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Abstract

While tissue engineering holds significant potential to address current limitations in

reconstructive surgery of the head and neck, few constructs have made their way

into routine clinical use. In this review, we aim to appraise the state of head and neck

tissue engineering over the past five years, with a specific focus on otologic, nasal,

craniofacial bone, and laryngotracheal applications. A comprehensive scoping search

of the PubMed database was performed and over 2000 article hits were returned

with 290 articles included in the final review. These publications have addressed the

hallmark characteristics of tissue engineering (cellular source, scaffold, and growth

signaling) for head and neck anatomical sites. While there have been promising

reports of effective tissue engineered interventions in small groups of human

patients, the majority of research remains constrained to in vitro and in vivo studies

aimed at furthering the understanding of the biological processes involved in tissue

engineering. Further, differences in functional and cosmetic properties of the ear,

nose, airway, and craniofacial bone affect the emphasis of investigation at each site.

While otolaryngologists currently play a role in tissue engineering translational

research, continued multidisciplinary efforts will likely be required to push the state

of translation towards tissue-engineered constructs available for routine clinical use.

Level of Evidence: NA.
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1 | INTRODUCTION

The evolution of reconstructive techniques has allowed for improved

functional and cosmetic outcomes in head and neck surgery.

Advances in local flaps and free tissue transfer demonstrate the versa-

tility of autologous tissue, and facial transplantation has proven the

viability of donor tissue for head and neck reconstruction.1 However,

limitations such as lack of donor tissue, poor tissue match, and trans-

plant rejection persist. Tissue engineering (TE) holds the potential to

address these barriers through the provision of new, healthy tissue

identical to the host. The ideal tissue-engineered construct would act

as an autologous replacement for diseased or surgically resected

structures and possess the capacity to renew, regenerate, and repair

in vivo.
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Despite the vast implications generated by the Vacanti mouse

bearing a human ear on its back2 and early successes and controver-

sies surrounding tracheal grafts,3-6 the full potential of tissue engi-

neering for clinical use has not been realized. In this review, we aim to

appraise the current status of TE applications within otolaryngology,

describe where research efforts have been focused for the past five

years, and evaluate promising future directions. Further, we analyze

the role of otolaryngologists within the field of regenerative medicine

and describe where otolaryngologist-led work has been published.

2 | METHODS

A literature search of the PubMed database for TE articles pertaining

to head and neck anatomical sites over a five-year time period span-

ning May 2014 to June 2019 was performed. The following searches

terms were included: “tissue engineering,” “regenerative medicine,”

“otolaryngology,” “nose,” “nasal,” “ear,” “tympanic membrane,” “ossicu-

lar,” “cochlea,” “laryngeal,” “trachea,” “tracheal,” “facial reconstruction,”

“maxillary,” and “mandibular.” For all results, the abstract was individu-

ally reviewed to determine that the study involved one or more com-

ponents of the TE paradigm: cellular source, scaffold, and signaling—

those that did not were excluded. Review and opinion articles were

also excluded. For remaining results, the methods and results sections

were further reviewed and those articles without a translational or

clinical component (eg, those focused on biochemical pathways) were

additionally excluded. Studies meeting inclusion criteria were broadly

characterized into anatomic region and application and the following

variables were extracted: scaffold utilization, biochemical evaluation,

histological analysis, mechanical analysis, in vitro study, in vivo study,

animal model, clinical outcomes, cell source, length of study, and

orthotopic or heterotopic placement of experimental construct.

The role of otolaryngologists in head and neck TE was assessed

through data regarding author specialty and journal of publication.

Journals were classified into four categories, Basic Science, Biomedi-

cal Engineering, Medicine/Surgery, and Otolaryngology. Analyses and

figures were completed using the R computing software (Ver-

sion 3.6.0).

F IGURE 1 Steps taken in the determination of publications to be used for review
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3 | RESULTS

After exclusion criteria were applied, a total of 290 unique peer-

reviewed publications from May 2014 to June 2019 were included

(Figure 1). These were anatomically characterized as laryngotracheal

(41.4%, n = 120), craniofacial (29.7%, n = 86), otologic (20.0%, n = 58),

and nasal (9.0%, n = 26). Publications addressed the following topics:

characterization of constructs and animal model components, in vitro

and in vivo studies, and small-scale human studies. The included stud-

ies most frequently involved in vitro testing, small animal models (mice

and rats), or a combination of the two (Figure 2). Large animal models

included rabbits, pigs, sheep, dogs, primates, monkeys, and goats.

Overall, studies within TE engineering have primarily taken place in

animal models, with large-scale human clinical trials yet to occur.

4 | DISCUSSION

Although overall conclusions regarding progress at each subsite can

be drawn based on numerical data, each anatomic site also presents

unique challenges. For example, the consequences of a failed tracheal

graft may be life threatening, while that of a failed nasal graft is likely

to be cosmetic only. Given this, specific details regarding each subsite

are presented by anatomic region.

4.1 | Tissue engineering for nasal replacement

Nasal defects have a variety of etiologies and may cause both cos-

metic and functional deficits.7

Currently, reconstruction with local flaps and autologous carti-

lage grafts remain the mainstay of therapy. However, autologous

cartilage can result in donor-site morbidity and is limited in the size

and shape of cartilage as well as the availability of tissue source.

The lack of autologous analogues for nasal reconstruction has led

to the pursuit of graft candidates using allogeneic and synthetic

materials. The efficacy of these materials is well described, as are

their associated complications: synthetic materials can extrude,

become infected, and cause a foreign body reaction.8,9 Likewise,

allogeneic grafts are associated with immune rejection and disease

transmission.8,9 Tissue engineered cartilaginous constructs can pro-

vide tissue designed to fit the specific geometric and functional

requirements of a given defect while also avoiding donor site mor-

bidity. To achieve such a goal, successful grafts must be able to

F IGURE 2 Proportion of
publications including each
investigation type for the head
and neck TE subsites
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replicate the size, shape, and mechanical properties of the nasal

cartilages.10

Twenty-six articles were found to involve TE applications for

nasal reconstruction since 2014 (Figure 3). While the total study num-

ber is relatively small, these studies present a suitable evaluation of

histologic characteristics, mechanical properties, regenerative poten-

tial, and the ability to create a 3D construct using primarily in vitro

and small in vivo models.8,10-19 There has been an absence of testing

in large animal models, however, there have been multiple attempts

(four studies) to replace nasal cartilage subunits in humans.9,20-22

Utilization of human chondrocytes for cartilage regeneration has

been a focus within nasal TE. Nasal septal chondrocytes, in particular,

have been shown to have favorable proliferative capacity and

chondrogenic potential compared to other chondrocyte sources in in

vitro studies.23,24 This tissue is easily acquired, either as remnants

from septal surgery or as a biopsy of the septum with minimal donor

site morbidity. Further, the ability of nasal septal progenitor cells to

replicate does not diminish over prolonged cultivation, and nasal sep-

tal chondrocytes have been replicated from a small population of pri-

mary cells without the need for a scaffold.23,24 Such cartilaginous

tissue-engineered grafts have successfully been utilized in human sub-

jects. Fulco et al used autologous nasal septal chondrocytes seeded

on collagen membranes to reconstruct two layer alar lobule defects

following tumor resection in five patients.9 At one year, patients were

satisfied with functional and aesthetic outcomes. Hoshi et al utilized a

collagen scaffold-based tissue-engineered cartilage to augment the

nasal dorsum in patients with cleft lip-nose deformity. Patients experi-

enced improved nasal shape and a clinical trial was initiated for further

investigation.21

The complex and varied geometry of nasal cartilage has driven

the use of three-dimensional printing and injectables in scaffold con-

struction. Xu et al used three-dimensional printing to replicate lower

lateral nasal cartilages that were subsequently grown subcutaneously

in mice. This resulted in a precise construct that possessed morpho-

logic features similar to the native cartilage, but with greater biome-

chanical strength.10 Other studies have used injectable autologous

nasal chondrocyte and platelet-rich plasma grafts to treat external

nasal valve collapse in humans.20,22 This minimally invasive approach

has proven especially valuable in the setting of insufficient structural

support without a major soft tissue defect.

Overall, the subset of nasal TE publications in the past five years

is small but includes the highest proportion of human studies. (Fig-

ure 3). It is likely that the simplicity and low morbidity of cartilage-only

nasal grafts has created the opportunity for immediate investigation

in human patients.9,20-22 The promising results from these studies

have enabled investigators to initiate movement toward larger-scale

trials.9 Meanwhile, no studies have been completed demonstrating

creation of a true composite graft including nasal mucosa, cartilage,

F IGURE 3 Heatmap representing the
proportion of publications by year that
utilized specific translational research
methodologies from construct
characterization to human trial to
investigate nasal tissue
engineering8-24,98-106
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soft tissue, and overlying skin which would be able to serve as a

reconstructive option in a full-thickness nasal defect.

4.2 | Regenerative medicine for otologic
applications

TE applications for the ear have focused primarily on auricular recon-

struction with limited investigation into regeneration of inner and

middle ear structures. In particular, various stem cell and scaffold

materials have been used to develop constructs to regenerate tym-

panic membrane perforations.25-31 Other work has focused on in vitro

models of decellularized cochleae and the establishment of pluripo-

tent stem cell lines with the goal of generating functional inner ear

hair cells.32-35 While ossicular chain tissue engineering has been inves-

tigated in the past, there were no new reports within our inclu-

sion.36,37 Thus, the majority of efforts in otologic applications in TE

have been focused on cartilaginous reconstruction of the auricle. Cur-

rently, reconstructive efforts rely on protheses or autologous cartilage

grafts. However, a prosthesis can extrude and, although biocompati-

ble, cartilage autografts increase donor site morbidity and may not

provide optimal size and function match. Reconstruction of the exter-

nal ear is a technically challenging, surgeon dependent, multistage pro-

cedure which requires multiple costal cartilage segments to be

harvested, putting the patient at repeated risk of donor site morbid-

ity.38 Finally, the arrangement of cartilage can warp over time and lead

to poor long-term outcomes. TE offers an alternative source of autol-

ogous cartilage that is not limited by quantity or shape and can be

used to improve auricular reconstruction.

A total of 58 articles in the past five years have focused on the

development of otologic TE constructs, with 47 of these examining

auricular TE specifically. Efforts to develop auricular TE constructs

have focused on the combined use of in vitro and in vivo models, and

only one human study was published during the review period (Fig-

ure 4). The majority of investigations have been focused on improving

construct flexibility and preventing contraction in vivo through het-

erotopic or orthotopic placement.

Decellularized cartilage provides a scaffold that acts as an orga-

nized microenvironment for cartilage TE. While demonstrated in other

subsites, not until 2015 had a group demonstrated that human bone

marrow-derived mesenchymal stem cells seeded onto decellularized

auricular cartilage were able to differentiate in vitro.39 Further work

aimed at optimizing the histologic and biomechanical properties of TE

constructs has shown that culture under dynamic conditions prior to

implantation into a mouse model is beneficial.40

Other groups have investigated the use of hydrogels—hydrophilic

three-dimensional polymeric networks that swell in water.41 Hydro-

gels possess high water content and elasticity, making them better

F IGURE 4 Heatmap representing the
proportion of publications by year that
utilized specific translational research
methodologies from construct
characterization to human trial to
investigate otologic tissue
engineering15,25-35,38-43,45,46,107-144
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mimics of human tissue than other synthesized materials. Investiga-

tions into hydrogels have sought to optimize the ratio of materials

used to comprise the gels, and have shown their cartilage-forming

potential through in vitro and in vivo studies.41-43 Of particular inter-

est, hydrogels can be combined with 3D-printed molds to form a TE

construct that better recapitulates the native auricle.

When a costal cartilage graft is used to reconstruct the auricle,

the cartilage can calcify, causing it to thicken and deform.44 Visscher

et al addressed this problem by adding both a 3D-printed poly-e-cap-

rolactone mold and collagen scaffold to a cell-seeded hydrogel, and

demonstrated creation of contraction free constructs in vitro.43

Others have shown longer in vitro culture of a construct prior to in

vivo implantation reduces contraction in vivo.40 Pomerantseva et al

utilized a sheep model to demonstrate that auricular chondrocytes

could be expanded to a quantity needed for a whole auricle and that

the overall shape of the engineered ear could be preserved with mini-

mal dimensional changes.45

As with nasal TE, the majority of auricular TE research has primar-

ily been conducted in in vitro and animal models without a trend

towards human studies published in the last five years. The first report

of clinical auricular TE came in 2018: five children with microtia

between the ages of 6 and 9 were treated with a patient-specific ear-

shaped engineered cartilage.46 Investigators expanded harvested

microtia chondrocytes, seeded these on a 3D-printed biodegradable

scaffold, and cultured the construct in vitro. Patients underwent tissue

expansion prior to reconstruction and were followed for 2.5 years

postimplantation, with satisfactory aesthetic outcomes reported.46

While promising, follow up studies have not been performed, and

there have not been large-scale clinical trials. Future studies should

work to optimize construct materials and the process of auricular

reconstruction using TE further to make such products clinically avail-

able on a larger scale.

4.3 | Tissue engineering for craniofacial
reconstruction

Craniofacial reconstruction allows for the restoration of facial sym-

metry and functional architecture for speech, breathing, and masti-

cation. Current reconstruction utilizes bone grafting, which is

limited to smaller defects, and the osteocutaneous free flap (OCFF),

whose versatility permits reconstruction of some larger defects.47

However, osteocutaneous free tissue transfer does not fully reca-

pitulate the complexity and dimensions of craniofacial bone. Fur-

ther, OCFF is a highly complex surgery requiring microvascular

surgeons and donor site harvesting that can be associated with sig-

nificant morbidity. Regenerative medicine offers an alternative to

free tissue transfer for addressing large craniofacial bone defects

that eliminates the need for microvascular surgery and the possibil-

ity of donor site morbidity.

A successful scaffold for craniofacial bone repair needs to repli-

cate osteoconduction, osteogenesis, and osteoinduction to repair

bony defects. Nonautologous bone graft substitutes have been used

to make scaffolds, and one area of continued investigation has been

the optimization of these scaffolds' structural properties. Commonly

used substitutes are hydroxyapatite, calcium carbonate, demineralized

bone matrix (DBM), and beta-tricalcium phosphate48-58 Three-dimen-

sional printing has the potential to play an important role in custom-

ized defect repair and head and neck bone TE and is in the early

stages of in vivo investigation. Lopez et al treated mandibular defects

in a rabbit model with a 3D-printed bioceramic scaffold that exhibited

bony ingrowth.59 3D-printing has also been able to generate micro-

structures that simulate the stiffness of the mandibular condyle and

even have demonstrated compressive resistances 15 times greater

than bone in a rabbit model.54,60

Building upon construct scaffolding, the role of construct seeding

with stem cells to supplement osteogenesis has been actively studied.

Mesenchymal stems cells (MSCs) have been shown to exhibit osteo-

progenitor differentiation, osteoblast proliferation, and matrix deposi-

tion in vitro and in vivo.57,61-66 Furthermore, the study of growth

signaling has become important for growth of alveolar, maxillary, and

mandibular TE constructs. A plethora of graft biomaterials and bio-

chemical factors have been studied with the goal of improving the tis-

sue-engineered construct's scaffold integration and tissue growth.48-

58,66-79

Overall, craniofacial tissue engineering appears to be slightly more

robust than the burgeoning work in nasal and auricular TE (Figure 5).

Over the past five years, small and large animal in vivo models have

been utilized to investigate TE applications for craniofacial bone, with

a number of human studies having been completed as well (Figure 5).

Seventy-four (86.0%) of the 86 studies reviewed investigated con-

structs in animals, and 8 (9.3%) of these studies investigated con-

structs in human patients. Specific challenges to this subsite relate to

the size and location of facial bone defects with large bone TE con-

structs struggling to achieve adequate cell penetration and vasculari-

zation. Approaches to overcoming these challenges include the use of

injectable constructs and in vivo bioreactors. Song et al developed a

cell-laden hydrogel microfiber-injectable scaffold that was delivered

to a defect and maintained cell viability with more even distribution

than a rigid scaffold in a rat model. The cell encapsulating microfibers

quickly degraded and released cells, which led to a new bone area

fraction that was greater than threefold that of the control

construct.56

In vivo bioreactors have been utilized to create autologous bone

flaps for craniofacial defects.80 The vascularization and precursor cells

present in these bioreactors allow for larger bone constructs to be

engineered.81 The first human case of mandibular reconstruction

using the greater omentum as a bioreactor was reported in 2016.82 A

follow-up investigation after 10 months showed that the amount of

vital mineralized bone tissue of the graft in the mandible had contin-

ued to increase.81 A morselized bone autograft was utilized as the

scaffold in an in vivo bioreactor study that successfully replaced angle

of mandible defects in sheep.83 By using an in vivo autologous tissue

construct, biocompatibility is promoted and the risk of dehiscence,

such as has been seen with titanium mesh, can be mitigated.81 It has

also since been shown that dental implants are able to be
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osseointegrated into de novo tissue engineered bone in an animal

model that utilized an in vivo bioreactor.84

Despite these promising options for addressing large bone

defects, segmental defects of the mandible have not been investi-

gated thoroughly. The bulk of studies have instead focused on small

bone defects, with only one actually removing an entire segment of

mandible. The researchers used a biodegradable scaffold in a monkey

model and found that it had insufficient load bearing capacity and

incomplete bone unity after 6 months.52 Since the mandible is the

seat of dentition, and plays a role in speech, mastication, and facial

appearance, it is important to work toward an engineered construct

that can repair such segmental mandibular defects.

4.4 | Regenerative medicine for laryngotracheal
replacement

The majority of work in laryngotracheal TE has occurred in tracheal

replacement, with limited work being performed in the larynx as well.

Broadly, laryngeal TE currently seeks to restore respiratory and vibra-

tory function. Maintenance of the neuromuscular connections that

are required for function of the larynx is a specific challenge. Brookes

et al found that rats with recurrent laryngeal nerve injury had

improved muscle recovery after treatment with TE motor endplate

constructs rather than primary muscle progenitor cells alone.85 Small

and large animal in vivo models have been used to show that stem

cell-seeded constructs are able to produce sufficiently mucosalized

vocal folds.86,87 Hermann et al produced rudimentary vocal folds with

appropriate mucosal coverage in pigs such that the animals were able

to maintain aeration, phonation, and swallowing.87

Tracheal TE research has primarily focused on reconstructing

long-segment defects (>50% in adults and >30% in children). These

may arise from either congenital or acquired etiologies and require tis-

sue transfer or implantation to reconstruct.88 Early excitement regard-

ing tissue-engineered tracheal grafts (TETGs) was driven in part by

reports of successful implantation of TE constructs in humans in

2008.89,90 However, these early subjects suffered significant morbid-

ity, and in some cases, mortality, leading to renewed interest in small

animal and in vitro approaches. As with other sites, current and histor-

ical reconstructive efforts have focused on autologous free-tissue

transfer, biomimetics made of foreign materials, transplantation and

combinations of these.88 Unsurprisingly, such approaches are limited

by inadequate tissue, nonhomologous tissue, graft rejection, infection,

and tissue extrusion. A successful TETG requires a biomechanically

equivalent cartilaginous construct lined by a fully functioning respira-

tory epithelium.

Recently, in vivo models have been regularly used to develop tra-

cheal tissue engineering constructs (Figure 6). In the past five years

F IGURE 5 Heatmap representing the
proportion of publications by year that
utilized specific translational research
methodologies from construct
characterization to human trial to
investigate craniofacial tissue
engineering49-72,74-77,79,81-84,145-197
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alone, 120 laryngotracheal articles have been published. Of the 101

articles focusing specifically on tracheal reconstruction, 72.7% have

used an animal model. Investigations have examined the ideal scaffold

material with studies evaluating decellularized tracheal scaffolds, bio-

synthetics, and scaffold-free constructs. Similarly, the ideal cellular

source for graft seeding is being pursued. Recent efforts have been

devoted to addressing the predominant barriers to translation: del-

ayed graft epithelialization, host inflammatory response and graft

stenosis.

Commonly used scaffold materials include decellularized tissue,

poly-lactic-co-glycolic acid (PLGA), poly-ε-caprolactone (PCL), poly-

ethylene terephthalate (PET), and polyurethane (PU). Constructs have

been created successfully with each of these, but no definitive answer

regarding the best scaffold material has been achieved. Maughan et al

compared allografts, decellularized allografts, and synthetic scaffolds

in rabbits and did not identify one superior choice as each material

was limited by a combination of inflammation, mucus plugging, lack of

angiogenesis, or stenosis.91 Further, few studies have examined the

biomechanical properties of each scaffold material. Zhao et al demon-

strated graft tensile and compressive strength greater than that of

native trachea when using a seeded and subsequently decellularized

stent with the scaffold comprised of polyglycolic acid and metal.92

Dharmadhikari et al compared nonresorbable and resorbable scaffolds

and found that both scaffolds held greater tensile strength than native

trachea with nonresorbable scaffold being stiffer than resorbable.93

However, both scaffold types were complicated by stenosis when

implanted in mice with resorbable scaffolds demonstrating

tracheomalacia and nonresorbable showing tissue overgrowth. Inter-

estingly, in resorbable scaffolds, greater scaffold cellular infiltration

correlated with improved survival. To that end, Best et al compared

scaffold properties with different ratios of PET and PU spun onto

either solid or porous C-shaped polycarbonate rings.94 While both

solid and porous rings provided excellent scaffold strength, cell

seeding was superior in the solid ring construct.

Similar to the question of scaffold material, the ideal cellular

source for graft seeding has not been elucidated. Various groups have

experimented with an array of cellular material including epithelial

cells, fibroblasts, septal chondrocytes, adipose derived stem cells

(ADSCs), and bone marrow derived mesenchymal stem cells (BM-

MSCs). Regardless of the cellular source, the goal of cell seeding is to

create a scaffold with terminally differentiated chondrocytes and

respiratory epithelium. When seeding decellularized scaffolds, Go et al

showed that both epithelial and mesenchymal stem cells are neces-

sary for graft function.95 It has also been shown that seeded ADSCs

differentiated into stromal cells, chondrocytes, and epithelial cells.96

Graft stenosis has plagued implanted scaffolds despite variations

in scaffold and seeding material. In a recent study by Pepper et al,

scaffolds were implanted in eight sheep with all eight subjects going

F IGURE 6 Heatmap representing
the proportion of publications by year
that utilized specific translational
research methodologies from construct
characterization to human trial to
investigate laryngeal tissue
engineering85-87,91,92,94,96,97,198-306
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on to develop graft stenosis.97 Inflammatory complications were dem-

onstrated in the acute and chronic settings with fibrinopurulent exu-

date seen at postoperative day 1 bronchoscopy in all eight subjects.

Finally, none of the eight scaffolds were shown to have epithelial lin-

ing at the planned euthanasia timepoint of four months. Given the

aforementioned function of the epithelium in innate immunity and cili-

ary clearance, it is clear that the lack of epithelization is contributing

to a proinflammatory response creating stenosis and chronic inflam-

mation in tissue engineered trachea. Further studies regarding the

mechanisms of graft epithelialization are critical.

Again, as with the other subsites, the majority of studies in the

last five years have occurred in animal models without a significant

trend towards large animal or human studies. Limitations at the tra-

cheal subsite are uniquely related to the fact that the orthotopic

implantations are not perfused well and are subject to contamination

and infection. This adds an additional layer of variability in an already

complex system in which scaffold material (including the ratios of said

materials) and cellular source already represent sources of variation.

Heterotopic implantations have introduced a stage of

neovascularization that may improve TETG outcomes. Thus, the ulti-

mate result of a TETG is dependent on exogenous and endogenous

factors. Regardless, given that bioequivalent mechanical strength has

been demonstrated through various methodologies, it may be that

graft epithelialization and neovascularization stand to be the most

important areas to address in tracheal tissue engineering moving

forward.

4.5 | Otolaryngologists in tissue engineering

To further explore the role of otolaryngologists in tissue engineering

of the head and neck, we examined the credentials of the authors of

the publications reviewed in our literature search. Of the 290 total

publications reviewed, 42.6% included at least one otolaryngologist

author (Figure 7). However, otolaryngology journals represent only

17% of all publications, compared to 36% of publications in biomedi-

cal engineering journals, 29% in Medicine and Surgery journals, and

17% in Basic Science journals (Figure 8). While otolaryngologists are

taking an active role in head and neck applications for tissue engineer-

ing, such work has not been published in otolaryngologic journals—a

disparity that may influence the exposure of the field of regenerative

medicine to our colleagues. This distribution is likely influenced by the
F IGURE 7 Percent of publications that include one or more
otolaryngologist author

F IGURE 8 Breakdown of
head and neck TE application
publications by type of journal
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fact that the majority of work remains in in vivo and animal models.

As the number of TE companies in the United States continues to

grow and engineered materials for the head and neck become more

clinically available, it is to be expected that the role of otolaryngolo-

gists in the field will continue to grow.

5 | CONCLUSION

Tissue engineering holds the potential for reconstruction with autologous

tissue that is not limited by availability of patient donor site tissue. The

external ear, nose, trachea, and facial skeleton are important to human

function and appearance and stand to benefit greatly from TE constructs.

However, these subsites vary in their makeup and require individualized

investigation to develop the appropriate TE construct. While the com-

mon goal of regenerative medicine is to create a construct for human

use, current work in all major head and neck subsites has mostly been

limited to in vitro and animal models. Throughout the last five years,

there has not been a substantial shift in the proportion of TE studies that

have been completed in large animal or human models. Finally, otolaryn-

gologists participate in a significant proportion of TE studies, with work

being published in a diverse range of basic science and otolaryngology-

focused journals. Future studies in the field should be guided by and

build upon previously completed work in an effort to move towards large

animal and human models.
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