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A B S T R A C T

This paper presents an efficient method of shield tunneling reliability analysis using spatial random fields. We
introduced two stochastic methods into numerical simulation. The first one computes the maximal ground surface
settlement using classical statistics, in which the response surface method is utilized to calculate the failure
probability by first-order second moment. Cohesion, internal friction angle, Young's modulus and mechanical
model factor are considered as random variables. The second method is the spatial random fields of aforemen-
tioned three key geotechnical parameters. Using these two methods, similar multiple soil layers are converted into
a stationary random field by local regression as the first step, and then the process is followed by the spatially
conditional discretization of multivariate. Failure probability of maximal ground surface settlement is calculated
by a subset Monte-Carlo Algorithm. This approach is applied into the four-overlapping shield tunnels of the 5th

and 6th metro lines intersecting at Huanhu W Rd station, Tianjin China. The failure analysis results indicated that
classical statistics of geotechnical parameters showing higher variability than spatial random fields, which sub-
stantially support the complex shield tunneling project.
1. Introduction

In recent years, many shield tunneling projects have been built in the
congested urban areas, which often involve excavation of multiple
proximal tunnels. Engineers are required to control the ground surface
settlement caused by tunneling process, which is the prerequisite for
avoiding excavation collapses. Suwansawat and Einstein (2006) used
artificial neural networks to predict the maximal ground surface settle-
ment, which enables us to non-linearly map the input factors into
multi-target recognition. Moreover, Suwansawat and Einstein (2007)
described the settlement troughs over side-by-side or stacked twin tun-
nels using superposition technique. However, experimental results
should be depended on more validations of soil mechanics.

Stability analysis of ground surface settlement due to shield tunneling
process is commonly performed by deterministic approaches (Logana-
than and Poulos, 1998; Pinto and Whittle, 2013; Ibrahim et al., 2015),
and a probability-based unneling analysis is reasonable since it enables us
to consider intrinsic uncertainty of geotechnical parameters (Zhang,
Chen and Huang, 2005; Mollon et al., 2009). Furthermore, spatial vari-
ability is pertinent to the geomaterial due to aleatory and structural
uncertainties that coexist innately (Wang and Zhu, 2016; Wang et al.,
@shu.edu.cn (C. Wang).
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2016). Therefore, probability-based researches are mainly divided into
three categories, which are uncertainty evaluation of geotechnical pa-
rameters, bias estimation of mechanical models, and reliability analysis
of soil mechanics.

Studies show that deterministic analysis of geotechnical parameters
might lead to overestimating safety of shield tunneling process. Thus, the
methods used to reduce the uncertainty, and thereby minimize unfore-
seeable risks, are classified into two sub-categories. The first one adopts
an empirical relation or statistical correlation between the geotechnical
parameters, which include the undrained shear strength and Young's
modulus, and the in-situ or laboratory test results. This is supported by
various researchers in the literature (Ching and Chen, 2007; Cao and
Wang, 2014; Ching et al., 2016; Phoon et al., 2016). The next step is
implemented by field measurements, which are used to reduce the un-
certainty of geotechnical parameters by back analysis (Finno and Cal-
vello, 2005; Hashash et al., 2010; Juang et al., 2012).

Moreover, bias of different constitutive equations varies dramatically
because each model concentrates on the unique mechanical behaviors.
Sakurai (1997) brought field measurements into modeling mechanical
properties of soils and rocks. The author emphasized that the mechanical
model should be calibrated by the back analysis. For instance,
mber 2019
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Fig. 2. Reliability analysis using RSM of classical statistics.
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elastic-plastic model bias of Mohr-Coulomb failure criterion was cali-
brated by his work. Furthermore, Sakurai et al. (2003) identified the
multi-source data and back analysis schema of tunneling process, and
thus, linear and nonlinear soil behaviors are simulated by several me-
chanical models. The best approach is performed consistently in terms of
predictions and measurements. Therefore, reliability analysis would be
considered by the above two basic approaches. For example, Mollon et al.
(2009) analyzed the failure probability of a pseudo shield tunneling case
using First-Order Second Moment (FOSM) in a homogeneous soil layer,
and concluded that cohesion, internal friction angle, and Young's
modulus of surrounding soil mass have significant impacts on ground
surface settlements. Papaioannou and Straub (2012) updated the
displacement reliability of a foundation excavation using spatial vari-
ability of Young's modulus in a uniform soil layer, and it is highlighted by
a Markov Chain Monte-Carlo algorithm to accelerate stochastic simula-
tion (Ching and Chen, 2007). Qi and Zhou (2017) proposed an efficient
Bayesian method for geotechnical parameters using displacements of the
diaphragm. Hence, model factor and measurement errors were assumed
so that the predictions made using the updated geotechnical parameters
are agreed fairly well with the displacements.

Spatial random fields is advantageous because: (1) it transforms non-
stationary soil layers into Gaussian random fields using local regression,
(2) it provides a conditional discretization of multivariate utilizing SGS;
and (3) it efficiently calculates the failure probability using Monte-Carlo
acceleration algorithm.

The 5th and 6th metro lines of four-overlapping shield tunnels are
demonstrated in Tianjin, China. Spatial random fields are employed to
depict the uncertainty of key geotechnical parameters. For comparison,
spatial variability is simplified into classical statistics. Response Surface
Method (RSM) and Monte-Carlo (MC) simulation would be used to
calculate the failure probability. On the other hand, SGS and Subset
Monte-Carlo (SMC) simulation of spatial random fields are utilized for
more efficient calculation.

2. Background

Limit state function G of maximal ground surface settlement induced
Fig. 1. Reliability index is a function of three key geotechnical parameters,
cohesion c(kPa), internal friction angle φ (0) and Young's modulus E(MPa).
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by shield tunneling process is,

G¼ vmax � v; (1)

v¼ χ � δðθÞ; (2)

where, vmax denotes the specialized threshold. v is the theoretically
maximal settlement of the ground surface; model factor χ is the deviation
ratio of actual settlement divided by the prediction; θ denotes the random
variables (e.g., cohesion c, internal friction angle φ and Young's modulus
E); δðθÞ is the maximal settlement of ground surface calculated by for-
ward analysis (e.g., empirical equation, finite element method, and finite
difference method), and the failure probability index β could be repre-
sented by Pf ½G� 0� as shown in Eq. (3). It is pictorially presented by
Fig. 1 (Low and Tang, 2007).

Pf ¼ Φ½ � β�; (3)

where, operator Φ½ ��denotes the cumulative Gaussian distribution.

2.1. Response surface method

According to classical statistics, failure probability with independent
Gaussian variables is given as:

β¼
Gjθ þ

Pn
i¼1

∂G
∂θijθ �ðμθi � θiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
∂G
∂θijθ � σθi

�2s ; (4)

where, θ represents n design points (e.g., θ1;θ2;θ3 ¼ c, φ, E and θ4 ¼ χ),
μθ denotes the mean values, and σθ is the Standard Deviation (SD) vector.
It is worth stressing that non-Gaussian and correlated multivariate could
be transformed into Eq. (4) by necessary probabilistic derivation. RSM is
intended to calculate the failure probability and the design points by
numerical simulation, which commonly uses a quadratic polynomial
without cross terms (Tandjiria et al., 2000; Li et al., 2015), and it has
been applied into various mechanical problems such as slope stability
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and tunneling risk analysis as shown in Eq. (5).

δðθÞ¼ g0 þ
X3

i¼1

aiθi þ
X3

i¼1

biθ2i ; (5)

where, θ1; θ2; θ3 denote the random variables (e.g., c, φ and E); g0, a1; a2;
a3 and b1; b2; b3 are the constant coefficients of quadratic polynomial.
Note that a second-order itemwithout cross terms θiθjði 6¼ jÞ is adopted to
calculate the maximal settlement of the ground surface. In this case,
although a higher-order polynomial could also be applied, the effort
required to obtain the unknown coefficients would increase significantly.

2.2. Algorithm schema

Unknown coefficients g0, a1; a2; a3 and b1; b2; b3 of the quadratic
polynomial are calculated by RSM as shown in Fig. 2. Algorithm is
composed of the following four steps:

(1) Selecting the mean values μc, μφ, μE , and 6 samples μc� 2σc, μE�
2σE and μφ � 2σφ, as well as multiplying χ (i.e., with mean value μχ
and μχ � 2σχ) to calculate the limit state function G as shown in
Eq. (1).

(2) Building 21 linear equationsGi, ci, φi, Ei and χi, i ¼ 1;:::;21, which
helps to solve out the unknown coefficients g0,a1; a2; a3 and b1; b2;
b3 using the least square method.

(3) Denoting initial design points θð0Þ as μθ, obtaining design points
θð1Þ and calculating the failure probability index β1, and replacing
the central points μ1

θ with the design points θð1Þ as shown in Eq.
(4).

(4) And finally, repeating step 3 until convergence is achieved by the
value

��βj �βj�1
�� � ε with the design points θðjÞ.

3. Theory

Spatial random fields emphasize the auto-correlation and cross-
correlation of geotechnical parameters. It could support more accurate
reliability analysis using stationary field, spatially conditional dis-
cretization and stochastic simulation.

3.1. Stationary process

Note that numerical analysis of soil mechanics requires customarily
multiple geotechnical parameters, such as cohesion c, internal friction
angle φ and Young's modulus E, and the number of input variables might
increase if several soil layers are involved, in which case each soil layer
possesses a set of geotechnical parameters. Hence, realization of spatial
random fields always involves the high-dimensional sampling schema.
Therefore, local regression is a common way to obtain a Gaussian field
(Wang et al., 2017). Accordingly, a geotechnical parameter could be
expressed as,

ZðxÞ¼ μðxÞ þ εðxÞ; (6)

where, μðxÞ denotes the stepped-drift of borehole data, and εðxÞ repre-
sents the zero-mean error subjecting to Gaussian distribution. The vari-
ance could adopt the thickness-weighted value of the multiple soil layers
as shown in Eq. (7).

σ2 ¼
PL
i¼1

σ2ðxiÞ �Hi

PL
i¼1

Hi

; (7)
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where, L is the number of soil layers. Hi denotes the corresponding
thickness of the ith soil layer, i ¼ 1; :::;L, and σ2 represents the weighted
variance of a Gaussian field. The spatial variability of a geotechnical
parameter could be depicted by experimental variogram (Matheron and
Armstrong, 1963), which is calculated by residual data εðxiÞ; i ¼ 1; :::; n
as shown below,

γ*ðhÞ¼ 1
2Nh

XNh

i¼1

½εðxi þ hÞ � εðxiÞ�2; (8)

where, h is the lag distance. Nh denotes the paired data number between
ðxi þh; xiÞ to calculate experimental variogram.

There are several well-known theoretical variogram, exponential,
Gaussian, and Spherical models are among the common ones. For
instance, the exponential model is one of them, which is adaptive to the
scenario of longer range, the Gaussian model could depict the reverse
shape of a variogram, whereas the Spherical model (Vanmarke, 1977)
has the advantages of conciseness and robustness; hence it is applied
widely into practice as indicated in Eq. (9).

γðhÞ¼
�
C0 þ C1

�
1:5ðh=aÞ � 0:5ðh=aÞ3� 0 � h � a

C0 þ C1; h > a
; (9)

where, C0 defines the nugget, C0 þ C1 equals the variance σ2 , and a
denotes the range. Fitting package ‘gstat’ of R language (Pebesma, 2004)
would solve out the unknown coefficients from experimental variogram.
Furthermore, the three-dimensional heterogeneity of a geotechnical
parameter would be taken into account by the weighted lag distance h
(Matheron and Armstrong, 1963),

h¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
h1
η1


2

þ
	
h2
η2


2

þ
	
h2
η3


2
s

; (10)

where, η1 equals to 1.0 constantly (i.e., on the horizontal coordinate X1),
η2; η3 are the ratios of the second (i.e., on the horizontal coordinate X2),
third (i.e., on the vertical coordinate X3) ranges a2; a3 divided by the first
range a1.

3.2. Spatially conditional discretization

The difference between random variables and random fields is that
the latter one needs spatial discretization for a stochastic analysis. To this
end, several well-known decomposition methods are implemented. Some
of the decomposition methods have been successfully achieving the un-
conditional discretization include Cholesky decomposition (Dariusz and
Marek, 2004), turning band method (Mantoglou and Wilson, 1982),
Local average method (Zhu et al., 2015), Karhunen-Loeve decomposition
method (Huang et al., 2001) and random harmonic function (Liang et al.,
2013). However, the algorithms used in these methods do not handle
multivariate conditional discretization of spatial random fields.

Let us generalize the SGS for multivariate, in which the bivariate
ε1ðxÞ, ε2ðxÞ are demonstrated (Pebesma, 2004). Known quantity in this
case includes zero-mean values, variance σ2ε1 and σ2ε2 , variogram γ11ðhÞ
and γ22ðhÞ, as well as cross-variogram γ12ðhÞ ¼ γ21ðhÞ. And the prediction
of ε2ðx0Þ is calculated in terms of residual data ε1 and ε2 as shown below,

γ12ðhÞ¼ σε1σε2 �C12 ¼ 1
2
Ef½ε1ðxþ hÞ� ε1ðxÞ�½ε2ðxþ hÞ� ε2ðxÞ�g; (11)

ε*2ðx0Þ¼
Xn1
i¼1

λ1iε1ðxiÞ þ
Xn2
j¼1

λ2jε2
�
xj
�
;

Xn1
i¼1

λ1i ¼ 0;
Xn2
j¼1

λ2j ¼ 1; (12)



(a)

MAD General Driver
(DLL) FLAC3D

Input/Output
functions
(DLL)

Control file
(TXT)

(b)

#variables 6 (index, id_variable, dimension, type, unit)
0 c 3 input kPa
1 phi 3 input o
2 E 3 input MPa
3 zDisp 3 output m
4 index 0 index -
5 measureid 0 measureid -

#dom_properties 1 (type, fileNodes, fileEntities)
Unstructured Grids.txt Elements.txt

#setup_files 2 (id, name, extension, renamefile, arg)
0 MAD-FlAC3D dat y input
1 Output dat y output

#config_tags 1 (tag, variable, layer, file, format, arg)
[c],[E],[Phi] 0 -1 0 Write3PSS #template

#read 1 (variable_id, format, extractionFunction)
3 text Read3PSS

#template 2
model mohr range group {id}
prop cohesion {c}e3 friction {Phi} young {E}e6 range group {id}

Fig. 3. Master-slave framework of connecting open source MAD and commercial software FLAC3D. (a) Controlling schema of the general master driver; and (b)
Configuration template of FLAC3D.
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σ2
2ðx0Þ¼

Xn1
λ1ir12ðxi � x0Þ þ

Xn2
λ2jr22

�
xj � x0

�þ ξ2; (13)

i¼1 j¼1

where, σε1 , σε2 is the SD of variable ε1ðxÞ, and ε2ðxÞ, respectively. C12 is
the covariance, which could be derived by correlation coefficient ρ12
multiplying σε1σε2 . n1 and n2 are the adjacent conditional data. We may
practically confine n1;n2 ¼ 20. Interpolation coefficients λ1i; i ¼ 1; :::; n1
and λ2j; j ¼ 1; :::;n2, Lagrangian coefficients ξ1; ξ2 are determined by the
linear Co-Kriging equations (Eldeiry and Garcia, 2010).
4

Xn1
λ1iγ11ðx1i � xIÞ þ

Xn2
λ2iγ21

�
x2j � xI

�þ ξ1 ¼ γ11ðx0 � xIÞ; I ¼ 1; 2; :::; n1

i¼1 j¼1Xn1
i¼1

λ1iγ12ðx1i � xJÞ þ
Xn2
j¼1

λ2iγ22
�
x2j � xJ

�þ ξ2 ¼ γ22ðx0 � xJÞ; J ¼ 1; 2; :::; n2

(14)

Specific prediction ε2ðx0Þwould be assumed to comply with Gaussian
distributionN½ε*2ðx0Þ; σ2

2ðx0Þ�. And the same conclusion is established to
the prediction ε1ðx0Þ at point x0. In order to obtain a conditional dis-
cretization of the Gaussian fields, SGS denotes the previous samples as



Give statistical characteristics of
residual error

Define a random path j

Sequential Gaussian simulation

3DFLAC
Get conditional discretization of

spatial random fields

totN�Simulation

MAD

Calculate failure probability and
reliability index

Yes No

Build Finite difference grids of soil
mechanics

Pre-defined stepped-drift

Monte-Carlo simulation of
numerical analysis

Get maximal settlement of the
ground surface

Fig. 4. Reliability analysis using MC simulation of spatial random fields.

Fig. 5. The 5th and 6th metro lines are intersecting to Huanhu W Rd Station in Tianjin, China. (a) Two-dimensional alignments; and (b) Three-dimensional layout.
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Table 1
Average values of the basic geotechnical parameters.

Soil layer H/(m) ρ/(kg/
m3)

ν c/(kPa) φ/(	) E/(MPa)

①1 Miscellaneous
fill

2.2 1800 0.3 4.0 7.0 16.0

④1 Silty clay 3.5 1970 0.3 8.0 9.0 30.4
⑥1 Silty clay 5.8 1900 0.3 11.0 15.0 28.4
⑥4 Silty clay 3.1 1950 0.3 15.0 14.0 29.2
⑦ Silty clay 1.6 1990 0.3 15.0 13.0 26.8
⑧1 Silty clay 5.8 1990 0.3 12.0 12.0 44.4
⑨1 Silt 9.0 2010 0.3 16.0 28.0 98.4
⑩1 Silty clay 2.0 2020 0.3 19.0 17.0 33.2
⑪1 Silt 3.0 2000 0.3 16.0 33.0 114.4
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conditional data for a new point simulation. On the other hand, multi-
variate discretization of the spatial random fields is handled by the
Method of Anchored Distribution (MAD) (Rubin et al., 2010; Osor-
io-Murillo et al., 2015), and by communicating with the software
FLAC3D. A general driver is designed innovatively here to link MAD with
FLAC3D according to the master-slave schema as shown in Fig. 3(a). The
configuration of FLAC3D relies on a control file, and several input and
output functions, and the major content of the control file is listed in
Fig. 3(b). Tag #variable informs MAD to link input or output functions,
#dom_properties describes the spatial domain, #setup_files specifies the
input and output files of FLAC3D, and the #config_tags uses the input
function Write3PSS to update the discrete values of spatial random fields
according to the definition of #template, such that FLAC3D could execute
numerical analysis. Finally, tag #read enables output function Read3PSS
to read the analytic predictions of the tunneling measurements. As such,
the algorithm of SGS is depicted as follows:

(1) Getting the residual error ε by subtracting stepped-drift μ from the
borehole data z.

(2) Defining a random path at the midpoints of Kstochastic elements,
if and only if each element could be traversed once a time, con-
ditional data are consisted of the original residual data εi; i ¼ 1;2;
:::; n and the previous realizations εðx1Þ; :::;εðxk�1Þ, k ¼ 1;2; :::;K.

(3) Predicting the mean value ε*1ðxkÞ, ε*2ðxkÞ and variances σ21ðxkÞ, and
σ22ðxkÞ at the midpoint xk given the conditional data εi; i ¼ 1;2;:::;
n, variogram r11ðhÞ, r22ðhÞ and cross-variogram r12ðhÞ.

(4) Building two Gaussian distribution N½ε*1ðxkÞ; σ21ðxkÞ� and N½ε*2ðxkÞ;
σ22ðxkÞ� at the midpoint xk, which enable random sampling to get
one value, and the computed values are used as conditional data
for the subsequent midpoints.

(5) Moving to the next midpoint xkþ1 and repeating the above steps
3–4 until the overall Kstochastic elements are iterated.
Fig. 6. The closest overlapping tunne
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(6) Finishing one full cycle of conditional realization of the spatial
random fields.

3.3. Classical Monte-Carlo Simulation

As mentioned in the preceding section, discretization and reliability
analysis of spatial random fields could not employ RSM because it is only
effective for random variables. Hence, MC simulation of spatial random
fields is run directly on FLAC3D, in which the stochastic elements are
overlapped with the finite difference zones. A detail of the procedure is
presented step-wise as is shown diagrammatically in Fig. 4. And the
sequence includes:

(1) Meshing the finite difference grids, andmaking sure, each element
edge size is smaller than the half of the range, which enables the
discretization to depict the spatial variability of a geotechnical
parameter.

(2) Obtaining second-order stationary Gaussian field through local
regression of the borehole data, which is followed by calculating
the statistical characteristics of multivariate, e.g., mean value,
variance, ranges and cross-correlations, and taking the residual
values of the geotechnical parameter as the conditional data.

(3) Generalizing SGS algorithm into multivariate discretization, thus
the residual error values would fluctuate around the stepped-
drifts.

(4) Invoking FLAC3D with the pre-assigned stepped-drifts, and setting
the additional variations of the residual error.

(5) Stochastically calculating the maximal ground surface settlement
induced by shield tunneling process.

(6) Repeating steps 3–5 until the simulation number Ntot of MC al-
gorithm is achieved.

(7) Sequentially calculating the failure probability according to the
maximal threshold of ground surface settlement.

It is worth noting that if the failure probability equals to Pf ¼ 1�
10�k, where k is the amplitude of the ten-based exponent, MC algorithm
needs to randomly simulate as many as a total of Ntot � 1� 10kþ2 times,
otherwise this task becomes quite difficult to be accomplished or prac-
tically impossible.

3.4. Subset Monte-Carlo simulation

SMC simulation belongs to acceleration sampling algorithm based on
Markov chain theory (Papaioannou and Straub, 2012). Systemic failure
event F could be denoted by a continuous cascade multiplication of M
failure events in a probabilistic space,
l section I-I with borehole data.z



Table 2
Mechanical parameters of the concrete segment and shield machine shell.

Elastic material ρ/(kg/m3) Poisson ratio ν E/(MPa)

Concrete segment 2450 0.17 2.1�104

Shield machine shell 8000 0.22 2.06�105
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F¼ IMi¼1Fi: (15)
Furthermore, joint probability of a systemic failure is derived,

Pf

�
IMi¼1Fi

�¼Pf

�
F1

�YM
i¼2

Pf

�
Fi

��Fi�1

�
: (16)

Thus, the systemic failure could be denoted by G � 0 in Eq. (1). And
cascade failure events are defined as Fi ¼ fG� gig, i ¼ 1;:::;M, g1 > ::: >

gi > ::: > gM � 0. Limit state function value gicorresponds to the failure
ratio p0 of subset samples. It is worth mentioning that the initial failure
probability Pf ðF1Þ is calculated directly by the MC simulation, and in the
steps:

(1) Calculating the probability Pf ðF1Þ of the initial failure events.
Taking N stochastic simulation to calculate the limit state function
G. gi equals to the fgi : i¼ 1; :::;Ng of the sequence ½ð1 � p0ÞN�, in
which case the failure ratio p0 and simulation N of the subset al-
gorithm are determined by the trial-and-test procedure.

(2) In the first step of calculating the failure probability, Pf ðF1Þ,
samples of i > p0N should subject to G � g1. Moreover, the above
p0N samples are considered as the subset seeds (i.e., conditional
Fig. 7. Numerical analysis schema. (a) Three-dimensional model; (b) Two-dimension
between three-dimensional model and two-dimensional model.
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data) into calculating the consequent failure probability Pf ðF2Þ, in
which the SGS algorithm would generate other ð1�p0ÞN realiza-
tion given the above conditional data.

(3) Repeat the above SMC simulation to iteratively calculate the
failure events F3; F4; :::; FM until gM � 0, and the systemic failure
probability approximates to,

Pf ðFÞ � Pf ðF0ÞM�1Pf ðFM jFM�1Þ; (17)

where, failure probability Pf ðFM jFM�1Þ equals to the samples of GM � 0
divided by the subset quantity N at the last step. In order to approach the
failure probability Pf ¼ 1� 10�k, classical MC algorithm needs total
Ntot ¼ 1� 10kþ2 samples, and when the SMC algorithm is implemented,
it improves the effective sample size as shown in Eq. (18),

Ntot � kð1� p0ÞN þ N: (18)

4. Example

The 5th and 6th metro lines are intersected at Huanhu W Rd station
with four shield tunnels in Tianjin, China (i.e., as shown in Fig. 5a), where
the central lines twist and overlap with each other in a narrow under-
ground space that provides convenience for passenger exchange (i.e., as
shown in Fig. 5b). At this site, there is a traffic artery and densely packed
residential buildings above the subway zone. Hence, quantitative set-
tlement analysis of the ground surface would effectively prevent con-
struction risks. There are two typical interval sections of shield tunneling
between Huanhu W Rd station and Binguan W Rd station, which include
al model; (c) Shield tunneling process; and (d) Predicted settlement comparison



Fig. 8. Sensitivity analysis of the key variables to the soil-structure mechanics.
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the overlapping-section I-I and crossing-section II-II. The study concen-
trates on section I-I due to its larger tunneling disturbance compared with
section II-II.
4.1. Basic design information

Site investigation report provides 84 groups of geotechnical param-
eters (e.g., c,φ and E) from the consolidated-undrained triaxial tests for
which the basic soil properties are presented in Table 1. Shield tunnels
are designed into 6 reinforced concrete segments as shown in Fig. 6. The
inner and outer diameters is adopted by 5.5m and 6.2m, respectively.
Table 2 shows the elastic properties of shield machine shell, the concrete

Table 3
Borehole data of the key geotechnical parameters in section I-I.

Borehole data
(Conditional data)

Coordinates c(kPa) φ(o) E(MPa)

x1(m) x2(m) x3(m)

z1 40.
000

1.
000

-1. 100 1. 0 6. 4 11. 5

z2 40.
000

1.
000

-3. 950 8. 7 5. 9 34. 4

z3 40.
000

1.
000

-8. 600 10. 2 16.
9

36. 0

z4 40.
000

1.
000

-13.
050

16. 5 14.
4

33. 9

z5 40.
000

1.
000

-15.
400

13. 8 12.
0

33. 5

z6 40.
000

1.
000

-19.
100

11. 2 8. 8 46. 7

z7 40.
000

1.
000

-26.
500

16. 5 28.
3

104. 9

z8 40.
000

1.
000

-32.
000

19. 2 16.
5

32. 4

z9 40.
000

1.
000

-34.
500

15. 0 35.
1

105. 0

8

segment, and Young's modulus of the segment juncture which is reduced
to 70% of the normal value.

4.1.1. Numerical analysis schema
Software FLAC3D (Itasca, 2013) is employed to simulate the shield

excavation. Numerical excavation moves 2.0m forward at each step, and
the tunneling pressure of the bottom and top face is kept at 240kPa and
140kPa, respectively. In this situation, the penetration rate adopts 3 h per
ring, and the Grout pressure is maintained at 300kPa of the surrounding
0.2m soil mass. The unfilled gaps in the shield tail are assumed as 20%
and are considered to be circularly homogenous void, in which low hy-
draulic conductivity is assigned.

Three-dimensional simulation of soil-structure interaction is shown in
Fig. 7(a). The process is very time consuming, four-tunnel excavation
analysis of 25mwould spend 24 h on a desktop computer with 6 cores i7-
4790 CPU at 3.6 GHz. From the time-saving aspect, two-dimensional
model is consisted of 5926 nodes and 2880 hexahedral elements as
shown in Fig. 7(b), which is only needed 6 min to analyze the closest
section I-I. The width and depth adopted for the excavation model is 80m
and 36m, respectively; and the meshes around the tunnels are more
refined to reduce possible computation errors due to the large displace-
ment gradients in the core areas. Horizontal restraints are set to the left
and right, front and back boundaries, and total restraints are set for the
bottom boundary.

The tunneling process consisted of four stages as shown in Fig. 7(c):
soil removal, shield enclosure, shield tail separation, and segment liner
assembly. The Mohr-Coulomb failure criterion is introduced to simulate
the soil behavior. Although more complicated models, e.g., stiffness
hardening soil model (Finno and Calvello, 2005) and models considering
the consolidation process have been proposed to simulate the geo-
mechanics under excavation conditions, but more input quantities are
required which make the stochastic analysis more time-consuming.
Nevertheless, Mohr-Coulomb failure criterion is used commonly for



Fig. 9. Gaussian characteristics of the key geotechnical parameters. (a) Stepped-mean curves �3 time standard deviation of cohesion c(kPa); (b) Stepped-mean curves
�3 time standard deviation of internal friction angle φ(o); (c) Stepped-mean curves �3 time standard deviation of Young's modulus E(MPa); and (d) 1000 random

predictions of maximal ground surface settlement in the case of the first shield tunneling step, threshold is adopted vð1Þmax ¼ 10mm.

Table 4
Statistical characteristics of the spatial random fields.

Variable μðx3Þ σ2 a1 ¼
a2(m)

η3 Correlation coefficient ρ

c(kPa) φ(o) E(MPa)

c/(kPa) μcðx3Þ 1.32 20 0.404 1 -0.170 -0.157
φ/(

	
) μφðx3Þ 2.02 20 0.171 -0.170 1 0.155

E/(MPa) μEðx3Þ 6.02 20 0.390 -0.157 0.155 1
χ 0.749 0.1032 - - - - -
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solving many excavation problems (Chowdhury et al., 2013; Orazalin
et al., 2015). Furthermore, Juang et al. (2018) reported the uncertainty of
the model in geotechnical engineering and indicated that complex model
does not always outperform a simple one. As a result, simple geotechnical
parameters are often commonly used for Mohr-Coulomb failure criterion,
and for this reason they are measured from the current site investigation.
Fig. 7(d) indicates that two-dimensional model could subrogate the
three-dimensional one to predict the ground surface settlements induced
by shield tunneling process, which depends on the equivalent
stress–releasing principle. The relative prediction error would be limited
into less than 3%.

4.1.2. Sensitivity analysis
Sensitivity analysis is performed by the three-dimensional model,

cohesion c, internal friction angle φ, Young's modulus E, Poisson ratio ν,
unit density ρ, porosity n, hydraulic conductivity K and penetration speed
s are considered. The calculated deterministic results are depicted in
Fig. 8, in which vertical lines represent the minimal and maximal values
of the ground surface settlement caused the first shield tunnel. The in-
fluence of top-three geotechnical parameters are drawn: Young's
modulus E, cohesion c and internal friction angle φ, thus which are
denoted as spatial random fields whereas the values of other geotechnical
parameters are kept to be constant.

4.1.3. Statistics of the spatial random fields
section I-I is denoted as the most dangerous overlapping case. Except

for the general site investigation, there is one additional borehole to
provide conditional data z for the key geotechnical parameters as shown
in Table 3. Nine similar soil layers exist in the background project, i.e.,
9

miscellaneous fill, silty clay, silt, and silty clay from the surface to bot-
tom. Fig. 9(a), (b) and (c) represent the three stepped-drift curves μcðx3Þ,
μφðx3Þ and μEðx3Þ�3 time σc, σφ and σE along the vertical coordinate X3.
Fig. 9(d) shows 1000 random predictions of maximal ground surface

settlement according to the classical statistics, and threshold vð1Þmax ¼
10mm. It is obvious that uncorrelated Gaussian distributions of the three
key geotechnical parameters would result in a smaller failure probability
(i.e., 3% odds of risk) than the real correlations with ρc;E ¼ � 0:157,
ρc;φ ¼ �0:170 and ρE;φ ¼ 0:155.

Table 4 lists the statistical characteristics of the spatial random fields,
which includes the key geotechnical parameters and model factor. The
initial reconnaissance report provided the mean value, variance,
maximum and minimum of the nine soil layers, and the statistical char-
acteristics of spatial random fields, e.g., vertical range ratios½η3ðcÞ;η3ðφÞ;
η3ðEÞ�, correlation coefficients ½ρðc;φÞ; ρðc;EÞ; ρðφ;EÞ� and model factor χ
come from a Bayesian analysis that assimilated the borehole data and
monitoring measurements. Consequently, the classical statistics, spatial
random fields would be used to calculate the failure probability of the



Fig. 10. Failure probability of the first shield tunneling step with the key variables (i.e., c, φ, E and χ) using RSM of classical statistics. (a) Impacts of ρc;φ between
cohesion c(kPa) and internal friction φ(o); (b) Impacts of ρφ;E between internal friction angle φ(o) and Young's modulus E(MPa); (c) Impacts of ρc;E between cohesion
c(kPa) and Young's modulus E(MPa); and (d) Impacts of model factor χ.
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maximal ground surface settlement.
4.2. Results and discussion

Based on the local experience of shield tunneling control in Tianjin,
China, the upper limit of the first shield tunneling induced ground set-

tlement is adopted the threshold with vð1Þmax ¼ 10mm, and it is increased

by 5mm for each shield tunneling step until it reaches vð4Þmax ¼ 25mm.

4.2.1. Reliability analysis using classical statistics
Mollon et al. (2009) illustrated that the failure probability decreases

3%–10% when the corresponding geotechnical parameters c and φ are
considered as negatively correlated variables comparing with uncorre-
lated assumption. Hence, Fig. 10 shows the failure probability variation
of the first shield tunnel, the final result equals to β ¼ 2:81 with the
stepped-drifts: μcðx3Þ, μφðx3Þ, μEðx3Þ, the SD are σc, σφ, and σE , the cor-
relation coefficients are ρc;φ ¼ � 0:170, ρc;E ¼ �0:157 and ρφ;E ¼ 0:155.
Fig. 10(a) discussed the failure probability β which changes with the
correlation coefficient ρc;φ between c and φ. Let ρc;φ change from -0.5 to
0.1, the value of ρφ;E varies between -0.5 to 0.8 as shown in Fig. 10(b),
and ρc;E changes between -0.4 to 0.1 as shown in Fig. 10(c). Influences of
geotechnical parameters to failure probability, from the smallest to the
largest impacts are cohesion c, internal friction angle φ, and Young's
modulus E. Fig. 10(d) demonstrates the variability of failure probability
10
corresponding to the model factor χ, which dramatically impacts on the
failure probability β. These results reach the minimum requirement of
Chinese reliability specification, in which the failure probability β should
be at least greater than 2.70.

4.2.2. Reliability analysis using spatial random fields
Comparison of failure probability for the first shield tunnel in terms of

classical statistics and spatial random fields is depicted in Fig. 11. RSM
and MC simulations are adopted by classical statistics, whereas SMC
simulation is used for spatial random fields. Accordingly, Fig. 11 (a), (b)
and (c) present the conditionally spatial realization of c,φ and E,
respectively. To validate the effectiveness of RSM, the MC algorithm is
taken 100,000 simulations to calculate the failure amplitude at Pf ¼ 1�
10�3, which has been spending for 11 days and 14 h to finish compu-
tation. Furthermore, the differences of failure probability are displayed in
Fig. 11(d). There are subtle disparities among βUncorRSM ¼ 2:84, βCorrRSM ¼ 2:81
and βCorrMC ¼ 2:77 (i.e., Pf ¼ 2.5%) in which RSM overestimates 2.0%
more than the estimation of MCmethod. It is important to emphasize that
this saves 99% running time. Failure probability βCorrSMC ¼ 3:15 is obtained
by SMC algorithm of spatial random fields, which is obviously larger than
the results of the classical statistics. More importantly, the SMC algorithm
took 2,300 stochastic calculations, which is only consumed 2.5% running
time comparing with the MC algorithm.

Two optimal parameters are needed in SMC algorithm: failure ratio p0
and subset scale N, and efficiency is presented in Fig. 12(a). Results is



Fig. 11. Failure probability of the first shield tunneling step using classical statistics and spatial random fields. (a) Spatially conditional realization of cohesion c(kPa);
(b) Spatially conditional realization of internal friction angle φ(o); (c) Spatially conditional realization of Young's modulus E(MPa); and (d) Failure probability of the
maximal ground surface settlement according to different simulation methods, RSM, MC and SMC algorithms.
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affected by Factor p0 more than parameter N does. The best parameters
are p0 ¼ 0:1 and N ¼ 500, and the corresponding result is βSMC ¼ 3:15.
Calculation precision of failure probability from spatial random fields to
classical statistics is depicted by Fig. 12(b), the β value decreases
dramatically when the range value α3 of the spatial random fields in-
creases. This conclusion coincides with the results of classical statistics
when range equals to 20m. In other words, random variable is a partic-
ular scenario of spatial random field when the range becomes large
enough, which proves that more conservative strategy is adopted by the
classical statistics whereas the spatial random fields provides more ac-
curate predictions. Finally, the stepwise calculations of the failure
probability for both methods are presented in Fig. 13. It should be noted
that all of the results reaching the Chinese specification limits between
2.70 to 4.20, and the failure probability converges to a stable value
immediately after the second tunnel excavation.

5. Conclusions

In the current study, spatial random fields are used to depict the
uncertainty propagation of geotechnical parameters, and they are uti-
lized to calculate the failure probability of the 5th and 6th metro lines
intersecting at Huanhu W Rd station, Tianjin China. Based on the anal-
ysis, the following major conclusions are synthesized:
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(1) Surface response method could efficiently calculate the failure
probability using first-order second moment, and the result ap-
proximates the output of Monte-Carlo Simulation of classical
statistics.

(2) Local regression could establish a Gaussian stationary field for
multiple soil layers, in which case, variogram and cross-variogram
could fully depict the spatial variability of key geotechnical
parameters.

(3) Sequential Gaussian simulation could take out multivariate real-
ization of spatial random fields, and subset Monte-Carlo algorithm
would efficiently calculate failure probability.

(4) In the application of an overlapping shield tunneling project, the
cohesion c, internal friction angle φ, Young's modulus E, and the
mechanical model factor χ are determined as unknown variables,
In which case, spatial random fields evaluate the failure proba-
bility of maximal ground surface settlement between βmin ¼ 2:70
to βmax ¼ 4:20 during the shield tunneling excavations. The final
breakthroughs were successfully supported by the results.

Prior knowledge of geotechnical parameters, which plays a critical
key role in the early stages of shield tunneling excavation, will be studied
in our upcoming research paper.



Fig. 12. Failure probability of the first shield tunneling step in terms of SMC
parameters p0, N and vertical range α3(m). (a) Impacts of subset parameters p0
and N; and (b) Impacts of vertical range α3(m) of the key geotech-
nical parameters.

Fig. 13. Failure probability of the maximal ground surface settlement is
continuously predicted by the key variables (i.e., c, φ, E and χ) following the four
tunnel excavations.

B. Hu, C. Wang Heliyon 5 (2019) e02495
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