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The percent study describes the in vitro responses of mature zygotic embryos of Boscia senegalensis to different concentrations
(0.0–5.0 mg/L) of 6-benzyladnine (BA), Thidiazuron (TDZ), α-Naphthalene acetic acid (NAA), and 2, 4-Dichlorophenoxyacetic
acid (2, 4-D) supplemented on Murashige and Skoog medium (MS). The plant growth regulators (PGRs) were considerably
affected the morphogenetic responses. BA produced adventitious shoots through two ways: direct organogenesis and auxiliary
shoot formation. Both 2, 4-D and TDZ tend to produce callus, whereas NAA improve the development of embryos to seedlings.
Maximum number of shoots/explant (14.8± 0.6) was obtained on MS medium supplemented with 3.0 mg/L BA. 67.0% of excised
shoots were rooted either on 1/2 MS medium augmented with or without 0.25 mg/L IBA. The highest number of roots (1.2 ±
0.4) and root length (0.5 ± 0.2 cm) was produced on 0.25 mg/L IBA-containing medium. Regenerated plants were successfully
acclimatized and transferred to the green house with 70% survival rate. All the plants appeared morphologically uniform with
normal growth pattern. A rapid (30 days), efficient and without subculturing protocol for in vitro regeneration of B. senegalensis
was developed.

1. Introduction

Boscia senegalensis (Pers.) Lam. ex Poir. (Capparidaceae) is
an evergreen drought tolerant shrub widespread across the
Sahel and Sahara savannas from Mauritania across central
Africa to Sudan [1]. This area of semiarid and arid region
with extremely high temperatures and low rainfall provides
the highly hottest and driest conditions ever faced by higher
plant life [2, 3]. B. senegalensis is very well adapted to this
unusual degree of drought [3, 4]. It tolerates temperatures
as high as 45◦C and survives with 100 mm annual rainfall,
but 250 mm is sufficient for its vigorous growth [2]. Under
such desiccating conditions, this wild species make life more
bearable for millions of destitute people who struggle to
survive. It produces enough different products to sustain
human and animal life almost by itself. The significant role
of B. senegalensis in the African rural agroeconomy and

daily life has been illustrated by several reports [1, 4, 5].
During the 1984-85 famine in Kordofan and Darfur, western
Sudan, people relied on the so-called famine foods, mukheit
[3, 6]. In fact, seed flour commonly replaces sorghum,
millet, or lentils as staple food [2]. The property of B. sen-
egalensis to protect cereals against several stored grain insect
species and pathogens has been reported [7, 8]. Those fresh
leaves were traditionally added to stored grains in order to
limit insect infestation and damages [1, 7]. The presence
of methylisothiocyanate and methylcyanide enzymatically
liberated from the methylglucosinolate, in addition to glu-
canase justified their uses as insecticide and antifungal [1, 7].

Conventional propagation of this plant is through seeds,
but it is restricted due to poor growth rate of seed and low
germination percentage [9]. The seed is recalcitrant and
nondormant thus rapidly lose viability (1-2 seasons) due to
embryo eradication when water contents decreased below
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20–30% subsequent to its harsh hostile environment [10,
11]. On the other hand, fruits after ripping frequently
attacked by fungus and then seed borers due to its high sugar
content. Moreover, seed is endozoochorous and depend on
birds to remove germination inhibitor in fruit pulp when
seeds passage through digestive tract and defecate in a fa-
vorable site [12, 13]. Thereafter, new naturally established
seedlings are commonly found under Acacia trees. This
makes the plant are reliant on large tree species, and it may
be threatened if they are removed [13]. The slow growth
rate of this arid land species is likely attributable to extensive
investment in establishing and maintaining a deep taproot
system, prior to aboveground growth [12, 13]. In vitro tissue
culture technologies would not only overcome those lim-
itations but also offer fascinating methods for large-scale
production of plants in shorter time irrespective of seasonal
constraints. Thus, payable to the nature of B. senegalensis
seeds, embryo culture can facilitate obtaining plants in a
short time. This represents a simple way of in vitro regen-
eration without subculture and with addition of only a few
numbers of phytohormones. The objective of this study is
to investigate the response of B. senegalensis tissues in vitro
to various growth regulators at various concentrations to
identify optimum conditions for adventitious regeneration
of shoots from embryo.

2. Materials and Methods

2.1. Plant Materials. Fully grown green fruits of B. senegalen-
sis were collected at Al-Rawakeeb Research Station, West
Omdurman, Sudan, during February 2009. The target plant
material was the mature green embryo; however, each seed
may contain 1–4 embryos.

2.2. Surface Disinfection and Sterilization. Fruits were thor-
oughly washed in running tap water to remove any soil at-
tached to fruits surface. Aseptically, fruits were surface ster-
ilized in 70% (v/v) ethanol for 3 minutes, followed by 15%
(v/v) Clorox commercial bleach solution (4.5%–5% (v/v)
Sodium Hypochlorite) for 15 minutes, then rinsed 3 times
with autoclaved distilled water.

2.3. Explant Preparation. The sterilized fruits were kept in
autoclaved distilled water to facilitate zygotic embryo exci-
sion. Embryos were aseptically excised from the sterilized
fruits by tearing out the fleshy pulp, endosperms, and the
seed peel using sharp surgical blades and tweezers. The
excised embryo was round in shape with thick cotyledons
enveloping the embryonic axis. After a careful excision, the
embryos were immersed and rinsed five times in autoclaved
distilled water for removal of the growth inhibitor and
hastened the germination process.

2.4. Media and Culture Conditions. Murashige and Skoog
[14] (MS) basal medium was prepared and used in all
cultures. The medium was adjusted to the desired pH 5.8
using HCl or NaOH. A gelling of 7 g/L (w/v) agar was added,
heated until the solution was clear, and then dispensed into

the culture vessels before autoclaving. The medium was ster-
ilized in autoclave at 15 psi at 121◦C for 15 minutes. The
culture was incubated at constant temperature of 25 ±
2◦C, under cool fluorescent light of about 5,000 lx, and a
photoperiod of 16 light and 8 h dark.

2.5. Plant Growth Regulators (PGRs). Semisolid MS media
supplemented with different plant growth regulators (PGRs)
were used as multiplication medium. The effects of cytoki-
nins BA, an adenine-type cytokinin, and TDZ, a substituted
phenylurea cytokinin, and auxins 2, 4-D and α-naphthalene
acetic acid (NAA) were investigated separately. The PGRs
were supplemented alone in an attempt to evaluate and
stimulate clonal shoot multiplication and shoot develop-
ment. Furthermore, PGRs used were applied at wide range
of concentrations (0.0, 1, 2, 3, and 5 mg/L). For root in-
duction, 1/2-strength MS medium supplemented with 3-
indole butyric acid (IBA) at 0.0, 0.25, 0.5, or 1 mg/L, was
used.

2.6. Embryo Culture. Embryos excised having the intact
embryonic axis (shoot meristem + hypocotyl) with cotyle-
dons were used as explant and was implanted directly on
multiplication media. One embryo explants were placed hor-
izontally on the surface of the medium in ten tubes (20 ×
3 cm, 15 mL) for every concentration. The cultures were
incubated under darkness at 28 ± 2◦C for 7 days. Two ex-
periments were conducted separately.

2.7. Shoots Multiplication. After 4 weeks of culture, every
embryo explants that produced shoot buds was transferred
to (9× 2 cm) bottles containing 30 mL of its same fresh mul-
tiplication medium. The subculturing was done for further
growth, shoot elongation, and multiplication. Well-devel-
oped and elongated shoots (1–1.5 cm) were harvested from
the multiplication clusters and counted for each treatment.
The maximum number of shoots and shoots length were
recorded after four weeks of culture.

2.8. In Vitro Rooting. To induce roots, shoots 1–1.5 cm were
separated from multiple shoots and then cultured in rooting
media as described above. Data were recorded in terms of
percentage of rooting, number, and length of roots/shoots
after four weeks of culture.

2.9. Acclimatization of Plantlets. Rooted plantlets of about
5 cm in length (4 cm long shoot, 1 cm long root), were
washed in running tap water, and transplanted into auto-
claved mixture of silt: sand soil (2 : 1, v/v) filled plastic pots
(5×10 cm). The pots were maintained at 30◦C in a polyhouse
with relative humidity 50–60%. The regenerated plantlets
acclimatized for four to eight weeks and were successfully
transferred to the soil under greenhouse conditions.

2.10. Statistical Analysis. The experiment was conducted
as factorial using a completely randomized design with
10 replications. MS medium was supplemented with four
growth regulators (4 factors) supplied at four concentrations
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Table 1: Effect of different PGRs benzyl adenine (BA), thidiazuron (TDZ), α-naphthalene acetic acid (NAA), and 2, 4-dichlorophenoxy
acetic acid (2, 4-D) concentrations on in vitro morphogenesis on B. senegalensis embryo explants after 4 weeks of culture.

PGR mg/L
Number of shoots per explant Shoot length (cm) Degree of callus∗ formation

BA TDZ NAA 2, 4-D

0 0 0 0 0.0± 0.0g 0.0± 0.0 —

1 0 0 0 3.2± 0.7d 2.5± 0.5 —

2 0 0 0 10± 0.4c 1.2± 0.1 —

3 0 0 0 14.8± 0.6a 0.6± 0.0 —

5 0 0 0 10.7± 0.8b 0.4± 0.1 —

0 1 0 0 0.0± 0.0g 0.0± 0.0 +

0 2 0 0 0.0± 0.0g 0.0± 0.0 +

0 3 0 0 0.0± 0.0g 0.0± 0.0 +

0 5 0 0 0.0± 0.0g 0.0± 0.0 +

0 0 1 0 1.0± 0.0e 2.0± 0.1 —

0 0 2 0 1.0± 0.0e 1.5± 0.1 —

0 0 3 0 0.8± 0.2ef 1.3± 0.1 —

0 0 5 0 0.5± 0.2f 0.4± 0.2 +

0 0 0 1 0.0± 0.0g 0.0± 0.0 +

0 0 0 2 0.0± 0.0g 0.0± 0.0 ++

0 0 0 3 0.0± 0.0g 0.0± 0.0 +++

0 0 0 5 0.0± 0.0g 0.0± 0.0 +++

Each value represents the mean + standard error of at least ten replicates. ∗Degree of callus formation was represented as: —; no callus formed, +; slight callus,
++; moderate callus; +++; massive callus formation.

(levels). Data on number of shoots per explant shoot, length,
and callusing degree were recorded. The parameters recorded
for rooting were number of roots per shoot, root, length, and
rooting percentage.

3. Results and Discussion

Determination of the most optimal types and concentrations
of plant growth regulators as medium constituents is one of
the most important aspects of successful micropropagation,
among other in vitro factors [15]. The initial explants were
intact mature zygotic embryos (10×5 mm) of B. senegalensis
cultured on different media composition as given in Table 1.
The embryo explants inoculated responded gradually to
culture (96%), and no contamination was recorded. In some
experiment, there were several embryos that did not show
any response, which may be due to incomplete removal of
growth inhibiters, turned to white, and died. Under natural
conditions, the seed dispersal is through birds, appears to be
vitally important to this species, as bird digest the flesh of
the fruit surrounding the seed thus removing germination
inhibitor, and favours the imbibitions phenomena.

3.1. The Effects of PGRs on Embryo Response. After a week
of culture, the embryos spread slightly from rounded form to
nearly “Y” shape with cotyledons and hypocotyl but without
presence of plumules. After another week in culture, a green-
ish swelling of the cotyledons and hypocotyl was observed.
Later, within three weeks of culturing, they continued to
swell without emergence of plumules. After four weeks, all

cultures were responding in different ways depending on the
different PGRs, as follows.

On the control treatment (no growth regulators), embry-
os were fully spread into “Y” shape developing seedling with
two cotyledons and hypocotyl-root axis, but the epicotyls
appear only at the seventh week of inoculation (Figure 1(a)).
However, the radicle elongated to one unbranched long
taproot.

Although the NAA was stimulatory to root formation
and embryo maturation, it appeared to suppress shoot
growth and multiplication. Each embryo develops to a seed-
ling with all parts but does not germinate to more than that
(Figure 1(b)). The presence of the auxin in concentrations
1–3 mg/L improved root elongation and produced 1–3 thick
single taproots. Higher concentration of NAA (5.0 mg/L) was
not beneficial and also resulted in callus formation at the base
of explant.

BA treatments induced complete seedlings development
with well-formed cotyledons, hypocotyls, and principal
shoot. The radicles did not elongate to tap root (Figure 1(c)).
Bud induction was visible at the apical portion and cotyle-
donary node area. Many organogenic buds were induced per
embryo explant at hypocotyle-root axis and latter developed
to microshoots. Based on the fact that lateral buds can be
inhibited by apical auxin application [15], and released by
cytokinins [16], embryo explant produces one shoot when
NAA added and multiple shoots with presence of BA.

The auxin 2, 4-D and the cytokinin TDZ appear to
induce calluses but in different forms. That, as generally
known about 2, 4-D, when used embryos formed a pale
yellow-colored friable callus (Figure 1(d)), whereas, when
embryo explants cultured on TDZ-supplemented medium,
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Figure 1: Effect of different PGRs on in vitro morphogenesis on mature zygotic embryo of B. senegalensis after 4 weeks of culture, where C:
cotyledon, H: hypocotyl, R: radicle. (a) Embryo germination without presence of epicotyls (control), Bar = 1.0 cm. (b) Shoot growth and
root formation (NAA), Bar = 0.6 cm. (c) Embryo develops to seedling with presence of adventitious (arrows), Bar = 1.0 cm. (d) Soft callus
(2, 4-D), Bar = 0.5 cm. (e) Nodular callus (TDZ), Bar = 0.65 cm.

Table 2: Effect of different Indole-3-butyric acid (IBA) concentrations on in vitro rooting of B. senegalensis shoots after 4 weeks of culture.

IBA (mg/L) Number of roots per rooted shoot Root length (cm) Rooting percentage (%)

0.0 1.0 ± 0.3 0.4 ± 0.1 67

0.25 1.2 ± 0.4 0.5 ± 0.2 67

0.5 0.3 ± 0.2 0.1 ± 0.1 33

1.0 0.4 ± 0.2 0.3 ± 0.1 33

Each value represents the mean + standard error of at least 10 replicates.

scattered protuberances were formed on their surfaces
(Figure 1(e)). These protuberances became leaf primordia-
like structures, but they did not develop into shoots. With all
2, 4-D concentrations, whole embryo explants tissues turned
to callus without organs development. Application of TDZ

induces a range of responses in explant tissues; from callusing
to somatic embryogenesis. This varies widely depending
on its concentration, exposure time, cultured explant, and
species [17]. The differential ability of cytokinins in induc-
tion of shoots could be attributed to factors such as stability,
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mobility, and the rate of conjugation and oxidation of the
hormones [18]. Thus, the hormonal conditions appear to
be a determining factor for the successful enhancement of
adventitious bud formation and shoots proliferation. TDZ
is less susceptible to the plant’s degrading enzymes than are
endogenous cytokinins, and is active at lower concentrations
(1 to 10μM) than the amino purine cytokinins [19]. This
range with TDZ generally results in excessive callus forma-
tion and cessation of shoot growth. The growth of callus
is supposed to inhibit axillary shoot proliferation in woody
plant tissue culture. However, it is possible to inhibit cal-
lus growth with extremely high concentrations of TDZ
(1000μM) [19].

On the other hand, the auxin NAA and the cytokinin BA
promote shoot growth. This may be attributed to the com-
plex interactions of original hormonal content of explants
with that supplied. B. snegalensis is a drought-resistant plant
with high antioxidant activities. These kinds of plants in-
crease endogenous cytokinin to high levels to tolerate
drought stress [20]. Therefore, the internal cytokinins act
as antioxidant defense system and decrease damaging effects
of drought [21]. That high level of endogenous cytokinin
and its production are reported to increase in explants tissue
with presence of NAA or BA in the medium [14]. In this
sense, that uptake of NAA from the culture medium of
B. senegalensis causes an increase in endogenous cytokinins
and IAA levels, which appears to be involved in producing
a seedling with one shoot (Table 1). Moreover, IAA is not
very effective in the formation of callus, but it shows a
very high performance with respect to adventitious organ
formation and inhibition of auxiliary buds [22]. When BA
is applied, it can increase content of endogenous cytokinins
more than NAA did, by its uptake, increasing oxidase
activity and degradation, and by promotion of cytokinin
biosynthesis [23]. Therefore, more than one shoot formed
through organogenic or auxiliary bud formation (Table 1).

BA seemed to be maintaining adequate contents of
phytohormones essential for efficient organogenesis, pro-
liferation, and shoot development and was not associated
with callus induction. NAA produced only one shoot, while
2, 4-D and TDZ simultaneously induced callus formation
and suppressed the direct shoot regeneration pathway. Rapid
regeneration is a procedure with low incidence of undesirable
somaclonal variation. A lot of minor genes and environ-
mental factors affect regeneration through callus [24]. In
contrast, direct regenerations are more stable, simple and
needs less time to regenerate a large number of plants with
low incidence of somaclonal variation and chromosomal
abnormalities [25]. So, although there was ability to develop
plant regeneration system through indirect multiple shoot
differentiation from callus induced by 2, 4-D and TZD, it was
ignored in this study.

3.2. Direct Multiple Shoots Induction and Multiplication.
After 4 weeks of subculture, various numbers of adventi-
tious shoots/explant sprouted on embryo explants. All the
concentrations of BA facilitated shoot bud differentiation,
but the concentrations were not all the same. BA 3.0 mg/L

showed the maximum number of shoots produced (14.8 ±
0.6) with shoot length (0.6 ± 0.0 cm) (Table 1), whereas BA
at 1 mg/L produced the highest shoot length (2.5 ± 0.5 cm)
observed in the experiment of an average number of shoots
(3.2± 0.7). However, with BA at 2 mg/L, the highest number
of shoots (10 ± 0.4) and shoot length (1.2 ± 0.1 cm) were
achieved. The shoots (10.7 ± 0.8) raised and developed on
5.0 mg/L BA, with length of 0.4 ± 0.1 cm, did not elongate
further. The regeneration frequencies of shoots number and
height declined with an increase in cytokinin concentration
beyond the optimal level. Reduction in number of shoots in
the concentrations higher than optimal level has also been
reported for several woody plants [26]. The marked effect of
BA on shoot formation compared to TDZ as observed in this
study may attributed to its high stability in in vitro cultures
that is in agreement with many authors who reported that
BA has superior shoot induction ability over cytokinins [27].
BA is not easily broken down and therefore persists in the
medium. It is also possible that the amount of BA that got
conjugated in the medium was smaller than what happened
to the other plant hormones. This would then have larger
amount of BA existing in their free or ionized forms and were
readily made available to plant tissues from the medium [28].

Adventitious shoots were inducing on cotyledonary
node, whereas a higher frequency of organogenic tissue
initiation was obtained on hypocotyl-root axis. The thresh-
old concentrations of the growth regulators required for
organogenetic induction and optimal response differed for
different explant parts. Shoot organogenesis was observed
at three distinct sites along the cotyledonary explant with
the highest frequency noted along the basal segment of the
cotyledon to the hypocotyl. In terms of sites of biosynthesis,
high cytokinin levels have been reported to occur in roots,
immature leaves, and apical buds [29]. Sul and Korban [30]
observed that adventitious shoot buds were firstly initiated
along the basal end of cotyledons of P. sylvestris, and then
proceed towards the apical end. A similar observation was
noted here with cotyledons of B. snegalensis. It is likely that
this is the site of active endogenous cytokinin synthesis in-
ducing cell division and differentiation, thus resulting in
a higher level of organogenesis than along other areas of
the cotyledon. Apical meristematic cells in the embryo are
a site for hormone synthesis and occasionally exhibit dif-
ferent needs of plant growth regulators for regeneration in
comparison to other tissues [15]. Meristematic cells in B.
senegalensis produced shoots through adventitious buds for-
mation while at hypocotyle-root axis buds formed through
direct organogenic (Figure 2(a)).

Presence of many types of responses were observed
on explant, especially embryo, and have been reported.
Ebrahimie et al. [24] reported both direct shoot organogen-
esis and somatic embryogenesis on the embryo explants of
Cuminum cyminum. Direct shoot organogenesis occurred on
the meristematic zone, while direct somatic embryogenesis
was observed on the hypocotyl part of the embryo. An
important advantage of direct organogenesis is potential for
maintaining genomic stability of regenerated plants, whereas
regeneration via an intermediate callus phase increases the
possibility of somaclonal variations [31].
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(a) (b) (c)

Figure 2: Plantlets forming from B. senegalensis mature green embryo. (a) Adventitious shoots induction on embryo in MS + BA 3 mg/L
medium after 4 weeks of culture, Bar = 0.30 cm. (b) In vitro rooting of shoots in 1/2 MS + IBA media, Bar = 0.75 cm. (d) An acclimatized
plant under greenhouse conditions, Bar = 0.35 cm.

3.3. In Vitro Rooting of Microshoots. For any microprop-
agation protocol, successful rooting of microshoots is a
prerequisite to facilitate their establishment in soil. Root-
ing occurred sporadically when shoots were transfered to
hormone-free medium or to media containing IBA (Table 2).
Irrespective of media compositions, root initiation was
observed after 1-2 weeks from the transfer. Using this proce-
dure, 67% of shoots were successfully rooted after four weeks
of culturing. The occurrence of root formation on auxin-free
medium may be due to the availability of endogenous auxin
in in vitro shoots. Among all the treatments tried, maximum
number of roots and root length per responsive explant was
observed on medium containing 0.25 mg/L IBA (Table 2;
Figure 2(c)). IBA concentration higher than optimal led to
a decrease in the number of roots and root length per rooted
explant and rooting rate. The root elongation phase is very
sensitive to auxin concentration, and it is inhibited by high
concentration of auxin in the rooting medium [32]. Taiz
and Zeiger [33] (2002) reported that roots may require a
less concentration of auxin to grow, but root growth is
strongly inhibited by its higher level because at this level,
auxin induces the production of ethylene, a root growth
inhibitor. Moreover, Baker and Wetzstein [32] reported that
higher concentration of auxin induces the higher level of
degradative metabolites in tissues thus blocking the regen-
eration process. However, IBA has been shown to be very
effective in root induction in various species of tropical
trees such as Psidium guajava [26], Balanites aegyptiaca
[27], Azadirachta indica [34], and Albizia odoratissima [35].
Nevertheless, after two subcultures (every 4 weeks), when
microshoots were harvested for in vitro rooting, a decline
in rhizogenesis ability was observed (data not shown). The
carry-over effect from cytokinins in the shoot proliferation
medium, especially when using a cytokinin as persuasive as
BA, as is well known, may influence in vitro rooting of excised
microshoots [36].

The in vitro-germinated plants were acclimatized in
soil under shady conditions with a survival rate of 70%

(Figure 2(c)). These plants were phenotypically normal,
healthy, and similar to donor plants. This protocol will be
useful for overcoming seed germination inconveniences and
for rapid multiplication and conservation of B. senegalensis
using zygotic embryo culture.

4. Conclusions

Embryo culture has become a well-recognized and widely
used method to obtain plants from wide crosses whose seeds
generally abort due to failure of germination. In vitro culture
of Boscia will be beneficial for efficient genetic conservation
by organ culture, useful secondary materials production by
cell culture and basic cellular level research for the eluci-
dation of its unique biological character. Microplant prop-
agation through multiple and organogenic shoot formation
is directly induced from B. senegalensis embryo without an
intervening callus. This drastically reduces the duration of
shoot regeneration in vitro.

Abbreviations

BA: 6-Benzyl adenine
2, 4-D: 2, 4-Dichlorophenoxyacetic acid
IBA: Indole-3-butyric acid
NAA: α-Naphthalene acetic acid
MS: Murashige and Skoog
PGR: Plant growth regulator
TDZ: Thidiazuron.
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