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A B S T R A C T

As a hazardous organic chemical raw material, Bisphenol A (BPA) has attracted a great deal of scientific and
public attention. In this study, the chitosan functionalized halloysite nanotubes immobilized laccase (lac@CS-
HNTs) was prepared by simultaneous adsorption-covalent binding method to remove BPA for the first time. We
optimized the preparation of lac@CS-NHTs by controlling one-factor variable method and response surface
methodology (RSM). The cubic polynomial regression model via Design-Expert 12 was developed to describe the
optimal preparation conditions of immobilized laccase. Under the optimal conditions, lac@CS-NHTs obtained the
maximum enzyme activity, and the enzyme loading was as high as 60.10 mg/g. The results of batch removal
experiment of BPA showed that under the optimum treatment condition, the BPA removal rate of lac@CS-NHTs,
FL and heat-inactivated lac@CS-NHTs was 87.31 %, 60.89 % and 24.54 %, respectively, which indicated that the
contribution of biodegradation was greater than adsorption. In addition, the relative activity of lac@CS-NHTs
dropped to about 44.24 % after 8 cycles of BPA removal, which demonstrated that lac@CS-NHTs have the po-
tential to reduce costs in practical applications. Finally, the possible degradation mechanism and mineralization
pathway of BPA were given via High-performance liquid chromatography (HPLC) analysis and gas
chromatography-mass spectrometry (GC-MS) analysis.
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1. Introduction

Endocrine disrupting chemicals (EDCs) are defined as an exogenous
chemical that interferes with the endocrine system, also known as
environmental hormones. EDCs interfere with hormones that maintain
homeostasis, thereby affecting the normal development and reproduc-
tion of organisms [1]. Bisphenol A (BPA) is an important organic
chemical raw material, which is mainly used in the production of poly-
carbonates and epoxy resins, and is also one of the typical EDCs [2]. BPA
can enter the food chain through the living environment of
food-producing organisms, be released from food contact materials [3].
Traditionally, BPA has been considered a weak estrogen [4], it can
interfere with endocrine signaling pathways at low doses in organisms
[5, 6]. Hence, for decades, BPA has attracted a great deal of scientific and
public attention [7].

In the existing research, the common methods of removing BPA are
mainly divided into physical adsorption [8], chemical oxidation [9] and
biodegradation [10]. Compared with the traditional physical and
chemical methods [11, 12], which present a high cost and lead to the
formation of hazardous by-products, the biodegradation has been
considered as a possible alternative [13]. In addition, bio-enzyme present
several advantages such as high catalytic efficiency, high substrate
specificity, no toxicity and mild reaction conditions in biodegradation
method [14]. The common bio-enzymes for BPA removal include
horseradish peroxidase [15], tyrosinase [16] and multiple ligninolytic
enzymes (like lignin peroxidases, manganese peroxidase and laccase)
[17, 18, 19].Compared to H2O2 requirement of fungal peroxidases, the
unique feature of laccase is that molecular oxygen can be used as the sole
electron acceptor to catalyze the oxidation of BPA [20]. Liu et al. [21]
verified the catalytic degradation of BPA by laccase, the results showed
that the degradation rate of BPA reached 97.68 % after 1 h reaction (44.6
�C, 5 mg/L BPA concentration, pH 5.20). Unfortunately, the activity of
free laccase is susceptible to interference by environmental factors
(temperature, pH, ionic strength, etc.), thus limiting its application in
wastewater treatment [22].

Thus, the immobilization technology of laccase was developed to
enhance the tolerance and stability of laccase to environmental condi-
tions and obtain the ability to reuse [23]. Traditional immobilization
techniques include cross-linking, adsorption, covalent bonding [24] and
entrapment/encapsulation [25]. In previous research [26], we optimized
the preparation of alkali-modified immobilized laccases (lac@A-MB)
under adsorption method, adsorption-crosslinking method and covalent
bonding method. The results showed that stability of lac@A-MB was
compared with other literatures [27, 28, 29], which provided a basis for
the practical application of different methods for immobilizing laccase.
Among the reported immobilization methods, the unique hollow tubular
structure, negatively charged surface, high specific surface area, and
good biocompatibility of chitosan functionalized halloysite nanotubes
(CS-HNTs) make them promising laccase immobilization carriers [30, 31,
32, 33, 34]. However, these methods focus too much on the covalent
binding of laccase and ignore the excellent adsorption properties of
laccase on the inner and outer surfaces of the material. Therefore, a novel
immobilization strategy is proposed in this paper, in which laccases are
immobilized on CS-NHTs by a simultaneous adsorption-covalent binding
method. In addition, this method was also particularly suitable for BPA
removal from aqueous solutions. To the best of our knowledge, prior to
this study, there has been no report on the removal of BPA by CS-NHTs
immobilized laccase (lac@CS-NHTs).

2. Materials and methods

2.1. Chemicals

Bovine serum albumin (BSA), NaOH, phosphoric acid, Coomassie
brilliant blue G-250, Chitosan (CS), glutaraldehyde (GLU) and bisphenol
A (BPA) were purchased from Sinopharm Group Chemical Reagent Co.,
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Ltd (analytical grade). Halloysite nanotubes (HNTs, 99.96 %) were pur-
chased from Xi'an Mingchuangda Biotechnology Co., Ltd. Laccase (0.99
U/mg) from Trametes versicolor and (3-ethylbenzothiazoline-6-sulfonate)
diammonium salt (ABTS, � 98%) were purchased from Sigma-Aldrich.

2.2. Characterization

The Scanning electron microscope (SEM) and Transmission electron
microscope (TEM) studies were carried out in a Zeiss Sigma 300 and a FEI
TF20, respectively. The nitrogen adsorption-desorption isotherm (BET)
was measured on the ASAP 2460 surface area and porosity analyzer.
Thermal gravimetric analyses (TGA) was performed on a TGA 5500
thermoanalyzer, the sample was heated in a continuous-flow of N2 from
25 up to 800 �C with 10 �C/min. X-ray diffraction (XRD) analysis was
performed by Bruker D8A X-ray diffractometer using Cu-Kα radiation
(tube voltage: 40 kV; current: 40 mA; scan angle 2θ range: 10–80�; scan
rate: 5�/min. Fourier transform infrared spectroscopy (FT-IR) was per-
formed on a Thermo Scientific Nicolet 6700 Fourier transform infrared
spectrometer, and the scanning range was 4000 cm�1

–400 cm�1.

2.3. Preparation optimization of CS-HNTs and lac@CS-HNTs

Chitosan (CS) solution (0.5 g CS in 2 % acetic acid solution) and
halloysite nanotubes (HNTs) suspension (1 g HNTs in 50 mL deionized
water) were mixed together at 25 �C for 24 h (300 rpm). The mixture was
then filtered, washed with distilled water, dried at 60 �C, the obtained
solid was Chitosan functionalized halloysite nanotubes (CS-HNTs).

Chitosan functionalized halloysite nanotubes immobilized laccase
(lac@CS-HNTs) was prepared by simultaneous adsorption-covalent
binding method. For this purpose, 0.1 g CS-HNTs were added into 20
mL 0.6%glutaraldehyde (GLU) solution and stirred at 25 �C for 2 hfirstly.
Then, the obtained mixture was centrifuged at 4000 rpm for 10 min,
washed with acetic acid-sodium acetate buffer solution (0.1 M, pH 5),
dried at 60 �C, the obtained solid was CS-HNTs grafted GLU. At last, the
prepared material and 10 mL free laccase (FL) solution were mixed
together for a certain time (300 rpm). In this process, the aldehyde groups
at both ends of GLU can react with the amino groups in both CS and FL to
form Schiff bases (SB). The mixture was then filtered, washed with acetic
acid-sodium acetate buffer solution (0.1 M, pH 5), the obtained sample
was lac@CS-HNTs. Figure 1 showed the preparation process of chitosan
functionalized halloysite nanotubes (CS-HNTs) and chitosan functional-
ized halloysite nanotubes immobilized laccase (lac@CS-HNTs). The
preparation process of lac@CS-HNTs was optimized by controlling one-
factor variables, the variables were laccase dosage (0.1–2.0 mg/mL),
laccase solution pH (3–9) and reaction time (0.5–6.0 h); the dependent
variables were relative enzyme activity (RA, %) and enzyme loading (E,
mg/g) of immobilized laccase. The above experiment was repeated 3
times to ensure the reliability of the data. In order to further optimize the
preparation conditions of lac@CS-HNTs, based on the single factor
experimental data, this study used the Design-Expert 12 (Stat-Ease, Inc,
Minneapolis, MN 55413, USA) to design experiments via the response
surfacemethodology (RSM) [35]. Box BehnkenDesign (BBD) as one of the
commonly used RSM, it was usually employed to evaluate the interaction
between the independent experimental factors and the observed re-
sponses [36]. In this work, the 3-factor Box-Behnken design were used to
optimize the immobilization conditions of laccase, where laccase dosage
(A), laccase solution pH (B) and reaction time (C) are the 3 independent
factors selected for the RA of immobilized laccase (Y) as design response
(Table S1 and Table S2 in the supplementary material showed the
experimental range and level of the independent variable and the
Box-Behnken experimental design in the supplementary material).

2.4. Determination of enzyme activity and enzyme loading

The laccase activity was determined via ABTS method. The absor-
bance of reaction mixture at 420 nm was measured via ultraviolet-visible
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(UV-Vis) spectrophotometer [37]. Units of enzyme activity (U) are
defined as the amount of enzyme required to consume 1 μmol of substrate
in 1 min [38]. The calculation formula of specific activity (SA, U/mg) and
relative activity (RA, %) are as follows (Eqs. (1) and (2)):

SA¼ A
m

(1)

RA¼ A
Amax

� 100 % (2)

where A (U) is laccase activity, and m (mg) is the mass of laccase; Amax
(U) is the maximum enzyme activity.

The laccase concentration in the enzymatic extracts was determined
by the Bradford method. The correlation coefficient R2 was 0.998, and
the fitting curve was y ¼ 0.1061 x þ 0.4012 (Figure S1 in the supple-
mentary material). The formula of enzyme loading (E, mg/g) was as
follows (Eq. (3)):

E¼m0 �m1

M
(3)

where m0 is the enzyme dosage (mg), m1 is the enzyme content in su-
pernatant (mg), and the M is total weight of immobilized laccase (g).
2.5. Stability of free laccase and lac@CS-NHTs

The thermostability of free laccase and lac@CS-NHTs was determined
by immersing them in the temperatures range of 30–75 �C. The thermal
tolerance of free laccase and lac@CS-NHTs was determined by immersing
them in pure water at 50 �C for 2 h. The pH stability of free laccase and
lac@CS-NHTs was determined in acetic acid-sodium acetate buffer solu-
tion for 2 h in the pH range 3.0–11.0. The storage stabilitywas determined
by measuring the RA of free laccase and lac@CS-NHTs in acetic acid-
sodium acetate buffer solution (0.1 M, pH 5) within 30 d. The above
experiment was repeated 3 times to ensure the reliability of the data.
2.6. The batch removal experiment of BPA

100 mg of lac@CS-NHTs, 100 mg of thermally inactivated lac@CS-
NHTs (to exclude the effect of adsorption) and same equivalent FL
Figure 1. The preparation process of chitosan functionalized halloysite nanotubes (C
(lac@CS-HNTs).

3

were added in 250-mL Erlenmeyer flasks containing 100 mL of BPA so-
lution. The flasks were incubated on an orbital shaker (300 rpm) and in
complete darkness to avoid BPA photodegradation. The above batch
degradation experiment of BPA was conducted by controlling one-factor
variables, the variables were initial BPA solution pH (3–9), initial BPA
solution concentration (2–50 mg/L), reaction time (0.5–12.0 h) and
temperature (25–55 �C); the dependent variables was degradation rate
(W) or removal rate (R). The degradation rate (W) and removal rate (R)
are calculated as follows (Eqs. (4) and (5)):

W ¼C0 � Ce

C0
� 100% (4)

R¼C0 � Ce

C0
� 100% (5)

where C0 is the initial BPA concentration (mg/L), Ce is the final BPA
concentration (mg/L).

BPA was measured by high performance liquid chromatography
(HPLC, UltiMate 3000, DIONEX) under Thermo SCIENTIFIC C18 reverse
phase column (250 mm � 4.6 mm I.D., 5 μm). The peak area showed a
good linear relationship with the concentration of BPA, the correlation
coefficient R2 was 0.9991, and the fitting curve was y ¼ 0.1288x-0.3732
(Figure S1b in the supplementary material). In order to further study the
degradation mechanism and pathway of BPA by lac@CS-HNTs, the
Agilent 7890B gas chromatography-mass (GC-MS) spectrometer (USA)
was used to detect the degradation products of BPA.

3. Results and discussion

3.1. Characterization analysis

The structural morphologies of HNTs (Figure 2a), CS-HNTs
(Figure 2b) and lac@CS-HNTs (Figure 2c) were observed by SEM
analysis. The SEM images showed that the tubular form of HNTs was
clearly visible and the structure was compact. Although, the grafting of
CS and HNTs is not visible in Figure 2b and c, the tubular form and
lumen of CS-HNTs could observed in the image, and the CS-HNTs
showed a wider tubular morphology. These observations indicated
that CS was loaded on the surface of CNTs and did not destroy the
structure of HNTs. The TEM analysis of HNTs (Figure 2d), CTS-HNTs
S-HNTs) and chitosan functionalized halloysite nanotubes immobilized laccase



Figure 2. The scanning electron micrograph (SEM) of (a) CS, (b) CS-NHTs and (c) lac@CS-NHTs. The transmission electron microscope (TEM) of (d) CS, (e) CS-NHTs
and (f) lac@CS-NHTs.
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(Figure 2e) and lac@CS-HNTs (Figure 2f) were performed via a FEI
TF20 transmission electron microscope. It was observed that the average
length of HNT and CS-HNT was about 600 nm, the inner diameter was
about 20–30 nm, and the outer diameter was about 50–70 nm. The CS-
Figure 3. The N2 adsorption-desorption curve of (a) HNTs and (b) CS-HNTs. (c) T
CS-HNTs.
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NHTs became blurred in the inner lumen and outer surface, which
indicated CS was loaded on the surface of HNTs. In addition, the in-
crease of the outer diameter of CS-HNTs confirmed the success of CS
grafting on HNTs to a certain extent.
he pore size distribution of HNTs and CS-HNTs. (d) The TGA of HNTs, CS and
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The surface area (Figure 3a and Figure 3b) and pore size distri-
bution (Figure 3c) of the CS and CS-NHTs were revealed by N2
adsorption-desorption measurements. It could be seen from Figure 3a
and b that the adsorption curves and desorption curves of both HNTs
and CS-HNTs are not consistent, and there were obvious hysteresis
loops. The adsorption isotherms of both NHTs and CS-NHTs belong to
type IV [39], indicating that HNTs and CS-HNTs were mesoporous
materials. In addition, the BET surface area of the CS-HNTs was
calculated to be 35.18 m2/g, which was higher than that of HNTs
(29.23 m2/g). This is because the HNTs were modified with CS to
impart amine groups to the surface. As is known to all, CS is a suitable
macromolecule with abundant amino groups. Besides, as shown in
Figure 3c, the average diameter of HNTs and CS-HNTs was 25 and 30
nm, respectively. The high BET surface area and the proper pore
diameter were conducive to the contact with laccase molecules for
catalytic reactions. Figure 3d showed the TGA analysis of HNTs,
CS-HNTs and CS, the decomposition of HNTs and CS-HNTs identified
two weight-loss steps below 800 �C. The first step from 100 to 400 �C
was ascribed to the free/adsorbed water and interlayer water in HNTs
and aluminosilicate layers, respectively. The second step from 400 to
550 �C was attributed to the dihydroxylation of the aluminosilicate
lattice. Combined with the weight loss curve of CS, it could be found
that the more weight loss of CS-NHTs in the second stage (400–550 �C)
was due to the decomposition of the load CS. This phenomenon also
reflected that CS was indeed loaded on NHTs to form CS-NHTs
complexes.

XRD analysis of NHTs and CS-NHTs (Figure 4a) revealed the
presence of a peak appeared at 2θ values of 12.25�, 20.01�, 24.78� and
35.01�, respectively. The corresponding crystal planes were (001),
(100), (002) and (110), respectively, which confirmed the character-
istics of halloysite nanotubes. In case of CS-HNTs, apart from the
characteristic peaks of HNTs, there was no significant change observed
in the peak pattern of HNTs. Compared with the XRD pattern of HNTs,
the characteristic diffraction peak of CS-HNTs was relatively weak,
which may be due to the decrease of crystallinity. After enzyme
immobilization, no large changes in peak patterns were observed, from
which it can be determined that enzyme immobilization did not cause
further changes in the crystallinity of the nanocomposites. As shown in
Figure 4b, the FTIR analysis of HNT and CS-HNTs was performed on a
Thermo Scientific Nicolet 6700 fourier transform infrared spectrom-
eter. For NHTs and CS-HNTs, the common characteristic peak of
Al–OH bending was observed at 912 cm�1; the common characteristic
peaks of Si–O–Si and O–H stretching were observed at 1036 cm�1 and
3622 cm�1, respectively. The above characteristic peaks were the
characteristic peaks of HNTs, and the report of Rawtani et al. [40] has
the same results as this study. For CS-HNTs, the new characteristic
peak of C–H stretch was observed at 1633 cm�1; and new character-
istic peak of N–H stretch peak was observed at 3450 cm�1, which
showed that CS introduced new groups.
Figure 4. (a) The XRD patterns of HNTs and CS-HN
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3.2. The optimal immobilization conditions on the carrier CS-HNTs

3.2.1. The effect of single factor on optimal immobilization
The preparation process of lac@CS-HNTs was optimized by control-

ling one-factor variables, the variables were laccase dosage (Figure 5a),
pH (Figure 5b) and time (Figure 5c). The change trend of RA value and E
value in Figure 5a was basically the same, both of which increase grad-
ually and then remain stable. When the laccase dosage increased from 0.1
mg/mL to 1.0 mg/mL, the E value increased from 2.84 mg/g to 55.14
mg/g; the RA value increased from 2.84 mg/g to 55.14 mg/g which was
close to the peak value. As shown in Figure 5b Evalue and RA value both
increased first and then decreased. When the pH increased from 2 to 4,
the E value increased from 23.10 mg/g to the maximum value (51.37
mg/g); the RA value also increased from 79.48% to 100%. When pHwas
more than 4, E value and RA value decreased rapidly. Usually, the pH of
the solution affects the existence of surface charges of laccase and CS-
HNTs and also affects the expression of laccase activity [41]. As shown
in Figure 5c, the isoelectric point of CS-NHTs is 4.4 and the isoelectric
point of FL is 3.5 according to the known report [42, 43]. When pH
ranges from 3.5 to 4.4, the surface of FL was negatively charged but the
surface of CS-NHTs was positively charged, the opposite surface charge
would cause electrostatic attraction, which was conducive to the
adsorption of FL on the CS-HNTs surface. On the contrary, when the pH
range is less than 3.5 or greater than 4.4, the same surface charge will
cause electrostatic repulsion, which would affect the loading perfor-
mance of FL. The effect of reaction time on immobilization was similar to
that of pH, E value and RA value both increased first and then decreased.
When the pH increased from 0.5 to 3.0, the E value and R value increased
from 9.90 mg/g and 24.66 % to the maximum value, which was due to
the binding of FL to active sites on the carrier. After more than 3 h, the
active sites of CS-HNTs have been fully occupied and reached saturation,
RA value and E value no longer increased or even decreased slowly. The
results of multiple factors affecting the immobilization conditions are
described in the supplementary material (Table S1, Table S2, Table S3
and Figure S2).

3.3. The study on the enzyme stability and enzyme kinetics

3.3.1. Enzyme stability
We have evaluated the thermostability (Figure 6a), thermal tolerance

(Figure 6b), pH stability (Figure 6c) and storage stability (Figure 6d) of
lac@CS-NHTs. In this study, laccase was immobilized on CS-HNTs by
simultaneous adsorption-covalent binding, providing a relatively lagging
environment for enzyme molecules [44]. As shown in Figure 6a, the RA
of the FL decreased faster with temperature relative to immobilized
laccase, while the RA of lac@CS-NHTs was always greater than that of FL.
This is because lac@CS-NHTs protects the tertiary structure of the
enzyme protein. To further explore the thermal tolerance of
lac@CS-NHTs, both the FL and lac@CS-NHTs were incubated at 50 �C for
Ts. (b) The FTIR spectra of HNTs and CS-HNTs.



Figure 5. (a) The effect of laccase dosage on the preparation of immobilized laccase. (b) The effect of pH on the preparation of immobilized laccase. (c) Zeta potential
of CS-HNTs. (d) The effect of time on the preparation of immobilized laccase.

Z. Wang et al. Heliyon 8 (2022) e09919
2 h, and the RAwas measured per 10min (Figure 6b). The results showed
that the RA of both FL and lac@CS-NHTs decreased with time, but the
activity of immobilized laccase declined more slowly. The structure and
Figure 6. (a) The thermostability of FL and lac@CS-NHTs under the optimal prepa
optimal preparation conditions. (c) The pH stability of FL and lac@CS-NHTs under
NHTs under the optimal preparation conditions.
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activity of laccase are greatly affected by the pH value of the solution,
because the pH value determines the ionization state of amino acids [45].
Figure 6c revealed the effect of pH on laccase, it can be seen that the
ration conditions. (b) The thermal tolerance of FL and lac@CS-NHTs under the
the optimal preparation conditions. (d) The storage stability of FL and lac@CS-
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effect of pH on FL is stronger than that on lac@CS-NHTs, which indicates
that the immobilization of laccase can broaden the tolerable pH range to
a certain extent. In addition, as shown in Figure 6d, the storage stability
of laccase was assessed by measuring the activities of FL and
lac@CS-NHT per 2 d (storage at 4 �C for 28 d). It could be observed that
after 28 d, the RA of FL was 25.60%, while the RA of lac@CS-NHTs was
48.56%. This indicated that immobilized laccase was more resistant to
storage and retains more activity than free laccase [46]. As shown in
Figure S4 in the supplementary material, the reusability of lac@CS-NHTs
during 8 reaction cycles was investigated via BPA as substrate under the
optimum reaction conditions. The results showed that the RA dropped to
about 44.24 % after 8 cycles.

3.3.2. Enzyme kinetics
The reaction rate of laccase with ABTS under optimal reaction con-

ditions was used to determine the Michaelis-Menten kinetic parameters
[47] (Km and Vmax). The binding ability of enzyme to substrate and the
speed of catalytic reaction were studied by enzyme kinetics. Km could
reflect the affinity between the laccase and BPA, and the Vmax could
reflect maximum response speed. The kinetic parameters Km and Vmax
were calculated from the kinetic fitting curves of FL (Figure S3a in the
supplementary material) and lac@CS-NHTs (Figure S3b in the supple-
mentary material), the linear fitting equation of FL was 1/V ¼
28.941*1/S þ 0.3795 (R2 ¼ 0.9994); the linear fitting equation of
immobilized laccase was 1/V¼ 246.27*1/Sþ 1.7315 (R2¼ 0.9971). The
Km values of FL and lac @CS-NHTs could be calculated as 76.26 μM and
142.23 μM, respectively. This indicated that the affinity of FL to the
substrate was higher than that of immobilized laccase, which might be
due to the covalent binding of laccase on CS-HNTs resulting in loss of
activity [48]. In addition, the results of Table 1 showed the enzymatic
parameters of different immobilized laccase in other literatures in recent
years (stability data: relative activity > 50 %), which demonstrated that
the data of this work are comparable to the data in other literature. This
illustrated the potential of lac@CS-NHTs in industrial applications and
also provided a reference for the research of CS-NHTs in the field of
immobilized laccase.
3.4. The effects of different factors on BPA removal

The batch degradation experiment of BPA was conducted by con-
trolling one-factor variables, the variables were pH (Figure 7a), BPA
initial concentration (Figure 7b), time (Figure 7c) and temperature
(Figure 7d). It is worth mentioning that the heat-inactivated lac@CS-
NHTs were also involved in the batch degradation experiments of BPA,
which was to exclude the effect of the adsorption of BPA via lac@CS-
NHTs on the results. As shown in Figure 7a, it can be seen that both FL
obtained the maximum W value (79.58 %) and lac@CS-NHTs obtained
the maximum R value (85.04 %) at pH 5, while the R value of inactivated
Table 1. The comparison of enzymatic parameters of different immobilized laccases

Carrier Chitosan Polyvinylidene fluoride
nanocomposite

Metal organic
framework

Year 2021 2021 2019

Source Pleurotus nebrodensis Trametes hirsuta white rot fung

Method Adsorption-
crosslinking

Adsorption Covalent bind

Enzyme loading – 30.40 mg/cm2 69.11 mg/g

Km (μM) 120 – 771

pH stability 6–10 – 2–7

Storage stability – – >28 d

Reusability 8 2 2

Thermostability 25–70 �C 25–70 �C 25–65 �C

Reference [49] [50] [48]
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lac@CS-NHTs was only 9.66 %. The acidic conditions are favorable for
the catalytic reaction of laccase [52], which is consistent with the
conclusion of the stability of laccase. Figure 7a showed that the adsorp-
tion effect of inactivated lac@CS-HNTs on BPAwas stable in the pH range
of 3–9, indicating that the binding affinity between BPA and inactivated
lac@CS-HNTs was the main factor for the adsorption process. The
lac@CS-HNTs reached the maximum adsorption capacity at pH 5, but the
adsorption capacity decreased significantly with increasing pH. It might
be because when pH < 7.6, BPA mainly exists in molecular form, while
when pH > 7.6, BPA gradually dissociates into HBPA� and BPA2� [53].
According to the known report, the isoelectric point of CS-NHTs is 4.4
[42], indicating that the surface of inactivated lac@CS-HNTs was nega-
tively charged at pH > 4.4. Therefore, under alkaline conditions, the
electrostatic repulsion gradually increased with the increase of pH and
gradually became the main driving force. Moreover, as shown in
Figure 7b, the W/R value of FL and lac@CS-NHTs both increased grad-
ually and then remain stable. When the initial BPA concentration was 40
mg/L, the BPA degradation amount of FL was close to the maximum
value of 2.63 mg and the BPA removal amount of lac@CS-NHTs was 2.75
mg. In this case, the maximum BPA adsorption removal amount of
inactivated lac@CS-HNTs was 0.03 mg. Figure 7c demonstrated the ef-
fect of reaction time on BPA degradation/removal, according to the re-
sults of the enzyme kinetics study, FL has a better affinity for BPA, so the
FL reached the maximum W value (88.83 %) at 10 h, while the
lac@CS-HNTs reached the maximum R value (80.43 %) at 12 h. In
addition, the inactivated lac@CS-NHTs reached adsorption saturation
after 6 h, and the R value was only 10.14 %. As for the influence of
temperature on the degradation/removal effect (Figure 7d), the curves of
FL and lac@CS-NHTs both showed a mountain-like distribution. The FL
reached the maximum W value (86.78 %) at 35 �C, while the
lac@CS-NHTs reached the maximum R value (87.31 %) at 45 �C. This
might be due to the gradual inactivation of FL as the temperature
increased, but the immobilization process enhanced the thermostability
and thermal tolerance of laccase. It is worth mentioning that the R value
of inactivated lac@CS-NHTs increased with the increase of temperature,
reaching a maximum of 30.44 % at 55 �C, which indicated that high
temperature was beneficial to the adsorption of BPA via CS-NHTs.

3.5. Degradation mechanism and mineralization pathway of BPA

According to the batch removal experiment results of BPA, we
found that the removal rate of inactivated lac@CS-NHTs was much
lower than that of the group containing laccase, which indicated that
the contribution of biodegradation was greater than adsorption. Hence,
in order to further study the degradation mechanism and mineraliza-
tion pathway of BPA by lac@CS-HNTs, the high-performance liquid
chromatography (HPLC, UltiMate 3000, DIONEX) and Agilent 7890B
gas chromatography-mass (GC-MS) spectrometer (USA) was used to
(stability data: relative activity > 50 %).
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biochar

Chitosan functionalized halloysite
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2020 2022 2022
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Figure 7. (a) The effects of pH on BPA removal. (b) The effects of BPA initial concentration on BPA removal. (c) The effects of time on BPA removal. (d) The effects of
temperature on BPA removal.
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detect the degradation products of BPA (Figure S5 in supplementary
material). Table S4 in supplementary material showed the intermediate
products identified at samples (0–12 h) form during the BPA degra-
dation and mineralization. Compared with the standard library, it was
found that the intermediate products of BPA degradation might contain
4-isopropenylphenol, 2,4-Bis(2-methyl-2-propanyl)phenol, 4,40-prop-
1-ene-1,2-diyldiphenol, 2,20-methylenebis(6-tert-butyl-4-methylph
Figure 8. The possible pathways during the BPA degradation
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enol), etc. The existing studies on BPA degradation pathways are
similar to our reports [54, 55, 56, 57]. Liu et al. [21] studied the
interaction between free laccase and BPA via molecular docking
simulation. They found that the reaction between laccase and BPA was
spontaneous via the docking results. It is worth mentioning that they
found BPA degradation by free laccase started from the C atoms be-
tween two benzene rings.
and mineralization via lac@CS-NHTs in aqueous solution.
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Therefore, combined with the spectra and related reports [58, 59], we
speculated that the mineralization pathway of BPA via lac@CS-NHTs are
as shown in Figure 8. In the pathway-I, BPA was attacked by
laccase-generated ⋅OH with the formation of 4,40-prop-1-ene-1,2-diyldi-
phenol and 4-isopropenylphenol, which were oxidized to form hydroqui-
none and further transform into 1,4-benzoquinone. In the pathway-II,
degradation of BPA yields 2,20-methylenebis(6-tert-butyl-4-methylphenol)
that further transformed as 2,4-Bis(2-methyl-2-propanyl)phenol via
oxidative skeletal rearrangement. Next, 2,4-Bis(2-methyl-2-propanyl)
phenol was transformed into phenol and further transformed into cate-
chol or resorcinol via laccase. Similar to pathway-I, both catechol and
resorcinol were further converted to corresponding benzoquinones [60,
61, 62, 63]. Finally, according to a large number of reported literatures
[64, 65, 66, 67], benzoquinones were oxidized to small molecular organic
acids such as maleic acid and fumaric acid, and eventually mineralized to
H2O and CO2.

4. Conclusion

In conclusion, laccase was immobilized on CS-HNTs by simultaneous
adsorption-covalent binding method to remove BPA for the first time.
Under the optimal preparation conditions, lac@CS-NHTs obtained the
maximum enzyme activity, and the enzyme loading was as high as 60.10
mg/g. The results of batch removal experiment of BPA showed that under
the optimum treatment condition (pH 5, BPA 40 mg/L, 12 h, 45 �C), the
BPA removal rate of lac@CS-NHTs, FL and heat-inactivated lac@CS-
NHTs was 87.31 %, 60.89 % and 24.54 %, respectively, which indicated
that the contribution of biodegradation was greater than adsorption. In
addition, the relative activity of lac@CS-NHTs dropped to about 44.24 %
after 8 cycles of BPA removal, which demonstrated that lac@CS-NHTs
have the potential to reduce costs in practical applications. Finally, the
possible degradation mechanism showed that the BPA degradation
mainly depends on the hydroxyl radical formation via laccase. The
mineralization pathways were proposed based on the intermediate
byproducts identify by GC-MS and HPLC analysis at the optimum treat-
ment condition.
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