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The ever-increasing high-volume and high-dimensional geno-

mics data on the one hand challenge traditional data analysis
approaches, and on the other hand provide ample opportuni-
ties for developing novel analytic strategies. In recent years,

deep learning has been driving the next wave of artificial intel-
ligence and machine learning. Now, Yi Xing’s lab reported
DARTS [1], a novel computational framework that leverages

the power of both deep learning and Bayes hierarchical frame-
work for differential alternative splicing (AS) analysis. Trained
on the huge volume of publicly-available RNA-seq datasets,
DARTS could largely increase the accuracy of AS analysis,

in particular for those with low sequencing depth, by taking
both genomic features and expression levels of RNA-binding
proteins (RBPs) into consideration.

RNA-seq based AS analysis

In higher eukaryotes, the vast majority of protein-coding genes
are transcribed into precursor mRNA (pre-mRNA) containing
exons and introns that need to be removed by the splicing
machinery to generate mature mRNA. Often the transcript
can be spliced in different ways, leading to a different combi-

nation of exons. AS contributes to the variety of the cellular
proteome as well as to the fine tuning of gene expression levels
at the post-transcriptional level. The regulation of AS is medi-

ated by the interaction between cis-elements around the splic-
ing site in both exonic and intronic regions, and trans-acting
factors that bind to specific cis-elements. It has been shown

that AS plays critical roles in a variety of physio-pathological
processes.

In the last decade, the amount of RNA-seq data has soared,
which provides valuable resources for extensive studies of tran-

scriptional and post-transcriptional regulation. In addition to
providing the information on RNA abundance, RNA-seq data
could also be used to infer the AS pattern, and more often to

identify the differential AS between different samples, such as
those from different developmental stages, normal vs. disease,
as well as control vs. treatment. For the latter, many computa-

tional methods have been developed. The common strategy
underlying these methods is to use the number of RNA-seq
reads exclusively supporting either isoform to estimate an
abundance ratio between the two spliced isoforms, i.e., inclu-

sion and exclusion isoform, and then perform a statistical test
to determine whether the splicing pattern between the two
samples is significantly different or not. Although implemented

with different statistical frameworks, all these methods would
encounter high uncertainty for the splicing events sampled
with low sequencing coverage. Therefore, the sensitivity is

rather limited in detecting differential AS for the lowly-
expressed genes. Moreover, many currently available RNA-
seq datasets originally designed only for differential analysis
nces and
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of gene expression are often of low sequencing depth, which is
insufficient for AS analysis even for moderately-expressed
genes. Harnessing these valuable resources for AS studies war-

rants novel analytic strategies.

Deep-learning and its application in AS analysis

Deep learning has recently reemerged in various fields (e.g.,
image recognition and language processing) with great success.

Unlike the traditional machine learning algorithms, deep
learning trains both the feature extractor and the classifier
simultaneously. The high model complexity caused by the
extraordinarily large number of parameters makes deep learn-

ing models data-hungry. Such high model flexibility, on the
other hand, together with the powerful optimization algo-
rithms, enables deep learning to achieve the state-of-the-art

performance on a wide spectrum of applications where large
datasets are available, such as computer vision, natural lan-
guage processing, and genomics.

The seminal work on developing deep learning methods to
decipher the splicing code was done by Leung and colleagues
[2]. They studied the tissue-specific splicing code of five tissues
in mice. For each exon, their model takes 1393 manually-

extracted features, including those from exon, neighboring
intron, adjacent exon, as well as tissue type indicators, as
inputs, and predicts the range (low, medium, or high) of the

percentage of isoform including that exon (the Percent Splicing
In (PSI) value) and DPSI between two tissues. In a follow-up
study, Xiong et al. improved the model to predict the exact

value of PSI by using the same set of features and applied
the model to detect splicing-affecting variants that are associ-
ated with human diseases [3]. Recently, Bretschneider et al.

further developed four different deep learning models to pre-
dict alternative acceptor sites and alternative donor sites [4].
In contrast to the previous work from the same lab,
Bretschneider et al. leveraged the power of deep learning to

automatically extract important features for raw DNA
sequences and built models to simultaneously predict the PSI
values of all the alternative sites with an accuracy of 70%.

More recently, Jaganathan et al. also developed a deep learn-
ing method to predict whether each position in the transcript
could function as a splice donor or a splice acceptor, or neither

of them [5]. Compared to previous methods that relied on
human-designed features, or have only considered short
nucleotide windows adjoining exon–intron boundaries, this

method learns splicing determinants from 10,000 nucleotides
around each candidate position, with a 95% top-k accuracy.
Nonetheless, AS is regulated by the interplay between cis-reg-
ulatory elements and trans-acting factors, these deep learning

models were mostly focused only on the contribution of cis-
sequence features and have largely ignored trans-environment.
As a result, they could not, for instance, tell any differential AS

between two samples with the same genomic sequences but
under different conditions.
DARTS—deep-learning augmented RNA-seq analysis

of transcript splicing

The new tool, DARTS, mainly consists of two components,
i.e., a deep learning model (DARTS DNN) to estimate the
prior probability and a likelihood estimator (DARTS BHT)
based on the prior probability as well as RNA-seq read counts.
Before training DARTS DNN, large-scale RNA-seq data are

analyzed first by DARTS BHT with uninformative prior to
generate a high-confidence labeled training dataset that con-
tains both differential splicing and unchanged splicing between

conditions. Then the labeled training dataset is used for train-
ing DARTS DNN. In contrast to the aforementioned deep
learning-based AS methods, this deep learning module incor-

porates not only the cis-elements from the primary genomic
sequences but also the trans-elements represented by the
expression level of 1498 splicing-relevant RBPs. Zhang et al.
first evaluated the performance of DARTS on the test data

corresponding to leave-out RBPs and showed that DARTS
outperformed the baseline methods. They then applied
DARTS on two cell lines to infer cell-type-specific splicing

events, in which they found that the performance of DARTS
BHT with an informative prior probability is better than that
without the prior, demonstrating that incorporating DNN pre-

diction as an informative prior improves the performance of
DARTS BHT in detecting differential splicing. To further
demonstrate the power of DARTS DNN on other RNA-seq

datasets, they trained three DARTS DNN models using
ENCODE data only, Roadmap data only, and their combina-
tion, respectively. They found that the model trained on
ENCODE data has high predictive power for the ENCODE

leave-out datasets, but modest predictive power for Roadmap
leave-out datasets, and vice versa, while the model trained on
the combination of both datasets has the best performance.

Furthermore, they extended DARTS DNN to other types of
AS events, i.e., alternative 50 or 30 splice sites and retained
introns, and they also achieved a high prediction accuracy.

Finally, they applied DARTS to investigate the change of
AS pattern during the epithelial-mesenchymal transition
(EMT) using the previously published RNA-seq dataset [6].

Using DARTS, they were not only able to predict high-confi-
dence differential versus unchanged splicing events during the
EMT, but also uncover differential AS events from lowly-
expressed genes. Importantly, the latter could successfully be

experimentally validated, again demonstrating the improved
accuracy of DARTS on AS with lower sampling depth.

The major innovation of DARTS lies in two aspects. (1)

DARTS combines a deep learning model with Bayes hierarchi-
cal framework: the former provides the latter a prior based on
learned knowledge about each AS event in a specific sample,

while the latter further integrates the information from
RNA-seq data. (2) The deep learning model within DARTS
framework for the first time takes both cis-elements and
trans-factors into consideration, which improves differential

AS detection between conditions.

Discussion

There are yet some directions for further development of
DARTS. First, although DARTS can theoretically capture

the cis–trans interactions, such association requires a pro-
hibitively large number of input combinations. Second,
DARTS is trained on invariant genomic sequences from differ-
ent samples, and thus could not capture the splicing landscape

of sequence variants. Third, the performance of DARTS may
be further improved by incorporating increased lengths of
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flanking regions or more cis-features. However, it requires
more data and sophisticated feature engineering to obtain a
better model.

Other than AS, alternative polyadenylation (APA) is also a
key, but less-well studied step in RNA processing. And con-
ceptually, similar to AS, the regulation of APA is also medi-

ated by cis–trans interaction. Therefore, APA regulation
could be treated as a similar problem and accordingly investi-
gated with a similar strategy. Xia et al. recently developed a

robust, poly(A) signal (PAS) motif-agnostic, and transferable
deep learning model to differentiate true PASs from false ones
[7]. The ideas of DARTS could potentially be applied to com-
bine the power of novel deep learning based computational

algorithms and RNA-seq based experimental data for APA
analysis.
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