the effect size (and test decision) towards no effect.
The effect of gene region on pathogenicity was assessed using multivar-
iate logistic regression, adjusting for variant type. ROC curves were com-
pared using DeLong's test for two correlated ROC curves. In order to
identify pathogenic codons, a bootstrap method was implemented,

simulating 500,000 random score samples and calculating for each
codon the rate of samples with an equal or more number of variants
with a score higher than the selected threshold of 0.538 (corresponding
to a false positive rate (FPR) of 1%). Comparison of the number of vari-
ants predicted to be pathogenic between regions was performed using
Fisher's exact test.

2.5. Webserver development

The webserver was developed using the shiny web application
framework [3], and published on shinyapps.io, a cloud-service platform
used to publish applications developed using shiny.

3. Results
3.1. Dataset

Initially we composed a comprehensive list of all the variants with
known pathogenicity status across the NF1 gene. The final list of var-
iants included 22,323 variants, 21,572 (96.6%) of which were benign
and 751 (3.36%) pathogenic. There were 20,161 (90.3%) intronic vari-
ants, 1885 (8.44%) exonic, and 277 (1.24%) within untranslated re-
gions (UTR). The majority of pathogenic variants were within exons
(479; 63.8%).

3.2. Factors associated with pathogenicity

We first tested the effect of each variant type on pathogenicity. As
expected nonsense variants were highly associated with pathogenicity,
followed by splice site and finally missense variants. Synonymous vari-
ant as well as variants inside 3’ UTRs or introns were associated with a
lower rate of pathogenicity (Supplementary Fig. 1).

We extended the search for factors that contribute to variant
pathogenicity with genetic domains found within the NF1 gene. A
multivariate logistic regression was used in order to examine the as-
sociation of each feature with pathogenicity after adjusting for vari-
ant type. For this analysis we did not consider variant types that
invariably result in loss-of-function (stop gain and start loss) or
have no recorded pathogenic variant (UTR variants). In accordance
to previous studies, we demonstrated the RAS GTPase activation pro-
tein domain is associated with pathogenicity (OR 3.24; 1.14 to 9.18;
P < 0.05). Additionally, the Armadillo type fold 1, which extends for
almost the entire gene (exons 8-54) and Armadillo type fold 2
(exons 37-48) domains presented a significant association with path-
ogenicity (OR 1.86; CI 1.04 to 3.34 and OR 2.08; CI 1.08 to 4.04, re-
spectively; P < 0.05).

Next we examined whether exons across the NF1 gene have differ-
ent effect on pathogenicity. After correcting for multiple hypothesis
testing, the only exon with a significantly higher proportion of patho-
genic variants was exon 27 (OR 4.63; 2.05 to 10.37; P < 0.05, Supple-
mentary Fig. 2.)

In order to increase the analysis resolution, we reviewed all the
exons that were deemed significantly associated with pathogenicity be-
fore multiple hypothesis correction (exons 3, 15, 20, 25, 27, 28, 38 and
57, Supplementary Fig. 2). Each exon was split into several parts with
approximately 7 variants in each part, resulting in the minimum num-
ber of variants required in order to identify a strong association. This
analysis pinpointed the following codons as having more than ten
times the likelihood of carrying a pathogenic variant than the rest of
the coding sequence (Table 1): codons 777-793 in exon 20 (OR 10.23;
C12.7-47.01; P< 0.005), codons 1082-1104 in exon 25 (OR 12.67; CI
2.05-134.36; P < 0.05), and codons 1209-1222 in exon 27 (OR 10.58;
(I 2.23-66.18; P<0.01).
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Table 1
NF1 codons with a high rate of pathogenic variants.

Exons with a significantly higher rate of pathogenic variants were identified and selected for subsequent in-depth codon analysis (exons 3, 15, 20, 25, 27, 28, 38 and 57). Each exon was
split according to the minimal number of variants required in order to identify a strong association. This table describes the codons having more than ten times the likelihood of carrying a

pathogenic variant than the rest of the coding sequence.

Exon Codons Benign Pathogenic Or Conf.Low Conf.High P.Value Corrected.P
20 [777,793) 4 8 10.232 2.702 47.012 0.000 0.003
20 [793,802] 7 0 0.000 0.000 3.602 0.606 0.664
25 [1068,1082) 6 1 0.848 0.018 7.066 1.000 1.000
25 [1082,1104] 2 5 12.670 2.052 134.364 0.002 0.011
27 [1175,1192) 4 4 5.295 0.975 28.772 0.027 0.091
27 [1192,1209) 3 4 7.055 1.181 48.588 0.015 0.066
27 [1209,1222) 3 6 10.574 2.229 66.183 0.001 0.008
27 [1222,1234] 6 0 0.000 0.000 4.556 0.598 0.664
28 [1241,1255) 6 2 1.700 0.166 9.621 0.625 0.664
28 [1255,1272) 5 3 3.057 0.470 15.894 0.132 0.249
28 [1272,1284] 5 3 3.057 0.470 15.894 0.132 0.249
38 [1861,1883) 5 3 3.061 0.471 15914 0.132 0.249
38 [1883,1896) 5 3 3.061 0.471 15.914 0.132 0.249
38 [1896,1909] 5 2 2.042 0.193 12.611 0.324 0.516
57 [2774,2787) 8 0 0.000 0.000 2.852 0.364 0.516
57 [2787,2808) 8 0 0.000 0.000 2.852 0.364 0.516
57 [2808,2818] 6 0 0.000 0.000 4131 0.597 0.664

3.3. Functional and conservation predictions

Functional and conservation prediction tools assist in the task of
causative variant prioritization and identification. Most employ ad-
vanced statistical methods such as logistic regression, hidden markov
models, random forest, support vector machines and neural networks
to derive functionality from a pre-compiled list of genetic annotations
including sequence homology, mRNA and regulatory features, second-
ary and tertiary structure, conservation, epigenomic signals and multi-
ple sequence alignment. During development, these tools were
trained on lists of known Mendelian disease associated variations and
their performance evaluated on the entire data set of variations. Since
these tools weigh in many factors and are specifically trained to identify
variants predicted to be pathogenic, reviewing the predicted score for
each individual variant might help pinpoint variants with high probabil-
ity for pathogenicity. Moreover, regions with high overall scores may be
uncovered and provide additional insight regarding how different re-
gions are associated with pathogenicity. We hypothesized that since
most functional prediction tools were trained on pathogenic variants as-
sociated with a multitude of Mendelian diseases, we might be able to
improve overall prediction performance by training a new model spe-
cifically on NF1 gene variants.

In order to generate such a model, we first explored how established
prediction tools perform on known NF1 pathogenic variations. Initially,
for each tool, we assessed the magnitude of the difference between the
scores of pathogenic variants and those of non-pathogenic variants. The
top five tools with the highest median score difference (Mann-Whitney
test; P < 1e-30) were REVEL (0.24; CI 0.21-0.27), VEST3 (0.19 CI
0.16-0.22), MutPred (0.37 CI 0.28-0.32), SIFT (0.32 CI 0.28-0.36) and
MutationAssessor (0.3 C10.26-0.34) (Supplementary Fig. 3). We contin-
ued and compared each tool's performance under various threshold set-
tings by plotting the receiver operating characteristic (ROC) curve, and
overall performance by calculating the area under the curve (AUC).
The top 5 tools with the highest AUC were VEST3 (0.853), REVEL
(0.852), Polyphen2-HVAR (0.85), Eigen-PC (0.85) and SIFT (0.848)
(Fig. 1).

In order to train our own prediction model, we used as input the
scores provided by each prediction tool, together with various other an-
notations including: the exon number, the amino acid position, the ge-
netic type of variant (splice site, nonsynonymous etc.) and which
genetic domains the variant affects. The model was trained to predict
how likely a variant is to be pathogenic using a training set that includes
1097 nonsynonymous and splice site variants, 327 (29.9%) of which are
known to be pathogenic. The final model was based on a stacked

ensemble of four different machine learning algorithms (See details in
methods section). We compared the performance of the generated
model against the other tools on a test set of nonsynonymous variants
which were not used during the training of the model (Fig. 1). The
model demonstrated a significantly higher AUC value than the tool
with the highest AUC (0.946; P < 0.05). Since most tools focus on
predicting the effect of nonsynonymous variants, the aforementioned
test set did not include splicing variants. Moreover, since the NF1 gene
is expressed in peripheral white blood cells and splicing of the NF1
mRNA can be readily studied in a diagnostic lab, in-silico functional pre-
diction of such variants holds less value. However, our model was
trained on both types of variants and when testing its performance on
a test set that includes both nonsynonymous and splicing variants the
model demonstrated an improved AUC of 0.962 (Fig. 1). In order to
allow researchers and clinicians to evaluate NF1 variants of interest,
we generated a webserver that includes the entire set of NF1
nonsynonymous and splice site variants with various annotations, in-
cluding our model's final score (https://isakovlab.shinyapps.io/NF1-
VariantAnnotationServer/).

4. Discussion
4.1. Coding effect and pathogenicity

Here we present an exhaustive study which brings to light the ge-
netic factors associated with pathogenicity in the NF1 gene. We begin
by reviewing the different types of variants according to their coding ef-
fect. Each variant type was compared against all other types in order to
identify its association with pathogenicity. Expectedly, synonymous
variants were significantly less likely to be pathogenic than missense
variants (OR 0.027, CI 0.006 to 0.082; P < 10~ '°). Stop gain (i.e non-
sense) variants, which result in protein truncation and loss-of-
function due to premature stop codon transcription, were naturally
found to be the most pathogenic type of variant. Out of 274 stop gain
variants included in the study, 268 (97.8%) were known to be pathogen-
ic. The remaining 6 had an extremely low allele frequency (<107°),
which is significantly less than the allele frequency of non-pathogenic
missense variants (P < 0.03) raising the possibility that these variants
might have a milder phenotype that has been misclassified as normal.
Variant types with slightly lower pathogenicity rate than stop-gain,
were splice donor and acceptor variants (within two base pairs from
the 5 and 3 prime ends of the intron, respectively). A previous meta-
analysis of 478 disease-associated splicing mutations, in 38 different
genes suggested a significantly higher rate of disease-causing variants
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Fig. 1. Model performance. In order to compare the performance of the NF1-specific model and the other available functional prediction tools, we used a test variants dataset that was not
used during the training of the model. These variants were scored by each of the tools and the model and the area under the receiver operating characteristic curve was calculated. The NF1-
specific model demonstrated significant improvement in performance on the test set which includes only nonsynonymous variants and even better when including variants effecting

splice sites as well.

within the splice donor sites when compared to the splice acceptor site
[32]. Our study shows that such a difference is not found in the NF1
gene. Although splice donor variants demonstrated a slightly higher
pathogenicity rate than acceptor variants, the difference between
these two types of variants was not significant (P = 0.098). Missense
variants occurring within the first 1-3 bases of an exon were identified
as more likely to be pathogenic than missense variants occurring down-
stream (OR 4.57; C1 2.48 to 8.42; P< 107°).

4.2. Genetic domain and pathogenicity

Although the genetic architecture of the NF1 gene has been well
studied, the importance of the various domains across the gene and
how they are associated with pathogenicity remains unclear. In
order to identify genetic regions with possible functional significance
we perform multivariate analysis including five different genetic

regions across the gene (RAS-GAP, Armadillo-type fold 1 and 2, and
CRAL-trio and lipid binding domain). Correcting for variant type, 3 re-
gions were shown to be significantly associated with pathogenicity
(RAS-GAP and Armadillo-type fold 1 and 2). The RAS-GAP domain
(i.e catalytic domain), which represents a genetic region common to
all Ras GTPase-activating proteins, has been previously shown to
play a critical role in NF1 pathogenesis [28]. The armadillo type folds
are superhelical structural domains with an extensive solvent-
accessible surface that favors binding of large substrates such as pro-
teins and nucleic acids.

The armadillo type fold 1 domain extends across 46 exons and in-
cludes the RAS-GAP and the armadillo type fold 2. However even after
adjusting for these domains, it demonstrates an association with patho-
genicity. The Armadillo type 2 fold represents a novel domain of interest
in the NF1 gene demonstrating a 2 fold increase in the likelihood of
being pathogenic.
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Fig. 2. Model-based analysis. After generating the NF1-specific prediction model, a score was calculated for the entire dataset of known nonsynonymous NF1 variants. Reviewing the rate of
variants predicted to be pathogenic by our model in each exon (A), two main exonic regions were identified as having a significantly higher rate of pathogenic variants (red): exons 25-28
and exons 37-41. These exons correspond to the 5 prime regions of the RAS-GAP domain and the Armadillo type fold 2 domain respectively. The model based analysis also identified a
significant decline in pathogenicity rate (blue) starting from exon 45 down to the last exon (57). With pathogenicity scores predicted for every possible nonsynonymous variant, specific
codons with higher pathogenicity association could be identified (B). After correction for multiple hypothesis, 85 codons were found to have significantly more variants with a score higher
than 0.538 (brown color; corresponding to a FPR of 1%) than would be expected (P < 0.01). In 17 of these codons, all of the variants were above the threshold (red color). While some of
these codons already have known pathogenic variants in them (triangle), some represent a novel deleterious loci (point). The background represents the overall exon's odds ratio (with

red representing positive association).

4.3. Model based architecture investigation

This work describes the development of an NF1-specific pathogenic-
ity prediction model. The model demonstrated improved performance
when compared against other established prediction tools. This gene-
centered approach may be used on additional genes in the future, in
order to facilitate the identification of attributes contributing to patho-
genicity that would have otherwise be missed by generating a model
based on the entire dataset of genes. Even though scores given by the
model were optimized to correspond to the actual probability of patho-
genicity, the overall accuracy in the validation set was 92.34%, suggest-
ing the existence of additional phenotype-determining factors or
interactions which were not incorporated into the model. Specific ther-
apies for NF1 complications have developed during recent years. These
treatments attempt to inhibit the only pathway which is known to be
associated with the disease, the RAS-MAPK pathway, which is activated
in NF1. Indeed, Selumetinib, a selective inhibitor of MAPK kinase path-
way was shown recently to be the first agent inducing a partial re-
sponses in NF1-Related Plexiform Neurofibromas [9]. In order to
identify additional domains associated with pathogenicity in the NF1
gene, we collected and annotated the entire dataset of known
nonsynonymous NF1 variants. Contrary to truncating variants, the path-
ogenicity of these variants is expected to be influenced by various

factors such as their biophysical properties (e.g bulkiness and charge)
and their location within the secondary RNA and protein structure. Var-
ious regions throughout the gene were compared and those with a sig-
nificantly higher rate of pathogenic variants were identified. This
approach is limited by the relatively low number of known pathogenic
variants across the gene. Regions that carry a low number of variants
cannot be confidently identified as having any association with patho-
genicity. Moreover, this approach cannot be used to study regions that
do not have any known variants in them. In order to overcome this chal-
lenge, we employed the generated prediction tool to score all possible
nonsynonymous variants in the NF1 gene. Since model scores were op-
timized to correspond to the actual posterior probability of pathogenic-
ity, reviewing the spectrum of scores, results in a high resolution map of
pathogenicity across the entire gene (Supplementary Table 1). Initially,
an exon-wide analysis of the rate of variants predicted to be pathogenic
by the model was performed (Fig. 2A). Two main exonic regions were
identified as having a significantly higher rate of pathogenic variants:
exons 25-28 and exons 37-41 (with the exception of exon 39). These
exons correspond to the 5 prime regions of the RAS-GAP and the Arma-
dillo type fold 2 domains respectively. Consistently, exon 27 had one of
the highest rates of pathogenic variants (OR 3.32; C1 2.7 to 4.07; P< 1
x 10729) with only exons 26 and 38 demonstrating higher rates (OR
4.13 and 3.65 respectively). Although the analysis based exclusively
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Fig. 3. NF1-SPRED1 binding region. SPRED1 interacts with NF1 by binding to the N and C terminal regions of the RAS-GAP domain. The number of codons with at least one variant predicted
to be pathogenic by the model (score above 0.538; corresponding to a FPR of 1%) was compared between these putative binding regions and the adjacent regions (100 base pairs on each
side) showed an increase in variants predicted to be pathogenic in the N-terminal binding region (OR 2.19; 1.22 to 3.99; P = 0.005) but only a trend in the C-terminal (OR 2.18; 0.9to 5.1; P
= 0.072). Generating a score across all the codons identified a drop in pathogenicity rate beyond codon 1528. The dashed line marks the borders of the known binding region (codons
1176-1248 and 1477-1573 for the N and C terminal regions, respectively) and the solid line marks the borders of regions previously described as essential (Codons 1202-1217 and

1511 and 1530).

on known-variants suggested there is a lower rate of pathogenic vari-
ants in the 3 prime region of the gene, there was not enough informa-
tion to identify a significant difference. The model based analysis
identified a significant decline in pathogenicity rate starting from exon
45 down to the last exon (57), suggesting that nonsynonymous variants
found downstream of exon 45 are most likely benign. As of date, this is
the first report describing such a reduction in pathogenicity across the 3
prime end of the NF1 gene. Such exon specific functional predictions can
be utilized in designing minigenes for in vivo elucidation of regulatory
elements and other regulators of pre-mature RNA splicing [7].

Variants within crucial genetic regions are expected to alter gene
function. Therefore, codons with a high rate of variants predicted to be
pathogenic may serve as markers for such functional loci. Since a path-
ogenicity score was predicted for every possible nonsynonymous vari-
ant, we were now able to identify specific codons predicted to be
pathogenic (Fig. 2B). After correction for multiple hypothesis, 85 codons
were found to have significantly more variants with a score higher than
0.538 (corresponding to an FPR of 1%) than would be expected (P <
0.05)(Supplementary Table 2). Seventeen codons exclusively harbored
variants predicted to be pathogenic (16, 93, 397, 837, 842, 1048, 1150,
1190, 1219, 1296, 1389, 1426, 1526, 1623, 1660, 1809 and 1976). Of
these, six were located within the well-known GAP domain and eight
(397, 842, 1150, 1296, 1389, 1526, 1660 and 1976) represent novel
loci with none of the variants already known to be pathogenic. Our
model was trained to predict the probability of pathogenicity and not
phenotype severity, therefore the aforementioned codons include
both variants associated with a mild form of NF1 such as p.Arg1809Cys
[39] and codons adjacent to regions previously associated with a more
severe phenotype [29].

The SPRED1, a putative tumor suppressor and an important
interacting gene with NF1, binds to neurofibromin, through an interac-
tion between the EVH1 and the GRD domains. More specifically, EVH1
binds to the GRD boundary regions formed by residues located at the
N (Codons 1209-1220) and C (Codons 1477-1573) terminal parts of

the GRD domain (With codons 1202-1217 and 1511 and 1530 identi-
fied as essential regions [22]). We therefore focused our analysis on
the EVH1 domain binding sites. Indeed, the initial codon analysis iden-
tified codons 1209-1220 to be associated with pathogenicity
(Table 1). Comparing the number of codons with at least one variant
predicted to be pathogenic between the EVH1 binding regions and the
adjacent regions (100 base pairs on each side) also showed an increase
in variants predicted to be pathogenic in the N-terminal binding region
(OR2.19;1.22t03.99; P = 0.005) but only a trend in the C-terminal (OR
2.18;0.9t05.1; P=0.072) (Fig. 3). Since the model was used to score all
possible missense variants across the binding domains, a high-
resolution review of the C-terminal region was possible and a drop in
predicted pathogenicity rate beyond codon 1528 was demonstrated,
suggesting lower binding activity beyond that point, in agreement
with Hirata et al.

4.4. Model limitations

Even though our model outperformed existing prediction tools, per-
formance was not perfect (Overall accuracy of 92.34% on the validation
set), suggesting the existence of additional phenotype-determining fac-
tors or interactions which may have been missed during model devel-
opment. In order to mitigate this uncertainty, the scores generated by
the model were optimized to correspond to the overall probability of
pathogenicity and were shown to be well calibrated. Currently, there
are only a few established NF1 genotype-phenotype associations.
Thus, phenotype severity information was not incorporated into
model training and model scores correlate only to the variant's proba-
bility of resulting in an NF1 phenotype and have no predictive value in
regards to overall phenotype severity. Model training was based on
the fact that NF1 has an autosomal dominant mode of inheritance
with complete penetrance. Therefore any variant with a population fre-
quency above 0 was considered to be benign. However, NF1 has ex-
treme phenotype variability and therefore undiagnosed patients with
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a milder form may have been incorporated into the healthy population
variant databases. Although such misclassification of pathogenic vari-
ants as benign during training might lead to biased estimations, their
overall frequency is expected to be low and therefore their relative im-
pact on overall model performance is expected to be minor. Finally, we
note that although gene-specific in-silico analysis such as the one de-
scribed here may facilitate variant prioritization and functional assess-
ment, functional characterization remains the gold standard for the
definitive classification of variants [48,50].

5. Conclusion

This study presents an exhaustive analysis of the neurofirbomin
gene variant spectrum. Inferential statistics were used to identify re-
gions with a high rate of pathogenic nonsynonymous variants likely cor-
responding to important functional domains. A novel supervised
machine learning algorithm was subsequently trained to differentiate
functional from benign variants. The developed NF1-specific model
outperformed other established prediction scores. Scoring the entire
spectrum of nonsynonymous variants across the gene we characterize
likely pathogenic regions with unprecedented resolution down to the
specific codon level. We believe that this new data may facilitate both
improved characterization of putative domains and the detection of
novel domains in neurofibromin. The identification of such novel
drugable domains may eventually lead to improved treatment and pa-
tient care.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.09.039.
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