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Objective: Approximately 40–50% of patients with acute myeloid leukaemia (AML) have

been reported to present with a normal karyotype and a variable disease-free period, most

likely due to the molecular heterogeneity presented by these patients. A variety of mutations

have been identified at the molecular level, such as those in the IDH1/2 gene, which causes a

gain of function of the isocitrate dehydrogenase enzyme, generating high levels of the (R)-2-

hydroxyglutarate oncometabolite, which competitively inhibits dioxygenase enzymes.

Therefore, the objective of this study was to evaluate the incidence of IDH1/2 gene muta-

tions in AML patients and their impact on survival.

Materials and methods: A total of 101 patients with a diagnosis of AML were included;

mononuclear cells were obtained for DNA extraction and purification. Mutations were

detected using TaqMan™ competitive allele-specific probes (castPCR™). Overall survival

curves were plotted using IBM SPSS Statistics 23 software.

Results: The frequency of IDH gene mutations was 19.8%. For the IDH1 gene, 13.8% of

the mutations identified included R132H, V178I, G105G and R132C. The frequency of

mutations of the IDH2 gene was 5.9%; the variants included R172K and R140Q. The

mean survival time in patients without IDH1 gene mutations was 173.15 days (120.20–

226.10), while the mean survival time for patients with mutations was 54.95 days (9.7–

100.18), p = 0.001.

Conclusion: The frequency of IDH1 and IDH2 gene mutations in the sample was similar to

that reported in other studies. The analysis of these mutations in AML patients is of great

importance as a prognostic factor due to their impact on survival and their use as potential

therapeutic targets or as targets of inhibitors of IDH1(Ivosidenib, Tibsovo) and IDH2

(Enasidenib, Idhifa).

Keywords: isocitrate dehydrogenase, competitive allele specific TaqMan, acute myeloid

leukemia

Introduction
Acute myeloid leukaemia (AML) is one of the main haematological oncological

neoplasias treated in reference centres; it is the most common type of acute leukaemia

in adults, and its incidence increases with age.1–3 The incidence inMexico is six cases

per 100,000 inhabitants, with a mortality rate of 5.9/100,000 inhabitants. It has been

reported that approximately 50% of AML patients present with normal karyotypes;
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however, at the molecular level, a variety of mutations have

been identified, in which genes that regulate cell prolifera-

tion, differentiation and apoptosis are altered.4,5 These

alterations impact the prognosis and survival of patients.6,7

It is important to highlight that the treatment of AML has

consisted of a 7+3 protocol since 1973.8,9 However, the

timely detection of gene alterations that cause AML will

allow access to new drugs and therapeutic targets as inhi-

bitors of the disease. The goal of kinase epigenetic modu-

lators is to achieve greater overall survival.10,11 One type of

mutation that is of great interest in AML is mutation of the

IDH (isocitrate dehydrogenase) genes, which is present in >

80% of low-grade gliomas and secondary glioblastomas

and in 20% of leukaemias.12–14 Three isoforms of the IDH

enzyme have been identified: IDH1 is located in the cyto-

plasm, while IDH2 and IDH3 are located in the

mitochondria.15,16 These genes have a high frequency of

mutation in patients with AML and other tumour types.17–19

IDH mutations mainly affect the residues of the active site

(e.g., IDH1 R132, IDH2 R140 or IDH2 R172), resulting in a

gain of function with increased activity of the neomorphic

enzyme and therefore accumulation of D-2-hydroxygluta-

rate (2-HG).20–22 The oncometabolite 2-HG can competi-

tively inhibit multiple α-KG-dependent dioxygenases,

including key epigenetic regulators such as histone

demethylases and TET proteins.23,24 Consequently, IDH

mutations are associated with chromatin alterations, includ-

ing global histone alterations and DNA methylation.25,26

It is important to identify the presence of IDH1/2 muta-

tions in a rapid manner so that patients can benefit from

targeted therapies. Therefore, it is necessary to seek reliable

methodological alternatives, such as castPCRTM, which is

characterised by its high sensitivity and specificity, because

it can detect minimal amounts of mutated DNA in a sample

that contains large amounts of normal wild-type DNA.27,28

The castPCRTM technique uses specific oligonucleotides for

the mutated allele that compete with an MGB-blocking

oligonucleotide to suppress the normal allele.29,30 It can

robustly detect mutant alleles at values as low as 0.1% in

a wild-type background and has a> 99% concordance with

other technologies, including technology based on digital

PCR and Sanger sequencing.31

It is important to highlight that although Sanger

sequencing is the “gold standard” for the identification of

mutations due to its low rate of false positives and high

specificity, it has a number of disadvantages, including low

sensitivity, the time required to perform the assay,

requirement of high-quality tissue samples and the need

for manual interpretation.32

Unlike other methods, such as the amplification refrac-

tory mutation system (ARMS), for which the sensitivity is

1%, and Sanger sequencing, with 10–25% sensitivity

castPCRTM has a sensitivity of 0.1%.33 Moreover, next-

generation sequencing (NGS) technology, which is used

for the detection of multiple mutations, has the disadvan-

tages of being time consuming and too costly to detect a

specific genetic allele. In addition, the data produced by

NGS are not suitable for routine clinical analysis.34

Based on the above information, we evaluated the

incidence of gene mutations (IDH1/2) by castPCRTM in

AML patients and the clinical impact of these mutations

on diagnosis, prognosis and survival.

Materials And Methods
Description Of The Study Population
A total of 101 patients with de novo AML treated at the

General Hospital of Mexico with complete clinical records

were included. Among the patients, 50.5% were female

(n = 51), and the remaining patients were male (n = 50,

49.5%). The mean age was 46 years (15–92 years). The

majority of patients were younger than 60 years (n = 68,

66.6%). The diagnosis of AML was based on both mor-

phological findings and flow cytometry; the majority of

patients had leukaemia with monocytoid characteristics

(AML-M4, 60.4%), followed by those with differentiation

(AML-M2, 30.7%). The mean haemoglobin level was 11

g/dl (4–91), with a mean leukocyte count of 150 x 109/L

(0.2-4870×109/L) and a mean platelet count of 48 × 109/L

(3-241x109/L). Regarding the main genetic alterations

identified, 45.5% of patients had a normal karyotype, and

only one patient with hyperdiploidy was detected. The

other clinical and laboratory parameters are described in

Table 1.

Approval for the present study was provided by the

Ethics Committee of the Hospital General de Mexico

“Dr. Eduardo Liceaga”. The informed written consents

were collected from all enrolled patients and the entire

study was performed based on the Declaration of

Helsinki.

Type Of Treatment
The main part of the treatment was based on the 7 + 3

protocol; the intensity of the treatment was mainly based

on the age and functional status of the patients. The
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normal intensity 7 + 3 protocol (100 mg/m2cytarabine

for 7 days plus 60 mg/m2daunorubicin for 3 days)

was initiated in 78 patients (n = 77.2%), a total of 13

patients received a reduced dose of 7 + 3 (12.9%),

and seven patients received cytarabine subcuta-

neously (6.9%).

Response To Treatment
After the initiation of induction therapy, the response to

treatment was assessed according to the recovery of the

blood count and the decrease in the number of blasts in

bone marrow. Accordingly, patients were classified into

different types of responses. A total of 36 patients

(35.6%) met the criteria for complete remission, while 12

patients (11.9%) were considered to have a partial

response.

Regarding refractory leukaemia, 21.8% (n =22) of

patients showed resistance to the first treatment protocol,

while 30.7% (n =31) died during the remission induction

phase (26 cases of death due to aplasia and five cases of

indeterminate death).

Separation Of Mononuclear Cells By A

Ficoll-Hypaque Gradient
Peripheral blood samples were obtained from normal

donors and AML patients. Mononuclear cells were sepa-

rated usinga Ficoll-Hypaque gradient (Lymphoprep,

Nycomed Pharma AS, density 1.077 g/L), and isolated

mononuclear cells were stored at −70°C.

Extraction And Purification Of DNA
Genomic DNA (gDNA) was extracted using DNAzol®

(Thermo Fisher, Paisley, UK) according to the supplier’s

instructions. Isolated gDNA was analysed by 0.8% agar-

ose gel electrophoresis to evaluate its quality. The

amount of DNA was determined by the 260 nm/280

nm ratio using Genesys 10S UV-Vis (Thermo Scientific)

Subsequently, DNA purification was performed using a

QIAamp DNA Mini Kit (Qiagen)

TaqMan Mutation Detection Assay

(castPCRTM)
The following TaqMan assays were designed for the

detection of IDH1 and IDH2 gene mutations (GenBank

Accession number, NM005896.3 and NM_002168.2,

respectively): c.395 G>A p.R132H (Hs00000981_mu);

c.394 C>T p.R132C (Hs00000982_mu); c.532 G>A p.

V178I; c.315 G>T p.G105G; c.515 G>A p.R172K;

c.419 G>A p.R140Q. CastPCRTM analysis was per-

formed using a real-time PCR System (Step OnePlus™

Real-Time PCR System, Applied Biosystems, USA,

CA). The Master mix was prepared as recommended

by the supplier. A total of 50 ng of gDNA per reaction

and the probes described above were used. The cycling

conditions were as follows: pre-PCR read 60°C for 30 s;

holding stage 50°C for 2 min, 95°C for 10 min; cycling

stage 95°C for 15 s, 60°C for 1 min for 40 cycles; and

post-PCR 60°C for 30 s.

For each of the analysed IDH1/2 mutations, the limit

of detection (LOD) of castPCR TM was determined by

constructing dilution curves of samples from patients

with and without IDH1/2 gene mutations. Each point

was determined using different dilutions (1:1 to 1:50)

of the mutated sample and a non-mutated sample

(Figure 1).

Statistical Analysis
Multivariate analysis was performed based on the clin-

ical parameters and the quantification of the mutations.

Kaplan-Meier and log rank analyses were performed to

assess survival in relation to each mutation; differences

were considered significant when p ≤ 0.05. SPSS soft-

ware version 23 Statistical Package for Social Sciences,

SPSS Inc, Chicago IL, USA) was used for the statistical

analysis.

Results
Frequency And Clinical Association Of

IDH Mutations In AML Patients
The frequency of IDH mutations in AML patients was

19.8% (20/101). In the particular case of the IDH1

gene, the frequency of mutations was 13.8% (14/

101); the mutations identified included R132H, with

a frequency of 3.9% (4/101), and V178I, with a fre-

quency of 3.9% (4/101), while G105G (2/101) and

R132C (2/101) exhibited a frequency of 1.9%. Two

patients had two mutations, R132H and R132C, result-

ing in a frequency of 1.9% (2/101). The mutation

frequency of the IDH2 gene was 5.9% (6/101); the

variants included R172K, with a frequency of 3.9%

(4/101), and R140Q, with a frequency of 1.9% (2/101)

(Table 2).

Regarding the association between the karyotype

and the presence of IDH gene mutations, 12% of
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patients did not present tumour growth. However, 21%

of patients with a normal karyotype had mutations. The

patient with an abnormal karyotype had no mutation in

the IDH1 gene; in the case of IDH2, 1.8% of patients

did not present tumour growth, and 12.19% of patients

had a normal karyotype

Overall Survival Analysis In Patients With

IDH1/2 Gene Mutations
The mean survival time of patients without IDH1 gene

mutations was 173.15 days (120–226), while the mean sur-

vival time of patients with mutations was 54.95 days (9–

100). Of the patients with mutations of this gene (n = 14),

Figure 1 Evaluation of castPCRTM Limit of Detection (LOD). The LODs of castPCRTM are shown in Figure 1A and B. We found that the mutated alleles were detectable by

castPCRTM up to a dilution of 1:50 for both cases: R132H_rf; CT = (25.04–31.14), R132H_mu; CT = (24.32–30.10).
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85.7% died (12/14), log rank p = 0.010 (Figure 2). Among

the six patients who presented mutations of the IDH2 gene,

66.7% died. The mean survival time in patients without

mutations was 157.3 days (110–204), while in those with

mutations, the mean survival time was 74.11 days (30–117).

According to the log rank analysis (p = 0.829), there were no

differences between the groups (Figure 3).

Association Of IDH Mutations With The

Prognosis
The impact of different clinical variables on a favourable

response to remission induction (complete remission or

partial response versus therapeutic failure due to refractori-

ness or death) as well as its impact on survival was ana-

lysed. Individually, clinical variables and age older than 60

years (OR 3.777, 1.45–9.85), intermediate-high risk (OR:

1.936, 0.83–4.51) and mutations in IDH, especially IDH2

(OR 7.974, 0.4362–145.78), were associated with an

increased risk of therapeutic failure. Among these variables,

patients who were diagnosed after 60years of age

(p = 0.006, 95% CI) and who required low-intensity treat-

ment (p = 0.045, 95% CI) presented a significant risk for

therapeutic failure. When evaluating the effect on medium-

term survival, the IDH1 mutation (OR: 4.65, p = 0.052,

95% CI) and the presence of a leukocyte count above 30 ×

109/L at the time of diagnosis (OR: 3.33, p = 0.008, 95%

CI) showed significant impacts, and unlike the response to

induction therapy, both low-intensity treatment and age did

not show an impact on survival. The different risk values of

each variable are described in Table 3.

Discussion
In recent years, the biological roles of IDH enzymes in

cancer have been described, including adaptation to

hypoxia, histone demethylation and chromatin remodel-

ling. However, the presence of mutations at the DNA

level in these enzymes produces an increase in the produc-

tion of the 2-HG oncometabolite, causing blockage of cell

differentiation by inhibiting the activity of chromatin

remodelling enzymes.35 Due to the frequent occurrence

of IDH1 gene mutations in solid tumours and mutations

in the IDH2 gene in haematologic neoplasias,36 we found

that the frequency of mutations in the IDH gene in AML

patients was 19.8%, which is consistent with values

reported in other studies, and these mutations increased

Table 2 Frequency Of Mutations Of The IDH Gene

Variants n %

IDH1 G105G 2 1.9

R132H 4 3,9

R132C 2 1,9

V178I 4 3.9

R132H, R132C 2 1,9

IDH2 R172K 4 3,9

R140Q 2 1.9

Table 1 Clinical Characteristics Of The Population Analyzed

(n=101)

Clinical features

Age

Mean ± SD (range) 46 (15–92)

Median 47

Sex

F 51 (50.5)

M 50 (49.5)

Laboratory data

PB Blast count

Mean ± SD (range) 56 ± 28(0–99)

Median 63

Mean WBC count, 109/L (range) 150 (0.2–4870)

Mean hemoglobin level, g/L (range) 11 (4–91)

Mean platelet count, 109/L (range) 48 (3–241)

Mean DHL (range) 684 (89–3921)

Biologic characteristics

Immunophenotype (%)

M1 2 (2.0)

M2 31 (30.7)

M4 61 (60.4)

M5 2 (2.0)

M6 3 (3.0)

M7 2 (2.0)

Cytogenetics

Unsuccessful karyotype 54 (53.5)

Normal karyotype 46 (45.5)

Abnormal karyotype 1 (1.0)

Treeatment scheme

3+7 78 (77.2)

Mini 3+7 13 (12.9)

2+5 3 (3.0)

ARA C SC 7 (6.9)

Response

Response complete 36 (35.6)

Remission partial 12 (11.9)

Refractory disease 22 (21.8)

Death in aplasia 26 (25.7)

Death by undetermined cause 5 (5.0)
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Figure 2 Global survival (OS) in patients with AML with mutated IDH1 gene. Of the patients with mutations in this gene, 85.7% died (12/14) (log rank p = 0.010).

Figure 3 Global survival (OS) in patients with AML with mutated IDH2 gene. Of the patients with mutations in this gene, 66.7% died. There were no differences after the

logrank test (p = 0.829, Figure 2).
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at frequency of approximately 20% according to age.37

Our study population showed mutations at younger ages,

which is consistent with the diagnosis of this neoplasm in

other populations. IDH1 gene mutations have been

reported to be less common than IDH2 mutations in

AML.38 The IDH mutations identified in our AML

patients included R132H, V178I, G105G and R132C,

and R132H exhibited the highest frequency. In the case

of the IDH2 gene, the mutations detected included R172K

and R140Q. Other studies have reported that the R132C

and R132H mutations present greater frequencies in the

IDH1 gene.39 In contrast to previous reports indicating a

higher frequency of IDH2 mutations in AML, we found a

higher frequency of IDH1 mutations due to the specificity

and sensitivity of the castPCRTM technique, which had

greater specificity and sensitivity than Sanger sequencing.

In the case of the G105G variant, a frequency of 10.6%

has been reported. This is important because this variant

can be a prognostic marker in patients with intermediate-

risk FLT3-negative disease and can become a potential

marker that benefits patients due to the development of

new treatment alternatives.40,41 We found a frequency of

1.9% for this variant, which is much lower than that

reported in the literature. In the case of the IDH2 gene,

the mutations present included R140Q and R172H, the

latter of which has been reported in adult patients.42

Only two AML patients showed two mutations in the

IDH1 gene, R132H and R132C, and IDH1 and IDH2

mutations have been reported to be present in the same

patient.43,44

The advent of NGS technologies has accelerated the

discovery of new genetic alterations in AML.45,46 Among

the main mutations detected are those in the FLT3, NPM1,

CEBPA, MLL, NRAS, KIT, WT1, RUNX1, TET2, IDH1/2,

DNMT3A, ASXL1, PHF6, SRSF2 and PTPN11 genes,47–49

indicating that these genes may impact the prognosis of

AML patients.50,51 For example, mutations in FLT3 (37–

46%) indicate unfavourable prognoses; in contrast, muta-

tions in NPM1 (48–53%) and CEBPA (13–15%) indicate a

better prognosis.52 In the case of mutations in DNMT3 and

TET2, the prevalence rates of these mutation in the

Mexican population are 2.7% and 11.8%, respectively, and

they indicate an unfavourable prognosis.50 The prognostic

impact of IDH gene mutations in AML remains controver-

sial. Some studies have associated these mutations with

adverse reactions, while other studies have not been able

to identify an association with the clinical response or

survival.53,54 In the case of gliomas and glioblastomas,

IDH1/2 mutations have been associated with increased sur-

vival; therefore, the use of IDH inhibitors is not necessary,

unlike for AML55 A meta-analysis that included 8,121

AML patients showed that those with mutations in the

IDH1 gene had a lower overall survival and a lower rate

of complete remission than patients without mutations.56

We found that AML patients with IDH1 mutations had

decreased survival, which is consistent with previous

reports. In the case of IDH2 gene mutations, no difference

in survival was reported. These results agree with those

reported for the IDH2 gene, in which the presence of a

mutation has no effect on overall survival and complete

remission.57,58 However, mutations have been associated

with lower rates of complete remission and higher rates of

relapse, which is similar to our results.

Finally, castPCRTM technology is considered a rapid

and economical method for clinical practice that can be

used as a diagnostic test for the detection of IDH1/2 gene

mutations in AML.

Conclusion
The study of castPCRTM mutations allows rapid and

timely diagnosis for the treatment of AML patients, and

the importance of detecting other mutations, such as FLT3,

Table 3 AML Patients Mortality And OR Model According To Mutations In IDH Gene

Risk of Death Associated With Therapy Risk Of Early Failure To Therapy

OR (95% CI) p OR (95% CI) p

IDH1 mutated 4.65 0.98–22.05 0.052* 1.4545 0.42–5.02 0.593

IDH2 mutated 1.33 0.23–7.64 0.746 7.9748 0.44–145.79 0.161

Low intensity therapy 0.41 0.16–1.05 0.063 3.3043 1.03–10.63 0.045*

Intermediate-high risk 0.58 0.25–1.39 0.223 1.9368 0.83–4.52 0.126

Leukocytes>30 x 103/mcl 3.33 1.36–8.16 0.008* 3.1912 1.27–8.04 0.013*

Age> 60 years 0.71 0.31–1.61 0.818 3.7773 1.45–9.85 0.006*

Note: *Significance level p < 0.05.

Abbreviations: OR, odds ratio; CI, confidence interval.
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TET2 and DNMT3, has been demonstrated. Our results

revealed the frequency of IDH mutations in our population

of AML patients and their impact on overall survival and

risk of therapy failure. The presence of IDH gene muta-

tions allows stratification of patients by risk group. In

Mexico, there are no studies that demonstrate the fre-

quency of these mutations to assess specific therapies,

such as the use Ofivosidenib (Tibsovo), an IDH1 inhibitor,

and Enasidenib (Idhifa), an IDH2 inhibitor.
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