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Chromosome 1p is frequently deleted in neuroblastoma (NB) tumours. The commonly deleted region has been narrowed down by
loss of heterozygosity studies undertaken by different groups. Based on earlier mapping data, we have focused on a region on 1p36
(chr1: 7 765 595–11 019 814) and performed an analysis of 30 genes by exploring features such as epigenetic regulation, that is DNA
methylation and histone deacetylation, mutations at the DNA level and mRNA expression. Treatment of NB cell lines with the
histone deacetylase inhibitor trichostatin A led to increased gene transcription of four of the 30 genes, ERRFI1 (MIG-6), PIK3CD, RBP7
(CRBPIV) and CASZ1, indicating that these genes could be affected by epigenetic downregulation in NBs. Two patients with
nonsynonymous mutations in the PIK3CD gene were detected. One patient harboured three variations in the same exon, and
p.R188W. The other patient had the variation p.M655I. In addition, synonymous variations and one variation in an intronic sequence
were also found. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NBs. One
nonsynonymous mutation was also identified in the ERRFI1 gene, p.N343S, and one synonymous. None of the variations above were
found in healthy control individuals. In conclusion, of the 30 genes analysed, the PIK3CD gene stands out as one of the most
interesting for further studies of NB development and progression.
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Neuroblastoma (NB) is the most common extracranial tumour of
childhood (Gale et al, 1982). One of the hallmarks of NB tumours
is their clinical heterogeneity, ranging from spontaneous regres-
sion to malignant disease. Deletion of the short arm of
chromosome 1 (1p-deletion), additional genetic material from
the long arm of chromosome 17 (17q gain) and amplification of
the proto-oncogene MYCN are examples of chromosomal
abnormalities that have been found in NB. The 1p region has
been subjected to intense study in this tumour type; it shows loss
of heterozygosity (LOH) in 20–40% of NB tumours. 1p-deletion is
also highly correlated with MYCN amplification and predicts
unfavourable outcome (Caron et al, 1996). It has therefore been
proposed that the region contains a tumour suppressor gene that is
inactivated in aggressive NB tumours.

The deletion of chromosome 1 often involves a large proportion
of 1p but some tumours display smaller deletions. Our group, as
well as others, has tried to identify the critical region/regions by
comparing the deletions found in the tumours. We have defined
the shortest region of overlap (SRO) of deletions in our tumour
material to about 25 cM located between the markers D1S80 and
D1S244 (Martinsson et al, 1995, 1997). By the addition of germ cell
tumours, an approximately 5 cM combined SRO of deletions was

defined by markers D1S508 and D1S244 (Ejeskär et al, 2001). As an
overlapping homozygous 500 kb deletion of 1p36.2–3 was found in
an NB cell line (Ohira et al, 2000), the region has been analysed in
further detail. In our study of the genes within this region, all seven
were screened for mutations and a few were indeed discovered
(Ejeskär et al, 2000; Abel et al, 2002, 2004; Krona et al, 2003, 2004).
We have also explored the expression and methylation status of
these genes. The transcripts have been shown to be downregulated
in unfavourable NB, compared to favourable NB, a feature that
cannot be explained by methylation of their respective CpG islands
(Carén et al, 2005). In the current study, we wanted to expand our
investigation of the 1p region, more specifically to our combined
NB/germ cell SRO of deletions, and to explore epigenetic
mechanisms in the regulation of possible tumour suppressor
genes. The effect of DNA methylation and histone deacetylation
events of 30 genes in the 1p36 chromosomal region extending from
markers D1S508 and D1S244, bp 7 765 595– 11 019 814 (UCSC
version, May 2004; URL: http://genome.ucsc.edu) were explored.
This SRO of deletions is in agreement with SRO studies presented
by other groups (Caron et al, 2001; Chen et al, 2001). Yet, other
groups have presented SRO located more distal on 1p (Bauer et al,
2001; White et al, 2005).

Genes identified as possibly regulated by epigenetic means were
studied further with expression analysis and mutation screening of
primary tumours. A small number of the 1p genes studied showed
indication of epigenetic inactivation and two of these also
contained mutations in NB tumours.
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MATERIALS AND METHODS

Cell lines and patients

A panel of 66 primary NB tumours of different stages was used in
the study, 35 tumours were used for expression analysis; 17
tumours with favourable biology from patients with no evidence of
disease and 18 tumours with unfavourable biology from patients
who have died from the disease and 46 for DNA sequencing
(Table 1). Fifteen of the samples were used for both expression and
sequencing analysis. Also, 120 healthy control individuals were
used for DNA sequencing. For cell treatments, three NB cell lines
with 1p-deletion (IMR-32, SK-N-AS, SK-N-BE(2)) and one with
intact 1p (SH-SY5Y) were used. These and five other NB cell lines
(SK-N-DZ, SK-N-F1, SK-N-SH, Kelly and NB69) were used for
bisulphite sequencing.

Analysis of methylation and acetylation status

Cells were seeded at low density and treated with the demethylat-
ing agent 5-Aza-20-deoxycytidine (5-Aza-dC) (Sigma-Aldrich Co,
St Louis, MO, USA) or with the histone deacetylase inhibitor
trichostatin A (TSA; Sigma-Aldrich) on the day after seeding.
Different concentrations and exposure durations were investigated
and a concentration of 2 or 4 mM of 5-Aza-dC for 72 h and 0.5 mM of
TSA for 16 h were chosen. The experiments were repeated twice
and medium was changed every second day to fresh medium
containing the respective agents. As controls, the respective cell
lines were mock treated with the same amount of carrier (EtOH for
the TSA treatments and DPBS; Dulbecco’s buffered saline, PAA
Laboratories, Linz, Austria, for 5-Aza-dC).

Expression analysis

cDNA preparation Total RNA was extracted from the cell lines
using the RNeasy RNA extraction kit (Qiagen, Hilden, Germany).
Total RNA from NB tumour samples was extracted using the RNA
extraction kit or Totally RNA (Ambion, Austin, TX, USA). Total
RNA, 1 mg, was reverse transcribed to cDNA using Superscript II
(Amersham, Buckinghamshire, UK) and random hexamer primers,
all according to the protocol of the supplier. The cDNA samples
were quality-tested by amplification of the GUSB (b-glucuroni-
dase) gene.

Real-time RT–PCR – endogenous control The GUSB gene was
used as an endogenous control for normalisation of expression in
the tumour samples. This gene has previously been shown to be
expressed at constant levels in tumour samples, regardless of NB
stage (Abel et al, 2005). In order to select the most appropriate
endogenous control for the NB cell lines, untreated and treated cell
lines were tested for their expression levels of seven commonly
used housekeeping genes using TaqMans Assays-on-Demandt
Gene Expression Products (Applied Biosystems, Foster City, CA,
USA). Analysis was performed with geNorm 3.4 software
(Vandesompele et al, 2002) which determines the most stable
housekeeping genes in a set of genes in the cDNA panel. GUSB,
UBC (b2-microglobulin) and SDHA (succinate dehydrogenase)
showed the smallest variations in DCT levels and were expressed
at constant levels in samples regardless of treatment; these
genes were therefore used as internal references for normalisation
in the real-time RT–PCR quantification analysis for the NB cell
lines.

Real-time RT–PCR – TaqMan TaqMan primers and probes were
derived from Applied Biosystems. Real-time RT–PCR was
performed in 384-well plates using the ABI PRISMs 7900HT
Sequence Detection System (Applied Biosystems). Amplification

reactions (10 ml) were carried out in duplicate with 0.1 ml template
cDNA, according to the protocol of the manufacturer (Applied
Biosystems). A standard curve with six cDNA dilutions was
recorded and two nontemplate controls were included in each
assay.

Quantification was performed by the standard curve method, as
described previously (Abel et al, 2005). Briefly, the mean CT-value
for duplicates was calculated, and the gene concentration (or gene
copy numbers) of test samples was interpolated based on standard
curves. All samples were normalised by dividing the concentration
of the test gene with the concentration of the housekeeping gene/
genes in the same cDNA sample.

The logarithms of the expression levels in favourable and
unfavourable NB tumours were compared using Student’s two-
sided t-test. Box plots were constructed using SPSS 12.0.1 for
Windows.

Confirmation of methylation status

Bisulphite modification DNA was phenol-extracted using phase
lock gel (Eppendorf AG, Hamburg, Germany) according to
standard procedure and was, with some minor changes, modified
with bisulphite according to previously published papers (Clark
et al, 1994; Paulin et al, 1998). Briefly, 1 mg of genomic DNA was
treated with restriction endonucleases that digested the DNA close
to, but outside, the region of interest. The DNA was then denatured
in 0.3 M freshly prepared NaOH at 401C for 15 min. Sodium
metabisulphite (Sigma-Aldrich) and urea, at final concentrations
of 1.73 M and 5.36 M, respectively, were added in order to
sulphonate the unmethylated cytosines, together with hydro-
quinone (0.5 mM). Conversion was carried out at 551C for 16 h,
with a temperature increase to 951C for 30 s every 3 h. DNA was
purified with the Wizard DNA cleanup system (Promega
Corporation, Madison, WI, USA), according to the instructions
of the manufacturer, and desulphonated in 0.3 M NaOH at 371C for
15 min and finally precipitated in ethanol, resuspended in distilled
H2O and stored at �201C. Universally Methylated DNA (Chemicon
International, Temecula, CA, USA) was included as a positive
control for methylation.

Promoter analysis and DNA amplification Prediction of promo-
ters associated with CpG islands were done with CpGProD
(Ponger and Mouchiroud, 2002) and CpG islands were also
searched with CpG island searcher (URL: http://cpgislands.usc.
edu). Criteria for CpG island selection were chosen according to
Takai and Jones (2002), that is an expected GC content of 455%,
an observed/expected CpG ratio of 40.65 and 4500 bp. The
regions were also searched with relaxed criteria’s. The regions, or
parts of them, were amplified with one primer pair or, if required,
with nested primers (primer sequences available on request). The
methylation status was analysed using bisulphite sequencing.
Touchdown PCR was performed with 1� Reaction Buffer, 0.5 mM

dNTPs, 2.0– 3.0 mM MgCl2, 0.4 mM of forward and reverse primers,
respectively, and 1 U of HotStar Taq (Qiagen, Hilden, Germany), in
a total volume of 20 ml. Reactions were denatured at 951C for
15 min, followed by five cycles of 951C for 1 min, 51C above
annealing temperature with a decrease of 11 per cycle for 1 min,
721C for 1 min and 30 cycles of 951C for 1 min, annealing
temperature for 1 min, 721C for 1 min and ending with 7 min
extension at 721C. PCR products were purified with ExoSAP-ITTM

(USB Corporation, Cleveland, OH, USA) and sequencing was
carried out using forward or reverse primer with the ABI Prism
BigDyeTM cycle sequencing Ready Reaction Kit (Applied Biosys-
tems). The samples were analysed in an ABI 3100 Genetic Analyzer
or an ABI 3730 Genetic Analyzer (Applied Biosystems). Sequence
analysis was conducted with SeqScape version 2.1.1 (Applied
Biosystems).
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DNA mutation screening

DNA amplification Primers were designed for the exons and
flanking intronic sequences using the Exonprimer feature of the
UCSC genome browser (URL: http://genome.ucsc. edu/) and were
ordered from Life Technologies, Inc., Gaitherburg, MD, USA
(primer sequences available on request). Standard reactions of
20ml were used, containing 25–100 ng DNA, 1.5 mM MgCl2, 2 mM

dNTP, 0.6–0.75 mM primer and 1 U Taq polymerase (Amersham
Pharmacia Biotech, Freiburg, Germany). Reactions were denatured
at 951C for 2 min, followed by 35 cycles of 951C for 30 s, annealing
for 30 s, 721C for 1 min, and ending with a 7 min extension step.
Purification of PCR reactions and sequencing were performed as
described above.

RESULTS

Expression analysis of cells treated with TSA and 5-Aza-dC

GUSB, UBC and SDHA were selected as endogenous controls for real-
time RT–PCR quantification and used as internal references for
normalisation. Four of the genes in the study, ERRFI1 (MIG-6),
PIK3CD, RBP7 (CRBPIV) and CASZ1, were upregulated more than two-
fold after treatment with TSA (Table 2) in both experiments.
Expression of gene transcripts of these four genes was analysed
in primary NB tumours and the DNA sequences were analysed
for mutations. Three genes, PIK3CD, RBP7 and CASZ1, were
upregulated in at least two of the cell lines after treatment with 5-
Aza-dC. These genes were analysed further with bisulphite sequencing.

Bisulphite sequencing

CASZ1, PIK3CD and RBP7 were studied with bisulphite sequencing.
Three CpG islands were studied in CASZ1 and PIK3CD. One or two
fragments in each island were PCR amplified and sequenced
following bisulphite modification. For location of CpG islands relative
to the respective gene, see Figure 1. In our material, NB cell lines
generally were found to have more methylated CpG sites than
primary NB tumours (Figure 2). No consistent CpG methylation sites
distinguishing DNA from primary tumours from that of healthy
blood control DNA could be identified. The fragment analysed in the
CpG island of RBP7 was unmethylated in all cell lines.

Expression analysis of NB tumours

Expression analysis of ERRFI1, PIK3CD, RBP7 and CASZ1 was
performed comparing 17 tumours with favourable biology from
patients with no evidence of disease and 18 tumours with
unfavourable biology (dead of disease). The expression of PIK3CD
was significantly lower (P¼ 0.001 after Bonferroni correction), in
unfavourable tumours as compared to favourable NB (PIK3CD:
fold change (fc)¼�2.5, P¼ 0.0002; CASZ1: fc¼�2.0, P¼ 0.03).
No significant difference in expression of ERRFI1 (fc¼ þ 2.1,
P¼ 0.07) or RBP7 (fc¼�1.1, P¼ 0.73) between favourable and
unfavourable tumours could be shown (Figure 3).

DNA sequencing

Several sequence variations were identified in ERRFI1 and PIK3CD
(see Table 3 for a summary). Three patients harboured mutations
with amino-acid changes in the ERRFI1 and PIK3CD genes. In
exon 5 in PIK3CD, three changes were found in the same tumour,
24R3 (see Figure 4). The change, 448G4A, give rise to an amino-
acid substitution from the nonpolar amino-acid alanine to the
polar threonine, the 469C4A substitution from leucine to
methionine (both nonpolar) and 562C4T leads to an amino-acid
substitution from the polar arginine to the nonpolar tryptophan.

Table 1 Clinical data of primary neuroblastoma used in the study

Patient Stage Outcome 1p-del
MYCN
amplification

Group in
expression
analysis

35R8 1 NED Neg Neg F
14E6 1 NED Neg Neg F
16E1 1 NED Neg Neg F
18E5 1 NED Neg ? F
10R7 1 NED Neg Neg F
26R9 1 NED Neg Neg F
9R2 1 NED Neg Neg F
30R9 1 NED Neg Neg F
25R7 1 NED Neg Neg
19R6 1 DOD Pos Pos
25R9 2 NED Neg Neg F
20R9 2 NED Neg Neg F
23R4 2 NED Neg Neg F
25R8 2 NED Neg Neg F
35R2 2 NED Neg Neg F
35R3 2 NED Neg Neg F
13R3 2A NED Neg Neg F
27R1 2A NED Neg Neg F
14R9 2B NED Pos Neg
33R7 2B NED Neg Neg F
12R4 3 NED Pos Neg
15R8 3 NED Pos Neg
16R4 3 NED Neg Pos
20R8 3 NED Pos Pos
23R2 3 NED Pos Pos
30R7 3 ? Pos Pos
13E5 3 DOD Neg Pos
13E6 3 DOD Pos Pos
6E9 3 DOD Neg Neg
10R8 3 DOD Pos Neg
13R1 3 DOD Pos Pos UF
9R9 3 DOD Pos Neg UF
10E6 4 NED Pos Pos
23R5 4 NED Neg Neg
23R8 4 NED Pos Pos
24R3 4 NED Pos Pos
33R9 4 NED Neg Neg
11R6 4 NED Pos Pos
12R9 4 NED Pos Pos
29R2 4 NED Pos Pos
32R2 4 NED Pos Neg
27R4 4 DOD Neg Neg UF
18E4 4 DOD Pos Pos UF
10R2 4 DOD Pos Pos UF
13R0 4 DOD Pos Pos UF
15R3 4 DOD Pos Neg UF
26R8 4 DOD Pos Pos UF
28R8 4 DOD Neg Neg UF
10E7 4 DOD Neg Neg UF
12E6 4 DOD Neg Pos UF
15E5 4 DOD Pos Neg UF
16E3 4 DOD Pos Pos UF
17E4 4 DOD Pos Pos UF
4E1 4 DOD Neg Neg UF
17R2 4 DOD Neg Neg UF
11E2 4 DOD Neg Neg UF
9E5 4 DOD Pos Pos UF
18E9 4 DOD Pos Pos
11R9 4 DOD Pos Neg
12R6 4 DOD Pos Pos
17R4 4 DOD Pos Pos
19R0 4 DOD Pos Neg
21R0 4 DOD Pos Pos
23R7 4 DOD Pos Pos
34R0 4 DOD Neg Neg
12E3 4 DOD Pos Pos
11E5 4S DOD Neg Neg
14R2 4S DOD Pos Pos

NED¼ no evidence of disease; DOD¼ dead of disease; 1p-del¼ 1p-deletion;
Pos¼ positive; Neg¼ negative; F¼ favourable; UF¼ unfavourable.
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Table 2 Analysis of expression of 30 genes after treatment of NB cell lines with 5-Aza-dC or TSA

5-Aza-dC treatment TSA treatment

Genes SK-N-AS SK-N-BE(2) IMR-32 SH-SY5Y SK-N-AS SK-N-BE(2) IMR-32 SH-SY5Y

VAMP3
PER3 +
UTS2 UD UD UD UD
TNFRSF9 UD + + + UD +
PARK7
ERRFI1 + + + +
RERE +
DKFZ566 +
ENO1
CA6 UD UD UD UD UD UD UD UD
SLC2A5 UD UD UD + + UD UD
GPR157 + +
H6PD
SSB1 +
MGC4399
PIK3CD + + + + + +
CLSTN1
ICAT +
LZIC
NMNAT1
RBP7 + + ND + + + +
UBE4B
KIF1B
PGD
APITD1
CORT
DFFA +
PEX14
CASZ1 + + + + + +
TARDBP

UD¼ undetermined, gene transcripts not detected in the real-time PCR amplification. ND¼ not determined. Genes showing consistant upregulation after treatment are high-
lighted in yellow.

CASZ1 RBP7

BSP fragment:
–102 784 to –102 560

No methylation

CpG island 1:
–103 572 to – 99 528

CpG island 2:
–1618 to +525

CpG island 3:
+28 210 to +28 857

BSP fragment 1:
–1600 to –1383

Methylation: mostly
in cell lines

BSP fragment 2:
– 262 to +248

No methylation

BSP fragment:
+28 507 to +28 749

Methylation: in cell 
lines and healthy 
blood controls

CpG island:
– 546 to +1212

BSP fragment:
– 223 to +79

No methylation

PIK3CD

BSP fragment 1:
– 59 710 to – 58 786

No methylation

BSP fragment 2:   
– 57 758 to – 57 472

Partial methylation: 
only in cell lines

BSP fragment: BSP fragment:
– 21 048 to – 20 763

No methylation

CpG island 1: CpG island 2: CpG island 3:
–59 195 to –57 392 – 21 690 to – 20 211

+358 to +596

Methylation: in cell lines and 
healthy blood controls

+339 to +674

Figure 1 The CASZ1, RBP7 and PIK3CD genes. Black boxes indicate coding exons and grey boxes untranslated exons. Positions with the A in the initiator
Met codon denoted nucleotide þ 1. CpG islands number 3 in CASZ1 and PIK3CD were identified with relaxed searching criteria (an expected GC content
of 450%, an observed/expected CpG ratio of 40.6 and 4200 bp).
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The changes are de novo mutations, not present in constitutional
DNA from the tumour. In exon 16 in PIK3CD, methionine (codon
ATG) is changed to isoleucine (codon ATA) in tumour 19R6. The
tumour is hemizygous for the variation as the other allele is deleted
in the tumour; normal tissue from the patient is heterozygous for

the variation. In ERRFI1, an amino-acid change from aspartic acid
to serine, p.N343S, was found in exon 4, 1028A4G (see Figure 5).
This variation was also found in the constitutional DNA from the
same patient (25R9). Also, synonymous base changes were
identified in PIK3CD and ERRFI1, see Table 3. None of the

A B
CpG site: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CpG site: 1 2 3 4 5 6 7 8 9 10 11 12 13

NB cell lines: SK-N-BE(2) SK-N-BE(2)
SK-N-F1 SK-N-F1
SK-N-SH SK-N-SH
SK-N-AS SK-N-AS
SH-SY-5Y SH-SY-5Y
IMR-32 IMR-32
SK-N-DZ SK-N-DZ
NB69 NB69
Kelly Kelly

NB tumours: 12R6 12R6
14R2 14R2
15R3 15R3
17R4 17R4
18E4 18E4
18E9 18E9
10R2 10R2
11E2 11E2
9E5 9E5
11R9 11R9

Healthy blood controls: Q1 Q1
Q2 Q2
Q3 Q3
Q4 Q4
Q5 Q5
Q6 Q6
Q7 Q7
Q8 Q8

Figure 2 Methylation status of (A) CASZ1 CpG island 2 fragment 1 and (B) PIK3CD CpG island 1 fragment 2. Black boxes indicate methylation, grey
boxes partial methylation and white boxes no methylation.

ERFFI1 PIK3CD

RBP7 CASZ1

0.40

0.20

0.00

– 0.20

– 0.40

– 0.60

– 0.80

2.00

25R8
35R8

26R9

27R1
13R3

9E517E4

P = 0.73

P = 0.07

P = 0.03

P = 0.0002

9E9

28R8

Favourable Unfavourable Favourable Unfavourable

Favourable Unfavourable Favourable Unfavourable

1.50

1.50

1.00

1.00

0.50

0.00

0.50

0.00

– 0.50

–1.00

0.50

0.00

– 0.50

**

*

Figure 3 Relative expression of tumours with favourable biology compared to tumours of unfavourable biology. Box plot explanation; upper and lower
hinge of the box represent 75th percentile and 25th percentile, respectively; whiskers indicates range; thick horizontal line within box, median. Open circles
represent outliers and asterisks represent extremes. The P-value at gene-by-gene level is indicated in lower left corner in each graph.
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Table 3 DNA variations detected in the study

Gene
Gene
position Patient

NB
Stage 1p-del Outcome Base change Affected cases Protein

Normal
tissue from
the patient

Healthy
controls

Variations
PIK3CD Exon 5 24R3 4 Pos NED 448G4A Heterozygous G/A A150T G/G 0/119

24R3 4 Pos NED 469C4A Heterozygous C/A L157M C/C 0/119
24R3 4 Pos NED 562C4T Heterozygous C/T R188W C/C 0/119

Exon 16 19R6 1 Pos DOD 1965G4A Hemizygous A/� M655I G/A 0/113
Intron 19 24R3 4 Pos NED IVS19+18C4T Hemizygous T/� C/C 0/112
Exon 21 19R6 1 Pos DOD 2661T4C Hemizygous C/� Y887Y T/C 0/114

ERRFI1 Exon 4 25R9 2 Neg NED 1028A4G Heterozygous A/G N343S A/G 0/111
Exon 4 24R3 4 Pos NED 1186C4A Heterozygous C/A L396L C/C 0/111

PIK3CD Exon 8 18E4 4 Pos DOD 935C4G Homozygous G/G S312S 6/112
18E9 4 Pos DOD 935C4G Heterozygous C/G

Intron 7 23R7 4 Pos DOD IVS7-9G4C Heterozygous G/C 2/112
13E6 3 Pos DOD IVS7-9G4C Homozygous C/C
15R3 4 Pos DOD IVS7-9G4C Heterozygous G/C G/C

Exon 18 10R2 4 Pos DOD 2319C4T Heterozygous C/T S773G C/T 1/112
11R9 4 Pos DOD 2319C4T Heterozygous C/T C/T

ERRFI1 Exon 4, 3’UTR 11E2 4 Neg DOD 1718A4G Heterozygous A/G 4/102
Exon 4, 3’UTR 12R6 4 Pos DOD 1924A4G Heterozygous A/G A/G 4/117

CASZ1 Exon 2 14R9 2B Pos NED 1-309G4A Heterozygous G/A 1/89
Exon 8 17R4 4 Pos DOD 1527G4A Heterozygous G/A K509K 2/112

1p-del¼ 1p-deletion; Pos¼ positive; Neg¼ negative; NED¼ no evidence of disease; DOD¼ dead of disease.

NB patient E E A A Q Q G W P N A L S E H V
Human  E E A A A Q Q L G W P N R A L S E M H V
Mouse  E E A A A Q Q L G W S N R A L S E M H V
Rat E E A A A Q Q L G W S N R P L S E M H V
Rabbit  E E A A V Q Q L G W P N R A L S E M H V
Dog  E E A A A Q Q L G W P S R A L S E M H V
Armadillo  E E A A A Q Q L G W P S R A L S E M H V
Elephant  E E A A A Q Q L G W P N R V L S E M H V
Opossum  E E A A A Q Q L G W P N R N L S E M H V
Chicken  E E R A A Q Q L S W P I K N I S E M H V

A150T                L157M                 R188W                M655I

Figure 4 PIK3CD mutations in NB primary tumours. Bars under each chromatogram indicate the mutation position. (A) Variations in exon 5. Upper
panel: Mutations 448G4A, 469C4A and 562C4T in patient 24R3 gave rise to amino-acid changes from Ala to Thr, Leu to Met and Arg to Trp,
respectively. Middle panel: Normal tissue from patient 24R3. Lower panel: Healthy control individuals. (B) Variation in exon 16. Upper panel: 1965G4A
mutation results in amino-acid change from Met to Ile in patient 19R6. Middle panel: Normal tissue from patient 19R6, heterozygous for G/A. Lower panel:
Healthy control individual. (C) Variation in exon 21. Upper panel: 2661T4C mutation in patient 19R6. Middle panel: Normal tissue from patient 19R6,
heterozygous for T/C. Lower panel: Healthy control individual. (D) Alignment of amino-acid sequences. The putative mutations, marked with red, are
located in conserved regions.
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alterations described above could be detected in any of 100 healthy
control individuals (4200 alleles). In addition to these tumour-
specific variations, some novel polymorphisms were identified
(Table 3).

DISCUSSION

1p-deletion is common both in NB and in other tumour types.
Since methylation and other epigenetic features have been shown
to be important mechanisms in the downregulation and repression
of genes, we decided to study DNA methylation and histone
deacetylation of genes in the NB/germ cell SRO we had previously
defined in order to pinpoint specific genes with a possible
involvement in NB. A number of NB cell lines were thus treated
with the demethylating agent 5-Aza-dC or the deacetylase inhibitor
TSA and the expression of a number of chromosome 1p36.1–2
genes were studied with and without treatment. The genes found to
be upregulated after treatment of the NB cell lines were
consequently considered to be tentative targets of epigenetic
events in NB tumour initiation/progression. The genes thus
identified were subjected to (i) bisulphite sequencing of the
CpG islands, (ii) analysis of expression in a large number of
primary tumours and (iii) mutation screening in the coding
regions.

Expression of the ERRFI1, PIK3CD, RBP7 and CASZ1 genes
increased after treatment with the deacetylase inhibitor TSA,
suggesting that these genes are regulated by histone modifications
in NB. PIK3CD, RBP7 and CASZ1 also exhibited changes in
expression in some of the cell lines tested after treatment with the
demethylating agent 5-Aza-dC, indicating that these genes could
also be silenced by DNA methylation.

The genes we identified as potential targets of epigenetic
modification were sequenced using tumour DNA modified with
the bisulphite method in order to explore methylation status. The
gene sequences were studied with the CpG island searcher and
CpGProD (Figure 1). ERRFI1 (MIG-6) was not subject to this
analysis since its expression was not upregulated after treatment
with 5-Aza-dC; furthermore, it displayed a higher level of
expression in patients with unfavourable outcome than in patients
with favourable outcome.

In our data, there were generally more methylated CpG sites in
NB cell lines than in primary NB tumours. This pattern has also

been seen in other studies, for example of CASP8 and RASSF1A
(Lazcoz et al, 2006). No consistent CpG methylation sites in both
NB cell lines and primary tumours differing from those of control
blood DNA could be identified. Since NB is derived from neural
crest progenitor cells, blood DNA might not be a good control. One
could speculate that the normal progenitor cells should be
completely unmethylated while the cells that develop into NB are
methylated, but this is only a speculation. However, since only
portions of one of the CpG islands in CASZ1 and PIK3CD
(Figure 1) were methylated, it is not likely that this account for the
low expression of the genes in unfavourable tumours. The increase
in expression after treatment with 5-Aza-dC could be due to the
methylation seen in these fragments in the cell lines or
alternatively be explained by other normally methylated genes
being activated as a result of the treatment which could have an
enhancing effect on the transcription of PIK3CD and CASZ1.
Enhancers or other regulatory sequences located outside the
analysed region could also be affected by methylation. Other
means of silencing could also be involved, as histone modifica-
tions, since treatment with TSA increases expression in the NB cell
lines. The fragment analysed in the CpG island of RBP7 was
unmethylated in the cell lines used (data not shown, available on
request).

The RNA expression analysis showed a decrease in PIK3CD and
CASZ1 in aggressive NB, compared to more favourable NB
tumours, for PIK3CD this decrease was significant also after
Bonferroni correction (P¼ 0.001). These data are concordant with
a previous study of expression in NB of 30 genes in the 1p36.2
region from our group (Fransson et al, 2007). The NB tumour
material used in that study is overlapping with this previous study;
however in this study, we have used clinical outcome criteria for
grouping the tumours. One could speculate that the difference in
expression could be due to a dosage effect since a major
proportion of the unfavourable NB tumours harbours a deletion
of 1p.

The RNA expression analysis of ERRFI1 showed a two-fold
increase in unfavourable tumour compared to favourable,
seemingly contradicting the results of another study that found
ERRFI1 downregulation in breast tumours in patients with poor
prognosis (Amatschek et al, 2004). This may reflect different
functions, depending on tumour type, but it could also indicate
that more advanced stage tumours grow more rapidly since
ERRFI1 expression can be induced by a variety of stimuli such as

NB patient Y L G V
Human  Y L N G V
Mouse  Y L N G V
Rat Y L N G V
Rabbit  Y L N G V
Dog  Y L N G V
Armadillo  Y L N G V
Opossum   Y L N G V
Chicken  Y L N G V

N343S

Figure 5 ERRFI1 in exon 4 in NB tumours. Bars under each chromatogram indicate the mutation position. (A) Upper panel: The 1028A4G mutation in
patient 25R9 leads to an amino-acid substitution from Asn to Ser. Middle panel: Normal tissue from patient 25R9, heterozygous for A/G. Lower panel:
Healthy control individual. (B) Upper panel: 1186C4A variation in patient 24R3. Middle panel: Normal tissue from patient 24R3, homozygous for the C
allele. Lower panel: Healthy control individual. (C) Alignment of amino-acid sequences. The putative mutation, marked with red, is located in a highly
conserved region.

Epigenetics and mutations of 1p36 genes in neuroblastoma

H Carén et al

1422

British Journal of Cancer (2007) 97(10), 1416 – 1424 & 2007 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s



growth factors, hypoxia and stress factors (Saarikoski et al, 2002;
Pante et al, 2005).

We also performed mutation screening of all coding regions of
the four genes, ERRFI1, PIK3CD, RBP7 and CASZ1, by DNA
sequencing. Three tumours with amino-acid changes were identi-
fied. Tumour 24R3 has three nonsynonymous mutations in the gene
PIK3CD. The tumour harbours 1p-deletion, but has two alleles at the
site of the mutations according to DNA sequencing (see Figure 4),
hence the deletion does not cover this region or more probably, the
wild-type allele comes from contaminating normal cells in the DNA
sample, indicated by single-nucleotide polymorphisms (SNP) array
analysis carried out on the tumour (data not shown). The mutations
are de novo mutations since they are not found in the constitutional
DNA. Tumour 19R6 also harbours a nonsynonymous DNA
mutation, M655I. The tumour is 1p-deleted and the normal tissue
from the patient is heterozygous for the base variation. A
nonsynonymous DNA mutation was also identified in tumour
25R9 (intact 1p) in the ERRFI1 gene. The variation is also found in
constitutional DNA from the patient. Also, one synonymous base
change was found in ERRFI1 and two in PIK3CD (one located in
intronic sequence). None of the variations mentioned above were
detected in any of more than 100 healthy control individuals (more
than 200 alleles), indicating that these changes are indeed mutations.
Although, it should be noted that samples with mutations are
limited. The tumour from patient 25R9 have intact chromosome 1p,
so the mutation only constitute one ‘hit’. The mutation in tumour
19R6 in the PIK3CD fits the two-hit hypothesis of tumour
suppressor inactivation (Knudson, 1971) since it is also 1p deleted.
This is probably also true for 24R3 if assuming that the wild-type
allele comes from contaminating normal material as indicated by
the SNP array analysis of this tumour. Some alterations not
annotated as single-nucleotide polymorphisms (SNP) in the UCSC
genome browser were also found in the study, indicating that rare
polymorphisms have been detected.

The known functions of the four genes are interesting in relation
to NB. ERRFI1, also known as MIG-6 or RALT, can be induced by
stress, growth factors and the protein Ras. ERRFI1 has recently
been reported by Zhang et al (2007) to be mutated in human non-
small-cell lung cancer cell lines and in one primary tumour. Loss of
activity contributes to the initiation of lung carcinogenesis and
also other tumour types. RBP7 is a cellular retinoid-binding
protein. Retinol is important in embryonic development. RBP7 is
epigenetically silenced by DNA methylation in the promoter region
in a high frequency of nasopharyngeal carcinomas as well as in
some cancer cell lines (colon, prostatic and ovarian cancer)
(Kwong et al, 2005). CASZ1 is a putative homologue to the zinc-
finger transcription factor Castor, required for CNS neuronal
development in Drosophila melanogaster, where it is involved in
neuronal cell lineage specification (Mellerick et al, 1992; Edenfeld
et al, 2002). Liu et al (2006) has recently presented cloning and
characterisation of the human homologue. They reported that the
expression of CASZ1 is increased when cells of neural origin are
induced to differentiation. PIK3CD, encoding the protein p110d, is
a catalytic subunit in class IA phosphoinositide 3-kinase (PI3K).
Phosphoinositide 3-kinase are important in regulating signalling
involved in cell cycle progression, cell growth, survival and
migration. Class 1 PI3K encompasses four isoforms, besides p110d,
also p110a (PIK3CA), p110b (PIK3CB) and p110g (PIK3CG). The
four isoforms are believed to have distinct functions and are also
regulated differently (Chang et al, 1997). Gain of function of the a

subunit is common in human cancers by overexpression or
mutations (Samuels and Velculescu, 2004; Samuels et al, 2004). In
our NB tumour material, we could not identify any mutations in
the PIK3CA gene (data not shown) and Dam et al (2006) have
reported only infrequent mutations in their NB material. The PI3
kinases are generally considered to function as oncogenes.
Although, our data could not find any indications of PIK3CD
acting as an oncogene in NB based on the following aspects: (a)
PIK3CD is located in a chromosomal region where LOH is
common in NB as well as in other paediatric tumours (Grundy
et al, 1994; Benn et al, 2000; Bridge et al, 2000), (b) gene expression
studies show a downregulation of transcripts in high-stage NB
compared to low-stage (consistent with findings of an expression
profiling of selected genes of chromosome region 1p35– 36
reported by Janoueix-Lerosey et al, 2004), (c) 5-Aza-dC and TSA
studies indicate that PIK3CD could be influenced by epigenetic
regulation in NB, (d) putative mutations have been identified. One
could speculate that the mutations identified are gain-of-function
mutations that would support the concept that the PIK3CD gene
could act as an oncogene in NB. The downregulation in gene
transcripts seen in high-stage compared to low-stage tumours
could be an upregulation in both high- and low-stage NB
compared to the transcription in the cells from which the NB
tumour cells arise. Although, expression analysis of the tumours
that harbour the mutations show that the gene is low expressed
(data not shown). This contradicts the concept of the mutations
being gain-of-function mutations. Further studies to evaluate the
function of the PIK3CD gene in NB are ongoing.

In summary, we have undertaken a broad analysis of the region
located in our NB/germ cell SRO of deletions. Epigenetic
regulation, mRNA expression and mutation screening at the
DNA level were explored. A group of genes have been identified as
epigenetically affected in NB cell lines; the PIK3CD gene stands out
as the most intriguing, since it also carries mutations in primary
tumours, two patients with nonsynonymous mutations were
identified. The mRNA expression of this gene is downregulated
in unfavourable, compared to favourable, NB tumours. Treatment
of NB cell lines with the histone deacetylase inhibitor TSA led to
increased gene transcription, indicating that the gene could be
epigenetically regulated. DNA mutations were also identified in the
ERRFI1 gene. The current study further strengthens the concept of
chromosome region 1p36 being important in the development of
NB tumours and supports the hypothesis that there could be
several genes in the region required for the initiation and/or
progression of this tumour.
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Abel F, Sjöberg R-M, Krona C, Nilsson S, Martinsson T (2004) Mutations

in the N-terminal domain of DFF45 in a primary germ cell tumor and in
neuroblastoma tumors. Int J Oncol 25: 1297 – 1302

Epigenetics and mutations of 1p36 genes in neuroblastoma

H Carén et al

1423

British Journal of Cancer (2007) 97(10), 1416 – 1424& 2007 Cancer Research UK

G
e
n

e
ti

c
s

a
n

d
G

e
n

o
m

ic
s



Abel F, Sjöberg RM, Nilsson S, Kogner P, Martinsson T (2005) Imbalance of
the mitochondrial pro- and anti-apoptotic mediators in neuroblastoma
tumours with unfavourable biology. Eur J Cancer 41: 635 – 646

Amatschek S, Koenig U, Auer H, Steinlein P, Pacher M, Gruenfelder A,
Dekan G, Vogl S, Kubista E, Heider KH, Stratowa C, Schreiber M,
Sommergruber W (2004) Tissue-wide expression profiling using cDNA
subtraction and microarrays to identify tumor-specific genes. Cancer Res
64: 844 – 856

Bauer A, Savelyeva L, Claas A, Praml C, Berthold F, Schwab M (2001)
Smallest region of overlapping deletion in 1p36 in human neuroblasto-
ma: a 1 Mbp cosmid and PAC contig. Genes Chromosomes Cancer 31:
228 – 239

Benn DE, Dwight T, Richardson AL, Delbridge L, Bambach CP, Stowasser
M, Gordon RD, Marsh DJ, Robinson BG (2000) Sporadic and familial
pheochromocytomas are associated with loss of at least two discrete
intervals on chromosome 1p. Cancer Res 60: 7048 – 7051

Bridge JA, Liu J, Weibolt V, Baker KS, Perry D, Kruger R, Qualman S,
Barr F, Sorensen P, Triche T, Suijkerbuijk R (2000) Novel genomic
imbalances in embryonal rhabdomyosarcoma revealed by comparative
genomic hybridization and fluorescence in situ hybridization: an
intergroup rhabdomyosarcoma study. Genes Chromosomes Cancer 27:
337 – 344

Carén H, Ejeskär K, Fransson S, Hesson L, Latif F, Sjöberg RM, Krona C,
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