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Abstract: In this study, a novel coordination polymer [CdL;(H20)o 5], (1), [HL = 4-(2-(4-((pyridin-3-
yl)methoxy)phenyl)diazenyl)benzoic acid] was fabricated via an in situ ligand transformation reaction
under solvothermal conditions. The as-prepared polymer exhibited a selectivity and efficiency
for Cr(Ill) removal with a high uptake capacity of 106.13 mg-g~!. Interestingly, even in the low
concentration (0.02-0.20 ppm), it still performs a relatively high efficiency (> 92.5%) towards the
removal of Cr(Ill) in aqueous solution. Remarkably, it also presents good selectivity and high
efficiency (93.3%) for Cr(IlI) removal in the presences of interfering metal ions. The good removal
performance for Cr(IlI) was demonstrated to be a structure-dependent chemical process between
polymer and Cr(IIl) involving the diazene and methoxy groups in polymer 1, which happened
not only on the surfaces of the adsorbent but also in the pores of polymer, giving rise to a strong
affinity toward Cr(IIl) adsorption. The possible adsorption mechanism of Cr(IlI) was proposed and
systematically verified by FT-IR, scanning electron microscope (SEM), atomic force microscope (AFM)
and energy dispersive spectrometer (EDS) measurements.

Keywords: diazene/methoxy-laced coordination polymer; chromium(IIl) removal; adsorption; low
concentration; selectivity

1. Introduction

Heavy metal pollution has become a serious threat to environment and public health, since they
are highly toxic and accumulate throughout the food chain [1,2]. Chromium is a prevalent and highly
reactive pollutant which dissipates into the ecosystems from a variety of industrial activities such as
electroplating, leather tanning, mining, textile dyeing, wood preserving, chromate preparation and
metal finishing [3]. Although trace amounts of chromium are required for biological functions, excess
is reported to cause health-related problems like rashes, ulcers, respiratory disorders, cardiovascular
diseases and weakening of immune systems [4,5].

In aqueous solution, chromium exists in two stable oxidation states: hexavalent chromium [Cr(VI)]
and trivalent chromium [Cr(III)] [6]. Out of the two states, Cr(VI) is generally considered as more toxic
because of its ability to cross cellular membranes easily and its strong oxidizing power [7]. However,
Cr(Il) can be as toxic as, or more toxic than Cr(VI) to freshwater algae, aquatic mosses, yeasts and
fishes according to studies published after 2000 [8,9]. Suwalsky et al. demonstrated that Cr(III) cause
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more structural perturbation in human erythrocyte membrane than Cr(VI) [10]. Moreover, under
prolonged or severe exposure to Cr(Ill), it can induce oxidative DNA damage, causing cancer [11,12].
Nevertheless, the researchers have paid more attention to the removal of Cr(VI) [13-18], but materials
for the removal of Cr(III) were rarely reported [19-22].

At present, a wide range of treatment technologies, such as chemical precipitation, ion-exchange,
adsorption, membrane separation, reduction, solvent extraction and reverse osmosis, have been
developed to remove chromium from aqueous solution [13-25]. Most of them are effective at removing
chromium from aqueous solution containing relatively high initial chromium concentrations [26].
However, the chromium removal efficiency of these technologies is still not satisfactory, such as a long
detention time, poor selectivity of chromium and the higher residual concentration. According to the
World Health Organization drinking water guidelines, the maximum allowable limit for chromium
is 0.05 ppm [27]. As a consequence, developing more efficient Cr(III) removal materials, especially
aiming at low-concentration Cr(IIl) systems, is significant for human health and environment.

Coordination polymers (CPs), constructed by the assembly of metal-containing units with
appropriate organic linking groups, are a class of crystalline materials [28]. The design and synthesis of
CPs have attracted an upsurge in research interest because of their tremendous potential applications in
storage/adsorption, catalysis, separation, and drug delivery [29-35]. The ultimate aim of coordination
chemistry is to control the structures of target products and investigate the relationships between
structures and properties [29,36]. As is known to all, the selection of appropriate ligands is an important
factor to rational design and synthesis of CPs with desired structures and properties, because they
are highly tunable; even a small change can result in a remarkable diversity of both architectures
and properties [37]. Recently, researchers started to construct functionalized CPs based on various
types of ligands, which displayed good performance for effective removal of heavy metals in aqueous
environments [38-48]. For example, Xu and co-workers reported the Zn/Zr-based CPs construction
by carboxyl/thiols or carboxyl/thiol-ethers combinations, which showed good performance for Hg(II)
removal from ethanol or aqueous solution [49,50]. Luo investigated the Zn-based CPs assembly from
the carboxyl/hydroxyl and pyridyl/acylamide ligands, which exhibited the capture ability towards
Hg(II) and UO;(I) ions in aqueous solution [51,52]. Morsali employed azine-decorated Zn(II) CPs as
the sorbent to remove some heavy metal ions [Cd(II), Co(Il), Cr(IlI), Cu(Il) and Pb(II)] in aqueous
solution [53,54]. In these CPs, the thiol, thiol-ether, hydroxyl, acylamide and azine groups did not
coordinate with the metal ions in the self-assembly processes, but worked as the hands to capture the
heavy metal ions.

Nowadays, the exploration of CPs for chromium removal from other metal ions, especially for
selective removal of Cr(IIl) at low concentration, remains to be a challenge. Hence, in this article, a
novel Cd(II)-based CP, [CdL,(H2O)p 5], (1), was synthesized by Cd(OAc);-2H,0 and the designed
L1 ligand with the diazene/methoxy/carbomethoxy laced groups (Scheme 1) and employed as the
sorbent, which demonstrates a high uptake capability (106.13 mg-g~1) for Cr(IIl). It is noteworthy that
it exhibits a good efficiency towards the removal of Cr(III) (97.7%), even in the magnitude of 0.02 ppm.

L1

Scheme 1. Chemical structures of the L and HL ligands.
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2. Materials and Methods

2.1. Materials and General Methods

(pyridin-3-yl)methyl 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoate (L1) was prepared
according to the literature method [55]. All other chemicals and reagents were obtained from
commercial sources and used as received. Infrared (IR) spectra were recorded with a Varian 800
FT-IR spectrometer (Varian, Inc., Palo Alto, USA) (4000-400 cm~1!). Powder X-ray diffraction (PXRD)
was performed using a PANalytical X’Pert PRO MPD system (PANalytical B.V., Almelo, Holland).)
(PW3040/60). Field emission scanning electron micrographs (SEM) were obtained with a JSM 6701F
microscope (Japan Electronics Co., Ltd, Tokyo, Japan). Atomic force microscopy (AFM) images were
obtained on a dimension edge microscope (Bruker Nano Inc., Santa Barbara, CA, USA) equipped with
a tapping mode. Thermal analyses were performed with a Netzsch STA-449F3 thermogravimetric
analyzer (Netzsch, Co., Selb, Germany) at a heating rate of 10 °C min~! and a flow rate of 20 cm3-min~!
(N2). Simultaneous inductively coupled plasma optical emission spectrometry (ICP-OES) on a
PerkinElmer Optima 8000 instrument (PerkinElmer Inc., Waltham, USA) was used for simultaneous
determination of the target elements.

2.2. Preparation of [CAL,(H»0)o.5]n (1)

A mixture of Cd(OAc);-2H,O (11 mg, 0.04 mmol), L1 ligand (8 mg, 0.02 mmol),
1,4-benzenedicarboxylic acid (3 mg, 0.02 mmol), and 4 mL of MeCN/H,O (1:1 V/V) was sealed
in a 10 mL Pyrex glass tube and heated at 170 °C for 3 days, then cooled to room temperature at a
rate of 5 °C h~!. The orange blocks of 1 were collected and washed thoroughly with MeCN and dried
in air. Yield: 3 mg (38%, based on L1). Anal. Calcd. for C3gH9NgCdOg5: C, 58.06; H, 3.72; N, 10.69.
Found: C, 58.51; H, 3.25; N, 3.99. IR (KBr disc): 3263 (w), 2919 (w), 2897 (w), 1587 (s), 1537 (s), 1495 (s),
1428 (m), 1383 (s), 1297 (m), 1231 (s), 1190 (m), 1141 (m), 1103 (m), 1054 (m), 1017 (m), 871 (w), 835 (s),
784 (s), 696 (s), 645 (m), 550 (m), 517 (m), 421 (m)-cm !

2.3. X-ray Data Collection and Structure Determination

Single crystals of 1 were obtained directly from the above preparations. All measurements were
made on a Bruker Smart Apex-II CCD area detector (Bruker AXS, Karlsruhe, Germany) by using
graphite monochromated Mo K« (A = 0.071073 nm). Its crystal was mounted on glass fibers at 296 K.
Cell parameter was refined by using the program Bruker SAINT (Bruker AXS, Karlsruhe, Germany).
The collected data was reduced by using the program Bruker SAINT A, and the absorption correction
(multi-scan) was applied. The reflection data was also corrected for Lorentz and polarization effects.
The crystal structure of 1 was solved by direct method refined on F? by full-matrix least-squares
technique with the SHELXTL-97 program (University of Goettingen, Goettingen, Germany) [56].
All H atoms in 1 were placed in geometrically idealized positions and constrained to ride on their
parent atoms. A summary of the key crystallographic information for 1 is tabulated in Table S1.
Crystallographic data have been submitted to the Cambridge Structural Database with deposition
number CCDC 1439364.

2.4. Adsorption Test

The Cr(Ill) stock solution was prepared by dissolving CrCls;-6H,O in deionized water.
All adsorption tests were carried out at 25 °C using 7 mg of polymer 1 and 100 mL Cr(III) stock
solution. To analyze the effect of pH, the sorption tests were conducted under different pH conditions
(3.0-6.0) adjusted using 0.1 mol-L~!1 HClI or 0.1 mol-L~! NaOH solutions. An adsorbent (7 mg) was
added to 100 mL of 0.1 ppm Cr(III) solution under continuous stirring at 25 °C for 15 min.

For kinetic studies, the pH was fixed at the obtained optimum value. A typical adsorption
experiment was performed by adding 7 mg of adsorbent into 100 mL of an 1 ppm Cr(III) solution
under continuous stirring. Analytical samples were taken from the mixture solution at given time
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intervals and immediately separated by centrifugation. The residual concentration of Cr(IIl) in the
solution was measured by ICP-OES spectrometer.

In order to obtain the adsorption isotherms of the Cr(Ill), solutions with varying initial
concentrations of Cr(IIl) from 1 ppm to 100 ppm were treated with the same procedure as above
to attain the equilibrium state. The amount of Cr(IIl) adsorbed at equilibrium g, (mg-g~!) and the
removal efficiency were obtained from the following Equations:

o= Q=CIV "

Removal efficiency (%) = % x 100% 2)
0

where Cjy and C, (mg~L’1) are the initial and equilibrium concentrations of Cr(IIl) in the solution,
respectively. V (L) is the volume of the solution, and m (g) is the mass of the adsorbent.

The selectivity towards Cr(IlI) removal was valued by competitive adsorption in the presence of
various competitive metal ions. A mixture of Cr(III), Na(I), Mg(II), K(I), Ca(Il), Mn(II), Co(II), Ni(II),
Cu(Il) and Zn(II) was added into deionized water to obtain an initial concentration of 0.1 ppm for
each ions. After a competitive adsorption equilibrium was reached, the concentrations of Cr(III), Na(I),
Mg(1I), K(I), Ca(Il), Mn(II), Co(II), Ni(II), Cu(Il) and Zn(II) in the remaining samples were detected
using a ICP-OES spectrometer. The following Equations were used to evaluate the selectivity of
polymer 1. Static distribution coefficient:

Ki=2 ®)
e

where g (mg-g~!) represents the adsorption capacity and Ce (mg-L~!) is the equilibrium concentration.
3. Results and Discussion

3.1. Synthetic and Structural Characterization

As shown in Scheme 1, L1 ligand contains two rigid benzene ring pieces and two freely rotating
pyridyl arms combined by intervening methoxy, diazene, carbomethoxy groups. The N atoms of
pyridyl arms are predisposed, as the primary group, to coordinate with metal ions for CPs formation,
while leaving the neutral and generally weaker binding, methoxy, diazene, carbomethoxy groups
as free-standing secondary donors to catch Cr(Ill). Aiming to search a CP-based sorbent with the
sensitivity to Cr(IIl), therefore, reaction of L1 with Cd(OAc),-2H,0 and 1,4-benzenedicarboxylic acid
in MeCN/H,O followed by a hydrothermal treatment at 170 °C for four days produced crystals
of 1 with a 38% yield. In polymer 1, although 1,4-benzenedicarboxylic acid does not coordinate
in the products, its presence is crucial for the growth of crystalline products, and only poorly
defined microcrystalline products can be obtained without it, which may be due to template effect
of 1,4-benzenedicarboxylic acid. Moreover, it is interesting that the L1 ligand hydrolyzed and gave
a 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoic acid (HL) in the hydrothermal process
(Scheme 1).

Single-crystal X-ray diffraction analysis shows that polymer 1 crystallizes in the monoclinic
space group C2/c. Its asymmetric unit contains one crystallographically independent Cd atom,
two L~ ligands and a half coordinated water molecule. As shown in Figure Sla, Cdl atom and its
symmetry-related Cd1A are bridged by one H,O molecule and two carboxylate groups to form a
dinuclear [Cd;(CO,)2(H20)] unit, which can be used as secondary building unit (SBU). Each building
unit is connected through carboxylate groups (1,-n'm!) and N atoms from L~ ligands to generate a
1D double-chain structure (Figure S1b). The neighboring 1D chains are linked via carboxylate groups
(11—1'n%) and N atoms from another L™ ligands to produce a 2D layer (Figure S1c). The 2D layers are
further bridged by L™ ligands to afford a 3D framework (Figure 1). Topologically, the overall structure
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of 1 can be described as a four-connected 6° topology (Figure S1d). Based on Figure 1, the diazene and
methoxy groups freely stand in polymer 1. Thus, polymer 1 would be a potential sorbent.

4

%

Y
e “\

V4

Figure 1. View of a 3D framework in 1 looking down the a axis.

3.2. Cr(1lI) Adsorption Studies

The pH of the sample solution has been proven to be an extremely important parameter for
governing the removal of chromium species. In general, Cr(III) species varies over the pH value. It
has been reported that Cr(Ill) exists mainly as [Cr(H,0)6]%* at pH lower 4.0, [Cr(OH)]**, [Cr(OH),]*
at pH 4.0-7.0, and Cr(OH); at pH 7-10 (Figure S5) [24,57-59]. The effect of pH on Cr(III) removal
by polymer 1 was studied at different pH values ranging from 3.0 to 7.0 (Figure 2). The selection of
this pH range was to avoid the hydroxide precipitation. As can be seen, removal efficiency of Cr(III)
increased dramatically as the pH increased with the largest signal produced at pH 6.0. Further increase
in the pH resulted in a decline in signal enhancement. Moreover, when the solution pH is below 4.0,
the removal efficiency of 1 is very low, which is mainly due to the protonation of the diazene and
methoxy groups and their diminishing ability to chelate Cr(III). When the solution pH is above 6.0,
partial precipitation of hydroxide species of Cr(III) occurs. Thus, pH 6.0 of the Cr(IIl) solution was
applied throughout the remaining work.

100 -
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Figure 2. Effect of pH on the removal of Cr(III) by polymer 1.

In order to understand the Cr(III) adsorption kinetics of polymer 1, the experimental data collected
at the initial Cr(III) concentration of 1 ppm at pH 6 were fitted with the pseudo-second-order kinetic
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model with a high value of correlation coefficient (R = 0.9997) used to fit the kinetic results. The model

can be expressed as:
1 t

t

n @ @
where k; (g:-mg~!-min~!) is the kinetic rate constant for the pseudo-second-order model, ge (mg-g~!)
is the adsorption capacity at equilibrium, and g (mg-g ') is the adsorption capacity at time ¢ (min).
The equilibrium adsorption capacity ge and the pseudo-second-order rate k; can be experimentally
determined from the slope and the intercept of the plot t/q; against t (Figure 3). The obtained rate
constant, kp, was 0.028 g-mg’1 -min—1 at 298 K. These results indicate that the pseudo-second-order
mechanism is predominant, and chemisorptions may be the rate-limiting step that controls the
adsorption process [51].

224
2.0—-
1.8—-
1.6—-

1.4

t/q, (min*g/mg)
Y
1

0 2 4 6 8 0 12 14 16 18 20 22

t (min)

Figure 3. The pseudo-second-order kinetic plot for the adsorption.

To evaluate the maximum sorption capacity and further understand the adsorbate-adsorbent
interaction, the adsorption isotherm was measured at pH 6.0. As shown in Figure 4, the adsorption
capacity increased with increasing initial concentrations and ultimately attained a saturated value.
It is worth noting that polymer 1 shows a high Cr(IIl) uptake capacity of 106.13 mg-g~!, which
is much higher than the inorganic absorbent (FePOy, 8.12 mg-g~! [24] and vermiculite pure clay
mineral, 46.948 mg-g~! [60] or organic absorbent (3-(2-aminoethylamino)propyltrimethoxysilane,
30.5 mg-g~ 1) [23].

In order to derive an appropriate correlation between the experimental and theoretical data, the
Langmuir model was applied (R? = 0.9996), which is represented by Equation (5):

C_GC, 1
de Im  qmKp

©)

where g, is the maximum amount of adsorption (mg-g 1), ge is the adsorption capacity at equilibrium
(mg~g_1), Ce is the equilibrium concentration of the remaining Cr(Ill) in the solution (mg-L_l), Ky is
the Langmuir constant. The values of g, and Ki, were calculated from the slope and intercept of the
Ce/ge vs Ce plot (Figure 5). The Langmuir isotherm is applicable to monolayer adsorption with all
identical and energetically equivalent adsorption sites. The calculated maximum adsorption capacity
gm Was obtained 106.61 mg-g~!, which was very close to the experimental data of 106.13 mg-g~!.

To further investigate the removal efficiency for Cr(IlI), adsorption isotherms were collected from
extremely dilute solutions ranging from 0.02 to 0.20 ppm under the optimized experimental conditions.
As shown in Figure 6, fast kinetics and high removal efficiency were observed for polymer 1, which
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can attain a removal efficiency higher than 92.5% in 15 min for various concentrations and is able to
reduce the Cr(III) concentration of 0.1 ppm to the acceptable limit of 0.007 ppm for drinking water.
By contrast, a reported post-synthetically modified CP material (UiO-66-NH, decorated with thiourea,
isothiocyanate and isocyanate groups) [19] shows effective Cr(III) removal in the 100 ppm magnitude
of the Cr(IIl) concentration about 240 min-contact time, and the residual was more than 10 ppm, much
higher than the criterion of the World Health Organization. This suggests that our material is an
excellent adsorbent for Cr(II) removal, even in low-concentration magnitude.
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Figure 4. Adsorption curve of Cr(IlIl) at different concentrations.
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Figure 5. The linear regression by fitting the equilibrium adsorption data with the Langmuir
adsorption model.

The metal ions in the environment are often found to be in a matrix containing various ions.
So, it is of great importance to investigate the selectivity for Cr(Ill) in the presence of coexisting
ions. The selectivity of 1 toward Cr(Ill) was performed in a mixed solution containing Cr(III), Na(I),
Mg(1I), K(I), Ca(1l), Mn(II), Co(Il), Ni(II), Cu(Il) and Zn(II). It is noteworthy that polymer 1 retains
its high removal efficiency for Cr(Ill), even in the presence of background metal ions (Figure 7).
To evaluate the binding properties of the adsorbent for different metal ions, distribution coefficients
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K4 was measured. The Ky represents an important aspect of any sorbent’s performance metrics of
metal ion adsorption. In general, K4 values of ca. 103 mL-g*1 are considered good, and those above
10* rnL-g_1 are outstanding [61]. The Ky of 1 for Cr(IIl) has been measured to be excellent with a
value of 1.99 x 10° mL-g~!, greatly higher than other metal ions (Table 1). These studies suggest that
polymer 1 is an excellent adsorbent for select removal Cr(IlI) with high efficiency.

0.20 —u—0.02 ppm
—e—0.04 ppm
0.18 - 4 0.06 ppm
0.16 - —v—0.08 ppm
0.10 ppm
0.14 4 —<—0.15 ppm
__ 0412 0.20 ppm
§_0.10 =
]
+.0.08 -
O
0.06
0.04
0.02 -
0.00 -
T L I : I U T E I g T L T U I U
0 2 4 6 8 10 12 14
t (min)

Figure 6. Adsorption kinetics of Cr(Ill) in aqueous solution by polymer 1, using different initial
concentrations of Cr(III) from 0.02 to 0.2 ppm.
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Figure 7. Adsorption kinetics of Cr(IIl) in aqueous solution by polymer 1, using different initial
concentrations of Cr(III) from 0.02 to 0.2 ppm.

Table 1. Distribution coefficients of various metal ions by polymer 1.

Metal ions Cr3* Na*  Mg* K* Ca®*  Mn** Co* Ni** Cu** Zn*
K4 (mL-g_l) 199,253 990 2262 673 1401 2172 4980 4777 4202 4294
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The specificity for Cr(III) removal may be ascribed to the coordination of Cr(III) with the
functionalized methoxy and diazene groups of 1. In other words, Cr(Ill) were adsorbed on the
methoxy and diazene groups groups. It is widely acknowledged that the flexible geometry of Cr(III)
results in a variety of coordination environments, which give a facile access to coordinate with Lewis
base [35]. Furthermore, the highest ionic potential among the tested metal ions (Table S2) makes
it more liable to display electrostatic adsorption [62] and effectively coordinate with 1, leading to a
higher adsorption capacity for Cr(IIl) than other metal ions. Interestingly, the ionic potential for Mg(II),
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) was obviously higher than Na(I), K(I), Ca(Il), and the same result
was also obtained for their removal efficiency, which further confirmed that higher ionic potential
displays easier electrostatic adsorption.

3.3. The Stability of 1

Polymer 1 was insoluble and stable in common organic solvents, such as chloroform,
tetrahydrofuran and acetone. Importantly, it is also very stable in water. Meanwhile, thermogravimetric
analysis (TGA) indicates that the framework of 1 is thermally stable up to 335 °C (Figure 52). To confirm
the chemical stability of the polymer 1 after loading Cr(Ill), PXRD investigation was employed.
As shown in Figure S3, the PXRD patterns of the polymer 1 after loading Cr(IIl) closely matches the
as-synthesized samples, indicating the excellent chemical stability of the sorbent.

3.4. The Mechanism for Removal of Cr(IIl)

To realize the adsorption mechanism in this system, IR (Infrared Spectroscopy) was carried out
for the as-synthesized samples and Cr(Ill) loaded samples (Figure 8). The appearance of a new peak
at 740 cm ™! in the spectrum of samples after loading Cr(III) is typical of the characteristic stretching
vibration of Cr-O [63], confirming the fact of Cr(Ill) loaded. For the as-synthesized samples, the peaks
at 1434 and 1030 cm ™! are assigned to the characteristic group frequencies of the -N=N- and -O-
vibrations, whereas these peaks are shifted to the 1428 and 1017 cm ! for the CP materials after loading
Cr(III). These obvious red shifts in the IR spectrum indicate the occurrence of complexation between
Cr(IIl) and diazene/methoxy groups, because the coordination interaction could limit their stretching
vibrations and consequently decrease their vibration frequency [64].

To gain further insights into the excellent performance for polymer 1 in the effective removal of
Cr(III), which exhibits a high saturation uptake capacity and removal efficiency, AFM, SEM and energy
dispersive spectrometer (EDS) measurements were conducted to evaluate the loaded Cr(III). As shown
in Figure 9a, the AFM image of the as-synthesized samples displays very smooth surfaces, while the
samples after loading Cr(IlI) exhibit many obvious light dots (Figure 9b), which confirmed that the
loaded Cr(III) were adsorbed on the surfaces by the coordination between Cr(IIl) and diazene/methoxy
groups. Furthermore, the SEM and EDS investigations were carried out to examine the surface
morphology and chemical composition of the adsorbent after the adsorption of Cr(III). As illustrated
in Figure 10a, the as-synthesized samples exhibit a crystalline phase with smooth surfaces, while many
particles dotted over the surfaces of the samples treated by Cr(III) solution (Figure 10b,c). This result
further confirmed that the Cr(Ill) species were adsorbed on the surfaces of samples, which is also
verified by the EDS spectra (Figure 10d). Due to the diazene/methoxy groups populated not only on
the surface but also in the pore of the adsorbent, we inferred that adsorption may happen in the inner
surface of the adsorbent; so, a cross-section of EDS measurement was performed. The spectra also
showed the existence of Cr(IlI) (Figure S4), implying that the Cr(III) uptake occurred inside adsorbents,
which was also observed in the Zn(II)-based metal-organic framework for removal of Cd(Il) [39].
These results further confirmed that the densely populated free standing methoxy and diazene groups,
which located on the surface and inner pores of the CP, could effectively capture the Cr(III), resulting in
a large adsorption capacity and ultra-low residual concentration, even in relatively low concentrations.
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Figure 8. The infrared (IR) spectrum of as-synthesized samples and samples after loading Cr(III).
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Figure 10. (a) Scanning electron microscope (SEM) image of as-synthesized samples. (b,c) SEM images
of samples after loading Cr(IIl). (d) Energy dispersive spectrometer (EDS) spectra of the samples after
loading Cr(I1I).

4. Conclusions

In summary, we have presented the synthesis and structural characterization of a novel CP
decorated with the diazene and methoxy groups, for effective and specific removal of Cr(III). Notably,
without any pre-treatment, polymer 1 not only exhibits a high Cr(IIl) uptake capacity (106.13 mg-g~1),
but also displays a good efficiency towards the removal Cr(IIl) from aqueous solution, even for the
trace Cr(III) (0.02-0.20 ppm). The characterization results for CP before and after adsorption of Cr(III)
suggest that the good performance for Cr(IlI) removal by CP mainly stem from capture feature of
diazene and methoxy groups, which happened not only on the surfaces of the adsorbent, but also
in the pores of CP, and thus could efficiently remove Cr(III). This offers a new way to design and
synthesize CPs decorated with free standing groups as a platform for removing other heavy metal
ions from aqueous solution.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/7/273/s1,
Figure S1: (a) View of dinuclear [Cdy(CO;),(H20)] unit of 1. (b) View of a 1D double chain in 1 extending
along the ac plane. (c) View of a 2D layer in 1 extending along the bc plane. (d) Schematic view of the 4-connected
66 topology of 1. Atom color codes: Cd, cyan; O, red; N, blue; C, dark green and pink, Figure S2: TG curve
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