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Abstract

behavior in Pekin ducks.

phenotypic variation.

behavior patterns in ducks.

Background: Feeding behavior traits are an essential part of livestock production. However, the genetic base of
feeding behavior traits remains unclear in Pekin ducks. This study aimed to determine novel loci related to feeding

Results: In this study, the feeding information of 540 Pekin ducks was recorded, and individual genotype was
evaluated using genotyping-by-sequencing methods. Genome-wide association analysis (GWAS) was conducted for
feeding behavior traits. Overall, thirty significant (P-value < 4.74E-06) SNPs for feeding behavior traits were
discovered, and four of them reached the genome-wide significance level (P-value < 2.37E-07). One genome-wide
significance locus associated with daily meal times was located in a 122.25 Mb region on chromosome 2, which
was within the intron of gene ubiquitin-conjugating enzyme E2 E2 (UBE2E2), and could explain 2.64% of the
phenotypic variation. This locus was also significantly associated with meal feed intake, and explained 2.72% of this

Conclusions: This study is the first GWAS for feeding behavior traits in ducks. Our results provide a list of candidate
genes associated with feeding behavior, and also help to better understand the genetic mechanisms of feeding

Keywords: Pekin duck, Feeding behavior, Genome-wide association analysis

Background

Animal behavior refers to the instant response of ani-
mals to changes in their living environment or variations
in their internal physiological conditions. Therefore,
feeding behavior is of great significance for maintaining
individual survival and population development. Feeding
behavior patterns have been studied intensively in differ-
ent animals, including mice [1], zebra finch [2], monkeys
[3], pigs [4] and cows [5], which can be helpful for con-
structing a physiological model for animal health and
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production. In recent years, meat ducks have become
one of the main source of animal proteins in Asian
countries. Pekin ducks are an ideal model to examine
the effects of genetic selection due to their history of in-
tensive artificial selection [6, 7].

Feeding behavior traits are also very vital in Pekin
ducks. For one thing, feeding behavior can be an effect-
ive way to track animal performance and health status.
For another thing, researchers had found that there were
strong associations between feeding behavior and feed
efficiency in broilers and ducks [8, 9]. Nowadays, with
the widespread use of automatic feeders, individual feed-
ing behavior can be recorded accurately in a large popu-
lation, which could facilitate the understanding of
genetic bases for feeding behavior in poultry. In our
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previous study, we found that the feeding tendency of Pekin
ducks was obviously different at different residual feed intake
(RFI) levels [10]. Meanwhile, we also showed that feeding be-
havior traits were highly heritable in Pekin ducks. Certain feed-
ing behaviors had the potential to improve other economic
traits, with an improvement in feed efficiency [11]. However,
few QTLs related to feeding behavior traits have been reported
in ducks due to the non-availability of genotyping arrays.

The goal of this study was to investigate the genetic
markers associated with feeding behavior in Pekin ducks.
Previous researchers had shown that genotyping-by-
sequencing (GBS) could be an efficient approach to
genotype in ducks [12—14]. In this study, we carried out
a genome-wide association study for feeding behavior in
Pekin ducks based on GBS method to identify novel loci
associated with these traits.

Results

Summary of phenotype and genotype

The feeding behavior information was collected from
540 ducks. The descriptive statistics of phenotypic rec-
ord are shown in Table 1. The average daily feed intake
(DFI) of the ducks was 0.31 kg, with a standard deriv-
ation of 0.03. Meanwhile, the average total feeding time
(TFT) was 382.77 min, the mean of number of meals
(NM) was 14.32, and the average meal duration (MD)
was 73.41 s in ducks during the observation period.

A total of 1 TB clean reads were produced and 99.15%
of these were aligned to the reference genome. Through
imputation and quality control, 1,899,988 SNPs were
attained for association analysis. The frequency of SNPs
along the genome and estimated genomic inflation fac-
tors are illustrated in supplementary data (Fig. S1, Fig.
S2). The estimated genomic inflation factor fluctuated
between 1.00 and 1.03, revealing good uniformity be-
tween the observed and expected distributions of the P-
value.

Estimation of genetic parameters

Estimation of genetic parameters using genomic infor-
mation is summarized in Table 2. The heritabilities of

Table 1 Descriptive statistics of phenotypic data

All (n=540)
Trait Mean sD' Min Max
DFl, kg/d 031 0.03 0.22 039
NM 1432 2.88 579 2291
MFl,g 22.39 444 1228 36.29
MD,s 7341 17.28 3359 127.25
TFT, min 382.77 70.7 204.85 59948

'SD, standard deviation
Abbreviations: DFI, daily feed intake; NM, number of meals per day; MFI, meal
feed intake; MD, meal duration per time; TFT, total feeding time
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Table 2 Genomic heritability and genetic correlation of feeding
behavior traits'

DFI NM MFI MD TFT
DFI 0.17+£0.09 002+009 020+0.10 024+0.18 032+020
NM 027 0.28+0.10 -091+£005 —-065+0.13 008 +0.14
MFI 0.2 -0.85 0.30+0.11 073+0.11 004 +£0.06
MD 001 -0.63 0.65 0.32+0.13 060 £ 0.11
TFT 0.17 0.14 -0.06 0.59 0.29 + 0.11

"The upper triangle showed the genetic correlation + standard error, the lower
triangle showed the phenotypic correlation, and the diagonal showed the
heritability + standard error

Abbreviations: DFI, daily feed intake; NM, number of meals per day; MFI, meal
feed intake; MD, meal duration per time; TFT, total feeding time

feeding behavior traits were moderate (ranging from
0.17 to 0.32), with MD having the highest genomic herit-
ability (0.32) among all the traits. The results showed
that NM had strong negative genetic correlations with
meal feed intake (MFI) and MD (ranging from - 0.91 to
- 0.65), which was in accord with their phenotypic cor-
relations. Nevertheless, the phenotypic and genetic cor-
relations between MFI and TFT were low (ranging from
-0.06 to 0.04).

Association analysis for feeding behavior traits

The results of loci-based analysis are shown in Fig. 1. A
total of 30 suggestively significant loci (P-value < 4.74E-
06) among 9 different chromosomes were identified
(Table 3), including 4 loci that gained the genome-wide
significance (P-value < 2.37E-07).

For NM and MFI, a common peak of genome-wide
significant SNPs was identified on chromosome 2 due to
the strong genetic correlations between them (Fig. 1b,
). The top SNPs for these two traits both lay between
the third and the fourth exon of ubiquitin conjugating
enzyme E2 E2 (UBE2E2), which could explain 3.42 and
2.74% of phenotypic variation, respectively.

As for the other feeding traits, the SNP located in the
intron of UUBE2E2 on chromosome 2 was also associated
with MD, accounting for 2.38% phenotypic variance.
The most significant SNP for DFI was in the upstream
region of RB binding protein 8 (RBBPS8), with a signifi-
cance of 1.07E-06. Our results also revealed that the top
SNP for TFT was suggested to be associated with eyes
shut homolog (EYS).

Linkage disequilibrium and conditional analysis

According to Fig. 1, the tops SNPs for NM and MFI are
close to each other. In order to characterize the potential
relationships among them, a linkage disequilibrium ana-
lysis was performed. The results of linkage disequilib-
rium analysis for genome-wide significant regions are
illustrated in Fig. 2. As some peak SNPs for NM were lo-
cated in the same Haplotype block, we performed
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Fig. 1 Manhattan plot for feeding behavior traits. a daily feed intake; b, number of meals per day; ¢, meal feed intake; d, meal duration per time;
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value = 4.74E-06), respectively. The top SNPs were annotated with corresponding candidate genes
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conditional single-marker association analysis on the top
SNP to examine whether the other significant SNPs were
independent of the top associated SNP, which might act
as potential causal variants. Only SNPs on chromosome
2 were selected in our conditional analysis, and no add-
itional signals were detected except for this region. The
results on region-specific and conditional analysis for
NM are presented in Fig. 3. The P-values of previous
significant SNPs for NM on chromosome 2 were lower
than the potential significance level. No significant asso-
ciation was found after conditional analysis. So we could
infer that the other significant SNPs in this region
gained the genome-wide significance due to their close
linkage relationships with the top associated SNP.

Functional annotation of candidate genes

A total of 25 candidate genes were detected by GWAS ana-
lysis. We performed QTL annotation of these 25 chicken
ortholog genes using the chicken QTL database. Seventeen
genes were annotated with QTL information in chickens.
The QTL information for five genes was consistent with the
feeding behavior traits collected in this study (Table 4). Rho
guanine nucleotide exchange factor 10 like (ARHGEFIOL),
which was associated with DFI in ducks in the current study,

mapped to body weight QTL in chicken studies. L/BE2E2, a
common candidate gene for NM, MFI, and MD, is associ-
ated with Wattles weight QTL in chickens.

Discussion

Genomic heritability

Genetic parameters play a vital role in designing the ani-
mal breeding plan, and genetic parameter estimation
using the relationship matrix based on whole-genome
genotypes can be an efficient way to achieve this goal
[15]. As shown in Table 2, the heritability of feeding be-
havior traits ranges between 0.17 and 0.32. Previous
work showed that the heritability of feeding behavior
traits in ducks varied from 0.33 to 0.65, based on the
pedigree information [11]. The findings in these two
studies were consistent with one another and both of
them revealed that MD had the highest heritability, ar-
riving at 0.32 and 0.65, respectively. Howie, et al. [8] pre-
viously reported that the heritabilities of feeding
behavior traits ranged from 0.30 to 0.55 in commercial
broilers. Our study observed a lower estimation com-
pared with previous studies, which might be due to the
difference of genetic background and the missing herit-
ability of rare genomic variants [16, 17].
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Table 3 information for significant SNPs associated with feeding behavior traits
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Trait N Chr Position MAF Beta P-value CPV(%) Candidate gene Distance
DFI 5 1 105,141,360 0.119 —3.11E-01 1.82E-06 146 CLMP Within (intron)
2 56,076,894 0.053 —4.75E-01 1.07E-06 1.34 RBBP8 13.284 kb upstream
2 160,342,459 0.182 —263E-01 349E-06 1.01 SNAP47 1.798 kb upstream
8 7,821,240 0.058 —4.58E-01 1.59E-06 1.56 DENND1B Within (intron)
21 1,442,045 0.051 4.86E-01 1.88E-06 1.67 ARHGEF10L 2832 kb downstream
NM 8 2 122,248,468 0302 —2.25E-01 3.27E-06 219 UBE2E2 Within (intron)
2 122,253,614 0.373 —2.56E-01 3.34E-08 2.64 UBE2E2 Within (intron)
2 122,289,379 0.291 —2.51E-01 231807 26 UBE2E2 Within (intron)
2 122,297,710 0354 —2.33E-01 6.52E-07 227 UBE2E2 Within (intron)
2 122,302,381 0.302 —2.74E-01 1.21E-08 341 UBE2E2 Within (intron)
2 127,662,769 0.227 —247E-01 441E-06 1.8 NPVF 78894 kb upstream
3 49,064,369 031 235E-01 2.66E-06 149 CD164 1.564 kb upstream
4 35,340,778 0.106 —3.39E-01 3.37E-06 1.63 OTUD4 Within (intron)
MFI 9 2 6,590,112 0.380 —2.09E-01 4.36E-06 2.12 KHDRBS3 425.206 kb upstream
2 122,248,468 0.302 2.29E-01 1.67E-06 2.7 UBE2E2 Within (intron)
2 122,253,614 0.373 2.39E-01 1.81E-07 2.72 UBE2E2 Within (intron)
2 122,289,379 0.291 242E-01 4.75E-07 263 UBE2E2 Within (intron)
2 122,297,710 0.354 243E-01 147E-07 2.74 UBE2E2 Within (intron)
2 122,302,381 0.302 2.35E-01 8.15E-07 2.73 UBE2E2 Within (intron)
2 122,412,594 0.241 2.35E-01 3.05E-06 2.15 ZNF385D 59.762 kb upstream
3 66,002,589 0251 —2.39E-01 2.63E-06 221 ARID1B 226.373 kb downstream
37 1,532,297 0.086 3.76E-01 4.56E-06 1.96 LOC113841483 0.38 kb upstream
MD 10 1 6,999,701 0.058 —4.34E-01 8.26E-07 3.14 USP6NL Within (intron)
2 37,351,206 0270 —2.33E-01 8.7E-07 1.38 BHLHE22 17.535kb downstream
2 43,705,118 0411 —2.11E-01 1.58E-06 1.62 CDH2 Within (intron)
2 122,248,468 0.302 2.07E-01 4.7E-06 1.93 UBE2E2 Within (intron)
2 122,289,379 0291 2.14E-01 24E-06 1.63 UBE2E2 Within (intron)
2 122,292,748 0318 2.29E-01 245E-07 2.38 UBE2E2 Within (intron)
2 122,302,381 0.302 2.26E-01 5.23E-07 246 UBE2E2 Within (intron)
2 127,662,769 0.227 2.39E-01 2.2E-06 1.97 NPVF 78.894 kb upstream
14 5,023,928 0.154 2.72E-01 3.04E-06 1.8 GFPT2 2.353 kb downstream
14 18,817,706 0.078 3.64E-01 34E-06 2.21 GABRB2 18.24 kb downstream
TFT 8 1 129,679,448 0.069 —3.98E-01 1.2E-06 268 EGFL6 Within (intron)
1 130,266,111 0.122 —3.09E-01 2.02E-06 2.35 FRMPD4 Within (intron)
2 40,465,055 0177 2.70E-01 8.85E-07 2.32 PENK 83.343 kb upstream
2 43,705,118 0410 —2.06E-01 348E-06 1.69 CDH2 Within (intron)
3 29,665,827 0.112 3.18E-01 8.11E-07 265 EYS 221440 kb downstream
4 74,555,149 0.189 —2.58E-01 1.45E-06 2.07 FAMS53A 46.599 kb downstream
5 33,918,738 0.136 —2.77E-01 4.1E-06 207 EHD4 1544 kb upstream
14 4,185,488 0.108 3.15E-01 3.07E-06 245 KLHL3 180.963 kb upstream

Abbreviations: DFI, daily feed intake; NM, number of meals per day; MFI, meal feed intake; MD, meal duration per time; TFT, total feeding time. Chr, chromosome;
MAF, minor allele frequency; Beta, the estimate coefficient; CPV(%), contribution of phenotypic variance explained by the SNP
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Moreover, NM had relatively strong negative genetic
and phenotypic correlations (< -0.63) with MFI and
MD in this study. Similar intensely negative phenotypic
and genetic relationships (ranging from - 0.49 to - 0.93)
were obtained in our former work [11]. It suggested that
certain feeding behavior habits may affect feed consump-
tion in ducks. Previous researches also reported that
feeding behavior traits were closely associated with RFI
levels while having little impact on body weight in ducks
[10, 11]. Combined with these findings, selecting certain
feeding behavior traits could be an effective way to
achieve indirect selection for RFI without affecting body
weight improvement in Pekin ducks.

Candidate genes associated with feeding behavior
Feeding behavior traits are complex and are controlled
by a collaboration of wvarious biological processes,

including energy metabolism, neurological development,
and muscle system movement. In this study, UBE2E2 is
a common candidate gene for the top SNPs of NM,
MFI, and MD. UBE2E2 belongs to the UBE2E enzymes
family and can lead to the ubiquitination of specific pro-
teins. Mizukami, et al. [18] found that the downregula-
tion of UBE2E2 in rat liver cells could facilitate cell
proliferation. Yaagoubi, et al. [19] discovered that
UBE2E?2 accounted for metabolic syndrome in the Mo-
roccan population. It is also reported that UBE2E2 is in-
volved in adipocyte development and type 2 diabetes in
humans [20, 21]. Combined with these findings, we hy-
pothesized that this gene might be involved in the regu-
lation of body development and metabolism in fat tissue
for Pekin ducks, which may rely highly on the feed con-
sumption per meal. However, further investigation is
needed.

Chr2:122302381,UBE2E2

1210 1215 1220 1225 1230 1235

Chromosome 2 position(Mb)

1210 1215 1220 1225 1230 1235

Chromosome. 2 position(Mb)

Fig. 3 Conditional analysis on top SNP for the number of meals per day. a, primary association signals; b association results after conditional
analysis. The horizontal red and blue lines indicate the whole-genome significance (P-value = 2.37E-07) and potential thresholds (P-value = 4.74E-
06), respectively. The top SNPs were annotated with the corresponding candidate gene
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Table 4 Candidate gene QTL information

Related QTL in chicken (QTL ID)
lleum weight QTL (96639)

Body weight QTL (95430)

Gene Associated trait
DENND1B DFI

ARHGEF10L DFI

GABRB2 MD Feather pecking QTL (137244)
UBE2E2 NM,MFI,MD Wattles weight QTL (127117)
FAM53A TFT Feather pecking QTL (137261)

Abbreviations: DFI, daily feed intake; NM, number of meals per day; MFI, meal
feed intake; MD, meal duration per time; TFT, total feeding time

As for DFI, two significant SNPs were detected on
chromosome 2, and the candidate genes were RBBPS
and synaptosome associated protein 47 (SNAP47).
Mumtaz, et al. [22] revealed that different RBBP8 muta-
tions led to microcephaly, intellectual disability, and
short stature in Pakistani people. Li, et al. [23] found
one genome-wide significant SNP marker upstream the
candidate gene RBBPS, which was closely associated
with body weight at the age of 120days in purebred
Wengshang Barred chicken. Miinster-Wandowski, et al.
[24] pointed out that SNAP47 had a distinctive location
in glutamatergic neurons in the mouse. In comparison
with these results, we inferred that these two genes
might regulate body weight gain and neuron activity in
Pekin ducks. Meanwhile, one significant locus located in
the intron of CXADR like membrane protein (CLMP)
was also obtained in this study, contributing to 1.46% of
the phenotypic variation. CLMP encodes a type I trans-
membrane protein and takes part in cell-cell adhesion.
Previous researchers had shown that this gene was es-
sential for normal intestinal development, and mutations
in the gene were associated with congenital short bowel
syndrome [25-27]. Our findings were consistent with
the previous results, suggesting the latent correlation be-
tween CLMP and feed intake in ducks.

For TFT, the most significant SNP was located down-
stream of EYS. EYS was reported to play an important
role in degeneration of retinitis photoreceptors in
humans [28, 29]. Therefore, we hypothesized that EYS
might be associated with visual perception in Pekin
ducks. Additionally, EGF like domain multiple 6
(EGFL6), cadherin 2 (CDH2), and EH domain containing
4 (EHD4) were also closely associated with TFT in our
results. EGFL6 is a member of the epidermal growth fac-
tor repeat superfamily, which coordinates the regulation
of bone remodeling and glucose homeostasis in humans
[30, 31]. CDH2 produces a classical cadherin that can be
crucial for bone growth and osteoblast differentiation in
mice [32]. The mutation of CDH2 is associated with
knee osteoarthritis in children [33, 34]. Melo, et al. [35]
reported that EHD4 took part in the activation of
ATPases in Caenorhabditis elegans. And EHD2, a para-
log of EHD4, was identified to be differentially abundant
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at 4 and 24 h in postmortem normal breast and woody
breast in commercial broilers (P < 0.05), which might
imply that EHD?2 took part in the breast muscle myop-
athies process [36]. Integrated with these findings, we in-
ferred that these three genes might contribute to bone
development, energy metabolism and breast muscle
growth in ducks, exerting an indirect impact on daily
movement and feeding habits.

Moreover, as we had previously conducted a genome-
wide association study for feed efficiency traits in a fat
strain of Pekin ducks, Zhu et al. [37] found that interleu-
kin 1 receptor accessory protein like 1 (ILIRAPLI) was
associated with feed conversion ratio (FCR) and the can-
didate gene for residual feed intake (RFI) was ring finger
protein 17 (RNFI7). Deng et al. [13] also identified a
total of 36 candidate genes for 18 carcass traits using the
same flock, which revealed that ATPase phospholipid
transporting 11A (ATP11A) was closely associated with
body weight, dressed weight, eviscerated weight, foot
weight, and wing weight in Pekin ducks. Compared with
their results, the 25 candidate genes for feeding behavior
traits in this study didn’t have any overlap with them.
This might due to the fact that the genetic correlations
between feeding behavior traits (including NM, MFI,
MD, and TFT) and feed efficiency traits (FCR and RFI)
were relatively low, which ranged from -0.03 to 0.20
[11]. Furthermore, we selected ducks from a lean strain
in this study. There were serval differences in the popu-
lation’s genetic background and target traits. However,
further research is needed to dissect the relationships
among the candidate genes from different strains of Pe-
kin ducks.

Conclusions

In this study, the genetic parameters of feeding behavior
traits were estimated, and the related genomic variations
were identified. We obtained 30 significant SNPs using
mixed-linear models, which localized to 25 candidate
genes for the five different traits studied. The results of
this study contributed to the sparse knowledge of feed-
ing behavior traits in Pekin ducks and helped to achieve
balanced breeding in the future.

Methods

Experimental population

All of the experimental ducks were reared under consist-
ent conditions at Beijing Golden Star Duck Inc. Briefly,
ducks were provided ad libitum water and commercial
diets: a starter diet (from 1 day to 18 day of age) contain-
ing 19% crude protein (CP), 12.81 MJ/kg dietary
metabolizable energy (ME), and a grower diet containing
17.1% CP and 11.95 MJ/kg ME during our observation
period. A total of 540 19-day-old ducks (274 males and
230 females) were divided into three batches (185, 180
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and 175 ducks), with an interval of 7 days between each
batch. At six weeks of age, ducks were blood sampled
via the caudal tibia vein after fasting for six hours.

Collection of feeding behavior record

Combined with radio frequency identification (RFID)
technology and electronic feeders, feeding information
of each duck was collected during the test period. The
observation period for feeding behavior started at the
age of 19 days and ended at the age of 42 days. The de-
tails of the recording process and the summary of differ-
ent feeding behavior traits followed the same methods in
our previous research [11]. Overall, the feeding behavior
traits analyzed in this study included: daily feed intake,
number of meals per day, meal feed intake, meal dur-
ation per time, and total feeding time.

Genotyping and SNP calling
Genomic DNA was extracted using a phenol-
chloroform-based method, and genotyping was per-
formed with a GBS method, which was first applied in
our previous research [12]. Briefly, genomic DNA was
digested with restriction endonuclease Msel (New Eng-
land Biolab, USA). Fragments ranging from 550 to 580
bp, including adapter sequence, were sequenced using
an Illumina HiSeq2500 instrument. The data were de-
posited in the NCBI sequence read archive (SRP155579).
Overall, a total of 1 TB clean reads were generated, to-
gether with an average sequencing depth of 1.5X for
each duck. Clean data was mapped to a reference gen-
ome using BWA (v 0.7.17) [38], and the reference gen-
ome was released on Ensembl database lately
(ASM874695v1  [GCA_008746955.1]). VCFtools (v
0.1.16) [39] and PLINK (v 1.90) [40] were used for qual-
ity control of the data. SNP calling was performed using
the GATK HaplotypeCaller (v 4.1) [41]. All parameters
were kept at default settings, except for -stand_call_conf
30. According to a high-density (sequencing depth of
10x) reference from the same population, the data were
imputed using Beagle (v 5.1) [42], together with R%>
0.98 for low-quality filtering. We identified a subset of
tagging SNPs that passed the following thresholds:
minor allele frequency (MAF) > 0.05, sample call rate >
0.95, and SNP call rate > 0.95 with PLINK.

Statistical analysis

Normality test was processed using the Shapiro-Wilk
test to check the distribution of phenotypes. If the traits
were skewed from the normal test, the phenotypic data
were normalized by the rank-transformation, following a
standard normal distribution with a mean of 0 and a
standard deviation of 1. The independent SNP set was
used via the PLINK command (--indep-pairwise 25 5
0.2) for principal component analysis (PCA) (Fig. S3),
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and the top three eigenvectors were implemented in as-
sociation analysis to account for the effect of population
stratification. The effects of covariates, including sex and
batch, on quantitative phenotypes were assessed with
analysis of variance (ANOVA) using R software (v 3.5.3;
https://mirrors.tuna.tsinghua.edu.cn/CRAN/, TUNA
Team, Tsinghua University, Beijing, China), and covari-
ates with P-value < 0.05 were included in a mixed linear
regression model as the fixed effects (Table S1).

The association analyses were performed using
leaving-one-chromosome-out (LOCO) algorithm in
GCTA (v 1.26.0) [43], which implements a mixed linear
model with the chromosome where the candidate SNP
is located excluded from the calculation of the genomic
relationship matrix (GRM). The model was conducted
as following:

y=a+BX+g+e

Where y is a vector of the normalized phenotype, a is
the general mean, X is the matrix of fixed effects (batch,
sex and eigenvectors derived from PCA), B is the vector
of corresponding coefficients; g is the accumulated effect
of all SNPs except those on the chromosome where the
candidate SNP is located (the variance of g will be re-
estimated each time when a chromosome is excluded
from calculating the GRM), e is the vector of random
residuals.

The SNP-based genetic parameters for feeding behav-
ior and the contribution of the phenotypic variances for
significant SNPs were estimated using the GREML algo-
rithm in GCTA (v 1.92.2) [44]. The linear mixed model
was performed as follows:

y=Wb+Zu+e
u~N (0,I62),e ~ N (0,102)

var(y) = No, + 107 = 0, + 07, higyp = 0/ (0 + 07)

Where y is a vector of phenotypic value, W is the
matrix of fixed variables, and Z represents the matrix of
random variables, which refers to the effects of all SNPs
on phenotype; e stands for random residuals, I is an
identity matrix, b and u are the corresponding coeffi-
cients of fixed and random effects, respectively; o2, o2
and % are the variances for random effects, residual ef-
fects and total additive genetic effects, respectively; /3,
is heritability based on the genomic information.

The genomic inflation factor (A) was calculated with R
package qqman (0.1.4) [45]. Bonferroni correction was
performed to establish proper thresholds for genome-
wide potential and significant associations. The inde-
pendent locus number was calculated by the simpleM
method [46]. Therefore, the 5% genome-wide
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significance level was 2.37E-07 (0.05/211170) and the
potential significance level was 4.74E-06 (1/211170).

Conditional analysis

The conditional analysis was conducted to examine the
potential associated SNPs that might be masked by a
strong signal. Briefly, the initial region was tested with
the strongest SNP covariate. Then, association analysis
conditioning on the selected SNP was implemented to
search for the top SNP iteratively one by one via a step-
wise model selection procedure until no SNP had a con-
ditional P-value that passed the significance level.
GWAS does not distinguish a genuine causal locus from
those statistically significant loci within a strong linkage
disequilibrium (LD) region. Therefore, in order to
characterize potential candidate genes responsible for a
trait, we conducted a LD analysis and inferred the haplo-
type blocks containing peak SNPs by LDBlockShow [47].

Functional annotation

For all the SNPs that exceeded a potential significant
threshold (P-value < 4.74E-06), we looked for the nearest
candidate genes using BEDTools [48]. Due to the lack of
a duck QTL database, the QTL information of candidate
genes was extracted from the AnimalQTLdb [49] using
chicken orthologs.
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