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Most ‘‘omics’’ experiments require comprehensive interpretation of the biological meaning of gene
lists. To address this requirement, a number of gene set analysis (GSA) tools have been developed.
Although the biological value of GSA is strictly limited by the breadth of the gene sets used, very
few methods exist for simultaneously analysing multiple publically available gene set databases.
Therefore, we constructed GeneSetDB (http://genesetdb.auckland.ac.nz/haeremai.html), a compre-
hensive meta-database, which integrates 26 public databases containing diverse biological informa-
tion with a particular focus on human disease and pharmacology. GeneSetDB enables users to search
for gene sets containing a gene identifier or keyword, generate their own gene sets, or statistically
test for enrichment of an uploaded gene list across all gene sets, and visualise gene set enrichment
and overlap using a clustered heat map.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction intersection with biologically relevant gene sets than expected
With the rapid development of high-throughput measurement
technologies such as next generation sequencing and microarrays,
biologists can easily analyse cells and tissues on a whole-genome
scale. To make biological sense of the results of these analyses,
biologists usually need to comprehensively interpret the biological
meaning of gene lists. These gene lists may for example represent
mRNAs co-regulated by a drug or experimental condition. Deter-
mining whether the members of a gene list share biological fea-
tures has been made more important by the recent realisation
that the expression of transcription factor target sets [1] or RNAs
encoding proteins of similar function [2,3], are more often corre-
lated than would be expected by chance. These correlated groups
of functionally related RNAs appear to be tissue-specific and con-
served across evolution [4,5]. For these reasons, genomics
researchers find it valuable to analyse gene sets as well as individ-
ual genes [6,7] and gene set analysis (GSA) is frequently employed
when interpreting genomic data. GSA statistically assesses
whether experimentally identified gene lists have a larger
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due to chance.
A number of GSA tools have been proposed and used success-

fully over the past decade [7]. However, most of these tools focus
on identifying or visualising statistically significant gene set
enrichment in one gene set database at a time. There are a fewer
published reports of simultaneous analysis of multiple biologically
distinct gene sets databases and their cross-visualisation. This is
despite the fact that the gene sets employed critically limit the re-
sults of any GSA, and affect these results just as much as the statis-
tical analysis methodologies used [7]. At present, Gene Ontology
(GO) [8] is used as a ‘‘gold standard’’ gene set by many GSA tools
[7]. However, many biologists would prefer to perform GSA using
a single meta-database that allowed the statistically robust inter-
rogation of GO and many other types of gene sets databases simul-
taneously, followed by a cross-visualisation of the results. A few
GSA meta-databases (some embedded within specific GSA tools)
have already been generated, like ConceptGen [9], DAVID [10],
GATHER [11], GeneSigDB [12], MSigDB [13], and WhichGenes
[14]. These are very useful resources/tools for GSA. In addition to
these tools, there are several commercial products that allow vari-
ations of GSA but due to their cost these are not available to many
academic researchers. However there remain no databases that are
specifically designed for GSA and provide a searchable interface
with full coverage of the available pathway, medical and pharma-
cological datasets.

Therefore, in order to allow comprehensive GSA across multiple
databases of different types, we have constructed GeneSetDB, a
lsevier B.V. All rights reserved.

http://www.genesetdb.auckland.ac.nz/haeremai.html
http://dx.doi.org/10.1016/j.fob.2012.04.003
mailto:h.araki@auckland.ac.nz
mailto:c.knapp@auckland.ac.nz
mailto:p.tsai@auckland.ac.nz
mailto:c.print@auckland.ac.nz
http://dx.doi.org/10.1016/j.fob.2012.04.003
http://www.elsevier.com/locate/febsopenbio


Table 1
Sources databases included in GeneSetDB.

Subclass Name Sources database Reference/URL

Pathway Biocarta http://www.biocarta.com
EHMN [15]
HumanCyc [16]
INOH [17]
NetPath [18]
PID [19]
Reactome [20]
SMPDB [21]
Wikipathways [22]

Disease/Phenotype CancerGenes [23]
HPO [24]
KEGG Disease [25]
MethCancerDB [26]
MethyCancer [27]
MPO [28]
SIDER [29]

Drug/Chemical CTD [30]
DrugBank [31]
MATADOR [32]
STITCH [33]
T3DB [34]

Gene Regulation MicroCosm Targets [35]
miRTarBase [36]
Rel/NF-jB target genes http://bioinfo.lifl.fr/NF-KB
TFactS [37]

GO Gene Ontology [8]
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comprehensive meta-database integrating 26 public databases.
GeneSetDB allows users to identify and download the intersection
between an individual gene or a gene list and gene sets in 26 dat-
abases. Moreover it allows users to statistically analyse the degree
of enrichment of their gene list in gene sets and cross-visualise this
enrichment in a clustered heatmap based on the overlap between
the enriched gene sets.

2. Materials and methods

2.1. Gene set building

Data was downloaded from each source database with permis-
sion. Source databases were classified into five subclasses based on
Fig. 1. Database structure and analysis scheme. The gene sets are downloaded from sou
source databases and the input gene list are converted into Entrez Gene ID using Biocon
the database content: Pathway, Disease/Phenotype, Drug/Chemi-
cal, Genes Regulation and Gene Ontology (Table 1). Since different
gene/protein identifiers are used in each database, Entrez gene ID
was used as a representative identifier in GeneSetDB. The Biocon-
ductor (http://www.bioconductor.org/) or biomaRt [38] bioinfor-
matic resources were used in this identifier conversion.
GeneSetDB is based primarily on human data; however, it supports
mouse and rat gene lists by using the information in NCBI
HomoloGene.

2.2. Enrichment analysis

In general, enrichment analysis/overrepresentation analysis is
the statistical assessment of whether input gene list has a larger
intersection with biologically relevant gene sets than expected by
chance. GeneSetDB uses the hypergeometric distribution to calcu-
late the probability of overrepresentation (shown as P-value). The
calculation of this P-value is followed by multiple testing correc-
tion use the Benjamini and Hochberg method [39], the result of
which is shown as a false discovery rate (FDR). Gene sets with less
than 10 or more than 500 genes are not used in the enrichment
analysis. The reference (background) gene set was the set of Entrez
gene IDs that have at least one annotation in the union of the gene
sets used in the analysis (e.g. Subclass Pathway, GO, etc.). The gene
sets shown on the results page can be filtered based on FDR. Gene-
SetDB allows the use of several types of identifier for the input
gene list, including official gene symbols and commercial micro-
array probe IDs. Each input identifier is converted to an Entrez
gene ID using the Bioconductor or biomaRt resources [38]. Gene-
SetDB allows visualisation of gene set overlap with the submitted
gene list in a clustered heatmap. The heatmap colors show the pro-
portion of overlap between the gene sets.

2.3. Implementation

All gene sets are stored in a MySQL database management sys-
tem, and the web interface is implemented using Apache, PHP,
Javascript and HTML. The statistical package R is used for statistical
calculations and for drawing clustered heatmaps. To use Gene-
SetDB users can paste gene lists into the web interface or upload
rce databases and deposited into a MySQL database. All gene identifiers of both the
ductor or biomaRt.

http://www.bioconductor.org/
http://www.biocarta.com
http://www.bioinfo.lifl.fr/NF-KB


Table 2
Feature comparison between GeneSetDB and existing databases.

Feature GeneSetDB ConceptGen [9] DAVID [10] MSigDB [13] WhichGenes [14]

Pathway database # 9 3 6 7 3
Disease/Phenotype database # 7 1 2 2a 4
Drug/Chemical database # 5 1 0 1a 1
Whole data downloadable Yes No Yes Yes No
Making of original gene set Yes No No Yes Yes
Gene/gene set intersection map No Yes Yes Yes No
Gene set/gene set intersection map Yes No No No No
Organismsb Hs, Mm, Rn Hs, Mm, Rn Over 65000 species Dr, Hs, Mm, Mmu, Rn Hs, Mm

a Including original curated datasets.
b Dr: Danio rerio, Hs: Homo sapiens, Mm: Mus musculus, Mmu: Macaca mulatta, Rn: Rattus norvegicus.

Fig. 2. Top screen of GeneSetDB. Users can query gene names or biological terms in
‘‘gene/gene set search’’ and ‘‘gene list in enrichment analysis’’ modes. Users can also
select a subclass of gene sets and database names if they wish to conduct a focused
analysis. In the enrichment analysis mode, GeneSetDB allows the use of several
gene identifier types (e.g. commercial probe IDs). FDR can be used to filter the gene
sets shown in the results.
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a gene list text file. Results can be downloaded to the user’s com-
puter as a file or visualised in tables through a web browser. Gene-
SetDB is scriptable over the internet to allow its use by
bioinformaticians from within other software such as R (see the
Help page on GeneSetDB web site for mode details). The database
structure and analysis scheme is visually described in Fig. 1.

3. Results

Currently, GeneSetDB contains nine Pathway databases, seven
Disease/Phenotype databases, five Drug/Chemical databases, four
Gene Regulation databases and GO (Table 1). Table 2 shows the
breadth of coverage of GeneSetDB compared to examples of cur-
rently available gene set meta-databases. This comparison sug-
gests that GeneSetDB may cover a wider variety of biomedical
features (especially human disease pathways and pharmacology)
than some other databases. GeneSetDB also allows researchers to
assemble their own original gene sets from these pre-existing gene
sets, similar to the tools Gene Set Builder [40] and WhichGenes
[14]. When performing enrichment analysis with GeneSetDB, users
can choose combinations of one or more database subclasses
(Pathway, Disease/Phenotype, Drug/Chemical, Gene Regulation
and Gene Ontology), or any of the 26 individual databases as back-
end annotation depending on their research question (Fig. 2). Users
can also generate a heatmap based on the intersection between the
enriched gene sets with one another.

3.1. Description of the gene/gene set search function

GeneSetDB can be queried by gene name (e.g. FOXL2) or by a
descriptive term, such as a disease, drug name or general biological
term (e.g. melanoma, gleevec, cell cycle). The user can select sub-
class of database if their interest is specific (Fig. 2). For example,
if they want to identify drugs targeting a specific gene, they can se-
lect the ‘‘Drug/Chemical’’ subclass in gene/gene set search. Gene-
SetDB provides three search functions: ‘‘Exact match’’, ‘‘Phrase
search’’, and ‘‘Similar pattern search’’, which allow for broader key-
words’ matches. These functions are available only for Gene/Gene
Set Search. The retrieved result lists the identifier and types of gene
set, their sources and their constituent genes (Fig. 3). A gene set
name is hyperlinked to the original data source if the original data-
base’s identifier is available. The result of gene/gene set searches
can be downloaded as tables as well as viewed as tables in a web
browser window. This enables users to make and save original
gene sets, which can be used as the backend annotation in their
own enrichment analysis.

3.2. The enrichment analysis function: an example where GeneSetDB is
used to identify drugs related to the disease Systemic Lupus
Erythematosus

New drugs are urgently needed for the treatment of autoim-
mune diseases like Systemic Lupus Erythematosus (SLE) [41].
Therefore we used the enrichment analysis function in GeneSetDB
to identify drugs that target molecules and molecular pathways
associated with SLE. We used a gene list from Alcorta et al.’s
Affymetrix microarray analysis, which compared mRNA abun-
dance in the leukocytes of patients with SLE to mRNA abundance
in the leukocytes of healthy donors [42]. This experiment identified
205 SLE-associated Affymetrix probe sets, which we found mapped
to 153 unique mRNAs using the NetAffix Annotation Update 32
(Supplementary Table 1). These 153 SLE-associated genes were
investigated by enrichment analysis using the ‘‘Drug/Chemical’’
subclass of GeneSetDB. This identified 10 drug/chemical-associ-
ated gene sets for which the 153 SLE signature genes were signif-
icantly enriched (FDR < 1e-05; Fig. 4). Seven out of these 10 drugs/
chemicals were related to autoimmune disease (data not shown).
GeneSetDB generated a heatmap with clustering based on the pro-
portion of overlapping genes between the enriched gene sets



Fig. 3. Gene/gene set search result. GeneSetDB shows subclass of gene set, gene set name, source database, the number of genes in corresponding gene set and gene names
(first 10 genes). User can see all gene names in a downloadable text file. A gene set name is hyperlinked to the original database if the original database’s identifier is available.
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(Fig. 4). This heatmap contained two major clusters – one cluster
included 2-xylene, ethylbenzene, trichloroethylene and toluene,
which are environmental factors triggering SLE while the other
cluster included chlorophyllin, plant extracts, polyinosinic-poly-
cytidylic acid (poly(I:C)) and Zidovudine, which are associated
with host response to viral infections. This type of analysis may
potentially be useful for generating hypotheses for drug reposi-
tioning projects.

3.3. The enrichment analysis function: an example where GeneSetDB is
used to identify the biological meaning of gene lists generated in
human endothelial cell apoptosis microarray experiments

We applied GeneSetDB to a list of 79 Affymetrix probe sets that
were differentially expressed when endothelial cells (EC) were in-
duced to undergo apoptosis [43]. When this probe set list was ana-
lysed by our research group several years ago using a combination
of the GO and manual annotation from the published literature,
genes encoding proteins important for apoptosis, cellular stress,
cell cycle, transcription, coagulation, and proteosomal degradation
were identified [43]. When the gene list was re-analysed in Sep-
tember 2011 using the GATHER web tool [11] with default settings,
additional associations were identified with cell signalling, NF-jB-
related gene sets, and others (Supplementary Tables 2a–d). The
GATHER web tool provided extremely useful information and
was an easy-to-use screen for biological associations for this 79
probe list. When this gene list was re-analysed using GeneSetDB,
we observed enrichment for many of the gene sets previously iden-
tified using manual annotation and GATHER analysis. However,
GeneSetDB also identified additional biologically relevant gene
set enrichment, especially related to drugs, molecular pathways
and diseases (Supplementary Table 3). For example, as found with
the previous manual literature and the GATHER analysis, Gene-
SetDB identified regulated activity of the NF-jB1 transcription.
However, GeneSetDB highlighted several additional gene sets asso-
ciated with upstream regulation of NF-jB activity including: TAK1,
RANKL, TNF-a, Interleukin 1 and TNF-like death receptors.
GeneSetDB also identified several drugs associated with EC
proliferation and apoptosis including NF-jB activation inhibitor,
thalidomide (a drug known to regulate apoptosis and the growth
of new blood vessels [44]) and Vinblastine (a drug known to affect
EC apoptosis [45]). Additional gene sets associated with canonical
signalling pathways and diseases of blood vessels were also identi-
fied by GeneSetDB including the vascular endothelial growth factor
(VEGF) pathway (VEGF is an important endothelial cell survival
factor [46]), and abnormal neo-vascularisation.

Heatmap clustering using the ‘‘Pathway’’ subclass of GeneSetDB
divided gene sets associated with EC apoptosis into two major
groups, relevant to the cell cycle and relevant to signal transduc-
tion (Supplementary Fig. 1). In summary, GeneSetDB analysis pro-
vided detailed new leads about the molecules involved in EC
apoptosis, diseases that may share these molecular relationships,
and drugs that may modulate the apoptotic process.

4. Discussion

We suggest that GeneSetDB is a useful addition to available GSA
tools, for both experimental and computational biologists. It is
equally applicable to several omics technologies such as: expres-
sion microarrays, RNAseq and ChIP on Chip. It enables researchers
to simultaneously compare experimentally-derived or in silico-de-
rived gene lists to gene sets from 26 databases that cover five bio-
logical categories. Users can also choose to use only a subset of the
gene sets contained in GeneSetDB, according to their research pur-
poses, in order to focus on the most relevant results for their par-
ticular analysis, and in order to speed up the statistical
calculations. GeneSetDB also includes novel clustered heatmap
visualisation capabilities that facilitate visual understanding of
the enrichment analysis. Computational biologists can script their
access to GeneSetDB, and download the meta-gene sets related to
their in silico work or to benchmark or validate additional GSA
tools. We show that GeneSetDB identifies biologically relevant



Fig. 4. Enrichment analysis result of SLE signature genes. Enrichment analysis identifies the gene sets meeting a user-assigned FDR and generates a clustered heatmap based
on the overlap proportion of genes between the gene sets. The overlap between the top 30 gene sets ranked by FDR, and between these gene sets and the submitted gene list,
are shown in a clustered heatmap.
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information about two gene lists that could not be identified using
other currently available tools, and that it compliments these tools.
However, there are limitations to using GeneSetDB. Since Gene-
SetDB particularly focuses on human disease and pharmacology,
it may not be suitable for the study of microbiology or plant biol-
ogy. Users having interest in such fields should consider addition
GSA tools, which cover wide range of organisms (e.g. DAVID or oth-
ers listed in [7]). As for the functional aspects, GeneSetDB uses the
hypergeometric distribution to calculate the significance of over-
representation. This type method requires pre-selection of genes
(e.g. differentially expressed genes between disease and control
samples), and the results of course depend on the criterion used
for pre-selection. If users do not want to pre-select genes, Gene
Set Enrichment Analysis (GESA), which does not require pre-selec-
tion of genes [47], integrated with MSigDB will be especially
useful.

In conclusion, although GSA is nowadays a standard omics anal-
ysis tool, the wide range of gene set databases that are now publi-
cally available is poorly exploited due to our limited ability to
analyse these databases together, especially databases related to
drugs and human disease. This limitation is especially important
for biological researchers who do not have access to expensive
commercial tools, and for researchers who focus on drugs/dis-
eases/phenotypes. GeneSetDB was designed a meta-gene set data-
base for use in GSA to overcome these limitations. It is freely
available for academic purposes and will be actively maintained.
In future work we plan to integrate GeneSetDB with additional
gene sets including TRANSFAC and mutation/polymorphism
databases.

Availability and requirements

All gene sets, analysis functions and downloadable data in
GeneSetDB are available, for academic purposes only, at: http://
genesetdb.auckland.ac.nz/haeremai.html.
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