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Abstract. Lateralization of default mode network (DMN) functioning has been shown to change with age. Similarly, later-
alization of frontal lobe function has been shown to decline in age. The impact of amyloid pathology and the progression
of Alzheimer’s disease (AD) on resting state lateralization has not been investigated. Due to the preferential involvement
of the left hemisphere in verbal tasks, there may be a benefit to higher levels of left-lateralization in the performance of
verbal memory tasks. Here we compared functional lateralization of the anterior and posterior DMN between four groups
of participants: amyloid negative (A�-) and amyloid positive (A�+) groups with normal cognition (NC), and A�+ groups
with mild cognitive impairment (A�+MCI) or dementia (A�+AD). Differences were evident between groups in posterior
DMN; the A�-NC group was more left-lateralized than both cognitively impaired A�+ groups. There was no difference in
anterior DMN. No differences in overall network connectivity between groups were observed, suggesting that the functional
lateralization finding is not secondary to general changes in connectivity. Left-lateralization of both networks was associated
with better verbal recall performance. Older subjects, overall, had less left functional lateralization of the anterior DMN.
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INTRODUCTION

Sixteen years ago resting state functional magnetic
resonance imaging (rsfMRI) was found to demon-
strate the existence of functional networks in the
brain, including the default mode network (DMN)
which has since been found to be particularly
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in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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vulnerable to processes such as aging and
Alzheimer’s disease (AD) [1]. rsfMRI refers to
the study of blood oxygenation level dependent
(BOLD) patterns in the brain at rest. Assessing brain
function in this way is especially advantageous as
there is no dependence on tasks, which would tax
the cognitive ability of this group who are defined
by memory loss; many patients would not be able
to complete memory tasks in the scanner. While
rsfMRI offers an easier way to collect functional
imaging data from this population, the relationship
between resting state networks and disease severity
is not fully elucidated, and further understanding of
how rsfMRI networks change depending on disease
status is warranted if they are to be useful in studying
AD. Further, since function is affected earlier in the
disease process than the manifestation of episodic
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memory impairment [2], rsfMRI holds promise as
a biomarker of preclinical changes in AD, when
intervention might have the best chance of impacting
disease course.

The putative importance of rsfMRI was brought to
light in the early 2000 s when Greicius and colleagues
analyzed the coherence of the DMN, a group of
regions that were less active during attention demand-
ing tasks in positron emission tomography (PET) and
fMRI studies [3]. Fractionations within the DMN
have also been identified, most commonly the ante-
rior and posterior DMNs [4]. The pDMN consists
of posterior cingulate cortex, posterior inferior pari-
etal lobule, angular, hippocampal and temporal lobe,
whereas the aDMN contains the medial prefrontal
cortex, dorsomedial prefrontal cortex, anterior and
posterior cingulate cortex, anterior temporal lobe,
inferior frontal gyrus, and lateral parietal cortex
[4–6]. Compared with healthy individuals, patients
with AD have been shown to have enhanced connec-
tivity of the aDMN and reduced connectivity of the
pDMN, with eventual disintegration of connectivity
throughout the network [7]. In addition, recent work
has demonstrated a shift in functional lateralization
of several components of the DMN with age [8].

Brain lateralization has been studied in aging, with
the hemispheric asymmetry reduction in older adults
(HAROLD) model positing a reduction in asym-
metric activation in response to specific tasks in
older individuals compared with younger individu-
als. This has been studied more extensively using
non-MRI techniques. For example, a fludeoxyglu-
cose (FDG) PET study analyzing responses of older
adults compared with younger adults during ver-
bal and spatial memory tasks demonstrated bilateral
prefrontal involvement during both tasks in older par-
ticipants, whereas younger participants demonstrated
unilateral involvement, suggesting a loss of anterior
lateralization with age [9]. Some argue that this is due
to compensation [10], whereas others argue that it is
due to dedifferentiation [11, 12].

Amyloid imaging was not yet available when mod-
els such as HAROLD were developed, and thus we
do not know what percentage of the older partici-
pants may have had incipient AD changes in their
brains. Therefore, it is unknown if the early disease
process itself could have had a role in reduction in
functional lateralization. This is important since even
before clinical symptoms are apparent for amyloid-
� positive (A�+) individuals, they may show subtle
cognitive changes (e.g., [13]), and changes in connec-
tivity seem to precede better understood biomarkers,

such as atrophy [14]. Furthermore, the early spread of
amyloid in the brain follows the same regions which
are involved in the DMN [15], thus early amyloid
deposition may differentially effect this network [16].
Understanding how functional lateralization at rest
differs between cognitively normal aging with and
without amyloid, and how that differs from early AD
(A�+ mild cognitive impairment (MCI)) will help in
elucidating the impact of aging on both normal and
pathological brain functions.

Lateralization is particularly important for cog-
nitive functions as shown by different hemispheric
dominance in different cognitive domains. Most peo-
ple have language dominance in their left hemisphere,
which extends to dominance for verbal memory [17].
Other forms of memory, such as that for spatial mem-
ory, are often considered to be more right hemisphere
dominant [17]. Identifying and tracking memory
change is important in both diagnosis and monitor-
ing disease progression and in assessing the efficacy
of medication in clinical trial. In trials and research
studies, the modality of memory testing tends to be
verbal, thus it might be expected that the tests are
more sensitive to reduction in function in the left
hemisphere.

At the same time that our understanding of rest-
ing state networks has evolved, new radioligands for
PET have been developed, which identify A� depo-
sition in the brain in vivo. This has allowed for a
paradigm shift in research on AD, since this disorder
is diagnosed clinically with low accuracy, especially
in the very early stages. Use of amyloid-tagging
radioligands has allowed for the use of PET imag-
ing to confidently identify preclinical and very early
stages of AD [18]. This amyloid PET technology
allows us to differentiate healthy brain aging (amy-
loid negative normal controls A�-NC), those with
no cognitive symptoms but elevated brain amyloid
(A�+NC), and those with clinical symptoms due to
AD with (A�+AD) or without impairment in their
day-to-day lives (mild cognitive impairment due to
Alzheimer’s disease; A�+MCI).

Using the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, we aimed to test the
hypothesis that amyloid burden in aging would
impact connectivity within the DMN. Using amy-
loid PET, specifically the radioligand florbetapir, we
differentiated individuals with and without levels
of florbetapir uptake suggestive of underlying AD
[19] and of later cognitive decline [20]. To compare
against prior work and to understand the distinc-
tion between functional lateralization and overall
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connectivity we felt it important to replicate the DMN
connectivity analyses of Damoiseaux and colleagues
[7] in order to assess for group differences in the over-
all connectivity within each network. We also aimed
to investigate how the functional lateralization shift
in DMN with age relates more specifically to amy-
loid as a biomarker for AD. We then assessed the
differences between these groups in lateralization of
rsfMRI and the relevance of the findings to cognition
hypothesizing that lateralized connectivity favoring
the left hemisphere would be advantageous, when
considering a verbal memory measure. Although
lateralization has been widely studied, functional
connectivity lateralization in specific brain networks
during resting state has yet to be extensively inves-
tigated. Given the changes in DMN connectivity in
aging, we aimed to investigate whether lateralization
changes also occur in aging and amyloid deposition.

MATERIALS AND METHODS

Participants

Data used in the preparation of this arti-
cle were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure
the progression of MCI and early AD. For up-to-date
information, see http://www.adni-info.org.

Participants were defined clinically by ADNI. Nor-
mal controls (NC) showed no signs of depression,
MCI or dementia. MCI participants reported subjec-
tive memory concern either by themselves or via an
informant or clinician in addition to memory loss
as determined by Wechsler Memory Scale Logical
Memory II test. There were no significant impair-
ment in other cognitive domains, and activities of
daily living were preserved. AD participants met
the NINCDS/ADRDA criteria for possible AD. For
more details on the specifics of diagnostics used
in ADNI, please see http://adni.loni.usc.edu/study-
design/background-rationale/.

Inclusion criteria were availability of a florbetapir
(AV45) PET scan, rsfMRI, cognitive assessment, and
right handedness. Only amyloid positive MCI and AD
patients were included as determined by increased
AV-45 PET binding using the cerebellar reference

region (standard uptake value ratio (SUVR)>1.1)
[21]. Four participant groups were formed based on
amyloid positivity and clinical diagnosis; NC with
and without positive amyloid scan (i.e., A�-NC,
A�+NC), A�+MCI, and A�+AD. Based on these
criteria we included 123 individuals in total; 32 A�-
NC, 20 A�+NC, 44 A�+MCI, and 27 A�+AD. All
participants had provided informed consents at the
participating sites, consistent with that site’s institu-
tional review board (IRB) approval procedures.

Verbal learning and memory

Total learning over five trials and the delayed recall
measure from the Rey Auditory Verbal Learning
Test (RAVLT) [22] was assessed for verbal learn-
ing and memory. RAVLT was completed no more
than 6 months before or after the MRI visit. The
mean interval between visits was 61 days, with a stan-
dard deviation of 24 days. The mean interval between
RAVLT and PET visit was 52 days, with a standard
deviation of 97 days.

Imaging data acquisition

AV45 PET acquisition details, along with all the
MRI parameters, are listed on the ADNI website
(http://www.adni.loni.usc.edu). Structural MRI data,
obtained from 3T MPRAGE scans, were acquired as
part of ADNI 2 or ADNI Grand Opportunity. The
best available scan for each subject was selected
based on the Mayo Quality Control Ratings. fMRI
scans were acquired on Phillips Medical Systems 3T
scanners using the protocol specifically from ADNI
2, and restricted to “Resting State Eyes Open”. For
fMRI we used gradiant-echo, T2 weighted echopla-
nar imaging (EPI) with the following parameters;
TR/TE = 3000/30 ms; flip angle = 80◦ slice thickness
3.313, in–plane resolution/voxel size = 3.313mm3. A
total of 140 volumes were acquired.

Imaging data processing

AV45 PET data processing
We used the UC Berkeley AV45 dataset which

provides a processed set of AV45 PET data for a sub-
set of ADNI participants, with SUVR calculations
completed by the Jagust Lab at University of Cali-
fornia, Berkeley (https://adni.bitbucket.io/reference/
docs/UCBERKELEYAV45/ADNI AV45 Methods
JagustLab 06.25.15.pdf). The florberatapir scans
were divided into five reference regions (frontal,

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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anterior/posterior cingulate, lateral parietal, lateral
temporal, cerebellum) as defined by Freesurfer
parcellations of native-space MRI to which the
PET scans was coregistered. The mean florbetapir
uptake was then calculated for each cortical (frontal,
anterior/posterior cingulate, lateral parietal, lateral
temporal) and reference region (cerebellum). Stan-
dard SUVR cutoff of 1.1 with cerebellar reference
region was used to denote amyloid positivity [19].
SUVR value was also used as a continuous variable
to denote overall amyloid load.

fMRI data processing
The fMRI imaging analysis steps are outlined

in Fig. 1 The first 5 time frames (15 s) were
removed to allow the MR signal to achieve T1
equilibrium. Time frames were slice-timing cor-
rected, realigned to the mean echo-planar image
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/),
co-registered to the subject T1 space and then nor-
malized to the standard MNI-152 2mm-template
using Advanced Normalization Tools software
(http://stnava.github.io/ANTs/). Signals from subject
white matter and cerebrospinal fluid (3-mm cubes
centered at Montreal Neurological Institute coordi-
nates (MNI) (26, –12, 35) and (19, –33, 18) as these
locations are away from the grey matter [23]), as
well as six head motion parameters were regressed
out from each dataset. Global signal regression was
not performed as it is controversial in resting state
fMRI data preprocessing [24, 25]. Correction for
global signal fluctuations with regression has a signif-
icant impact on resting state functional connectivity
results [26] and can further introduce “artifactual”
anti-correlations. Furthermore, global signal includes
both neural and non-neural variabilities and there-
fore makes the result difficult to interpret. FMRI
data were spatially smoothed using an 8 mm 3D-
Gaussian filter. All voxel time courses were band
pass filtered (0.008 Hz<f<0.1 Hz) and variance nor-
malized. The mean signal noise ratio, an indicator of
fMRI data quality, was not different between groups
(F(3,120) = 2.04, p = 0.11).

Motion assessment was completed following
Power and colleagues [27]. Specifically, we com-
puted root-mean-square (RMS) head motion for each
subject. Rotational displacements were converted to
translational displacements by projection to a sur-
face of a 50 mm radius sphere and RMS head motion
was then computed from both the original trans-
lational displacements and the converted rotational
displacements. The framewise displacement was cal-

culated as indicated by Power and colleagues [28].
All subjects had less than 0.5 mm (0.18 ± 0.07 mm
on average) RMS head motion and RMS head motion
was not significantly different between the four
groups (F(3,120) = 2.21, p = 0.09). Given the motion
was within an acceptable range, we did not use scrub-
bing or other techniques to remove problematic scans
from the time series, which may have introduced fur-
ther noise in the data. Concerns about scrubbing are
that: 1) degrees of freedom, i.e., number of remaining
time points is different between subjects; 2) correla-
tion estimates may become excessively noisy if data
is removed; 3) censoring may bias the sampling of
brain “states” [29]. In addition, removing time points
with large motions prior to computing functional con-
nectivity is a destructive procedure that may violate
analytic assumptions (e.g., temporal contiguity) [30].
We followed the earlier work of Agcaoglu and col-
leagues [8] to calculate the global laterality cofactors
for each subject. First, preprocessed fMRI data from
all subjects were concatenated in time and input to
a spatial group ICA. The ICA was carried out with
in-house MATLAB scripts using fast-ICA algorithm
[31]. Thirty ICA components were obtained. Spatial
maps of each ICA component were converted to a
z-score map and thresholded at z ≥ 2 to count only
the most functionally active part of the component.
Each subject-specific ICA map was computed and
one-sample t-tests were conducted for each compo-
nent to test the significance of every voxel in that
component. The statistic maps were thresholded at
p < 0.05 (corrected). Next, we visually inspected both
thresholded spatial maps as spatial maps of a resting-
state network should exhibit peak activations in gray
matter, and low spatial overlap with known vascular,
ventricular motion, and susceptibility artifacts [32].
Based on the above criteria, we selected components
that overlap with major grey matter regions. We fur-
ther compared the selected thresholded spatial maps
with Smith and colleagues [33] and Beckmann and
colleagues [34] to determine the final 17 components
for the resting state networks. A power spectrum of
the time signature of each ICA component was also
computed. Spectra of resting state networks should
be dominated by low frequency fluctuations. Since
the TR in our study is 3 seconds, the maximum fre-
quency resolved with our data was 0.17 Hz, which
was already in the low frequency range. Therefore,
we did not further exclude any selected resting state
networks based on this criteria. Subject-specific spa-
tial maps of the seventeen RSNs were then obtained
using dual regression [35]. A subject-specific

http://www.fil.ion.ucl.ac.uk/spm/
http://stnava.github.io/ANTs/
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Fig. 1. Flowchart of data processing. Superscripts at the end of each step indicate the software used. ∗statistical parametric mapping (SPM12);
†in house matlab script; �advanced normalization tools; �SPSS.

network score was calculated for each component by
taking the dot product of the group ICA map with the
subject-specific spatial map using only functionally
active voxels (z ≥ 2) in the group ICA map following
the procedure completed by Vo and colleagues [36].

Next, the subject-specific ICA maps were warped
to a symmetric Montreal Neurological Institute
(MNI) template to overcome hemispheric asym-
metries. Following Agcaoglu and colleagues, we
obtained the symmetric MNI template by averag-
ing the template itself and its mirror image [8]. The
warped subject-specific ICA maps were then con-
verted to z-score maps. In order to count only the
most functionally active part of the component in
each subject, a mask was generated with only z ≥ 2
voxels retained. The laterality cofactor was then cal-
culated by taking the differences between the sum of
all within-mask voxel intensities on the right and left
hemispheres with respect to the sum of all within-
mask voxel intensities over the brain, as explained
in Fig. 1 More negative values thus represented
more left-lateralized network connectivity. Out of the
seventeen RSNs obtained from ICA, we were partic-
ularly interested in the DMN. DMN was evaluated
further as aDMN and pDMN.

Structural MRI processing
In order to ensure that fMRI findings were not the

result of underlying structural asymmetries, we com-
pleted a similar analysis with the structural scans.

Specifically, we calculated laterality cofactors of the
voxel-based morphometry (VBM) results from each
subject. Initially, we ran DARTEL (within SPM12)
on each subject in order to obtain a smoothed and
modulated grey matter density map. This map was
then normalized to symmetric MNI space. Each sym-
metric grey matter density map was thresholded at 0.1
to restrict analysis to the grey matter. We then created
masks of the aDMN and pDMN generated using the
fMRI results above and normalized to the symmetric
MNI space. These masks were applied to the grey
matter density map, which was then used to compute
the structural lateralization cofactor:

∑
left Voxel Intensity − ∑

right Voxel Intensity
∑

left Voxel Intensity + ∑
right Voxel Intensity

Replication of prior DMN analyses
To assess for group differences in the overall

connectivity within each network we replicated the
DMN connectivity analyses of Damoiseaux and
colleagues [7]. Using the preprocessed data (as
described above) we compared groups with a t-test
applied to the Threshold Free Cluster Enhance-
ment (TFCE [37]), using PALM in FSL software
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM) [38,
39], applying a mask of the group ICA component
in question. Significance was determined by p < 0.05
family wise error correction.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
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Statistical analysis

All statistical analyses were done in IBM SPSS
version 23 (Armonk, NY). Demographics between
groups were compared by analysis of variance
(ANOVA) with post-hoc comparisons and Chi
squared tests. Pearson’s correlations were used for
the relationship between functional lateralization and
age. Overall functional lateralization and overall
connectivity within the networks of interest were
compared using ANOVA with post-hoc comparisons
when the omnibus test was found to be significant.
We further analyzed the effect of overall amyloid
load as a continuous variable on functional lat-
eralization of each of the DMN subnetworks by
linear regression adjusted for age. Structural later-
ality cofactors obtained from the VBM analysis were
compared between groups using ANOVA. Relation-
ship between structural and functional lateralization,
between aDMN and pDMN functional lateraliza-
tion were assessed by Pearson’s correlations. Gender
effect on cognitive test scores was assessed by t test.
Relationship between cognitive test scores and func-
tional lateralization, as well as overall SUVR was
further assessed with partial correlations controlling
for the effect of demographic factors which were
associated with RAVLT scores. Further, we wanted
to investigate whether the effect of lateralization on
cognitive test scores (for scores significantly correlat-
ing with lateralization) is impacted by the presence
of amyloid. Therefore we ran a medication analysis
with amyloid SUVR as the mediator, cognition as
the outcome and DMN lateralization as the predictor.
Demographics were included as covariates and the
PROCESS macro for SPSS was used [40]. The indi-
rect effects were tested using a bootstrap estimation
approach with 1000 samples. Statistical significance
was defined as p < 0.05.

RESULTS

Participants

Demographic details are provided in Table 1. Edu-
cation differed between groups (F(3,119) = 2.724,
p = 0.047), with A�-NC being significantly more
highly educated than the A�+AD group (p = 0.031).

Default mode network connectivity

Group maps of the aDMN and pDMN are dis-
played in Fig. 2 There was no difference between

groups for overall connectivity within the aDMN
or pDMN using the subject-specific network score
approach. There was also no difference between
groups within either network using previously-
applied functional connectivity (TFCE) analysis.

Functional lateralization and age

When all groups were combined, there was
a significant correlation between age and aDMN
lateralization (r = 0.244, p = 0.006), with less left
lateralization seen in older participants. When the
groups were separated, this relationship remained
significant only for A�+AD (r = 0.417, p = 0.030).
PDMN lateralization showed no correlation by age
either with the combined group or within each group.

Functional lateralization between groups

The aDMN lateralization did not differ sig-
nificantly between groups at the omnibus level
(F(3,120) = 1.96, p = 0.123).

There was a significant group effect on the later-
alization of the pDMN (F(3,119) = 2.75, p = 0.046).
Group-wise comparisons identified that the A�-NC
were more left-lateralized than either the A�+MCI
(p = 0.014) or A�+AD (p = 0.020) groups, and did
not differ significantly from A�+NC. None of the
A�+groups differed from each other. The spread of
scores in each group is depicted in Fig. 3.

The linear regression with overall SUVR as a pre-
dictor and age as a regressor in the whole cohort
revealed that the model predicted pDMN lateraliza-
tion (R2 = 0.077, p = 0.008). Age was not a significant
predictor (p = 0.897) whereas SUVR was (p = 0.002).
The model was also significant for the aDMN later-
alization (R2 = 0.061, p = 0.024). For aDMN, SUVR
was not a significant predictor (p = 0.740), whereas
age was (p = 0.006). The association between SUVR
and pDMN; between age and aDMN are depicted in
Figs. 4 and 5.

Lateralization of volumetric findings

The VBM analysis showed no group differences
for either the aDMN (F(3, 120) = 2.319, p = 0.079)
or pDMN (F(3,120) = 0.557, p = 0.645), indicating
that asymmetry in atrophy within these networks
was not evident. There was no significant correla-
tion between structural and functional lateralization
within either the aDMN (r = –0.021, p = 0.819) or
pDMN (r = –0.066, p = 0.465).
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Table 1
Group demographics

A�–NC A�+NC A�+MCI A�+AD Group comparisons

Age 72.72 (5.76) 74.91 (6.92) 73.21 (7.00) 74.17 (6.73) ns
Years of education 17.03 (1.82) 16.70 (2.45) 15.90 (2.71) 15.40 (2.50) A�-NC>A�+AD
% women 62.5 50 47.7 51.9 ns
% Caucasian 93.8 95 95.5 92.6 ns

All variables are stated as mean (standard deviation) or percentage. A�-NC, amyloid negative normal controls; A�+NC, amyloid positive
normal controls; A�+MCI, amyloid positive mild cognitive impairment patients; A�+AD, amyloid positive Alzheimer’s disease patients;
ns, nonsignificant.

Fig. 2. Spatial maps of the pDMN and aDMN.

Fig. 3. Boxplot showing spread of functional lateralization scores for the pDMN in each diagnostic group. The reference line at zero signifies
no lateralization, anything below this is left lateralized. The A�-NC group differed significantly from the A�+MCI and A�+AD groups, but
not the A�+NC group. ∗signifies statistically significant group differences.

Relationship between networks

aDMN and pDMN functional lateralization were
not correlated with each other (r = 0.011, p = 0.908).

Functional lateralization and cognition

Mean total learning score was 4.91 (3.38) for
females, and 4.29 (2.81) for males without any

significant differences between the two genders
(t(33) = 0.567, p = 0.575). Females had a signifi-
cantly higher delayed recall score (mean score for
females: 5.03 (4.45), mean score for males 3.48
(3.75); t(121) = 2.071 p = 0.041).

Age was negatively correlated with RAVLT scores
(r = –0.401, p = 0.017 for total learning; r = –0.262,
p = 0.003 delayed recall); years of education was
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Fig. 4. Relationship between SUVR and lateralization of the
pDMN. More left lateralized is depicted by more negative scores.

Fig. 5. Relationship between age and lateralization of the aDMN.
More left lateralized is depicted by more negative scores.

positively correlated with RAVLT scores (r = 0.416,
p = 0.013 for total learning; r = 0.272, p = 0.002 for
delayed recall).

There were no significant correlations between
total learning and functional lateralization of DMN
lateralization (aDMN (r = –0.325, p = 0.065) and
pDMN (r = –0.224, p = 0.211)) or amyloid (SUVR
r = –0.284, p = 0.110)) controlling for age and years
of education. Higher delayed recall scores were
associated with a greater degree of left functional
lateralization in (aDMN (r = –0.231, p = 0.011)) and

pDMN (r = –0.246, p = 0.007); and lower SUVR
(r = –0.424, p = 0.000) (controlling for age, gender,
and years of education). Given the significant rela-
tionships between both SUVR and DMN functional
lateralization with delayed recall, we wanted to
ascertain whether SUVR mediated the relationship
between lateralization of DMN function and delayed
recall including age, gender, and years of education
as covariates. Analysis with aDMN lateralization as
the predictor and SUVR as the mediator revealed
that aDMN lateralization was not a significant pre-
dictor of SUVR (b = –0.077, SE = 0.249, p = 0.759).
Both aDMN lateralization and SUVR were predic-
tors of delayed recall scores (b = –10.746, SE = 4.161,
p = 0.011; b = –7.390, SE = 1.385, p = 0.000). After
controlling for the mediator, aDMN lateralization
was still a significant predictor of delayed recall
(b = –11.312, SE = 3.749, p = 0.003). SUVR did not
have a mediating effect as indirect coefficient was
not significant (b = 0.567, SE = 1.980, 95% CI –3.166,
4.712). Analysis with pDMN lateralization as the
predictor and SUVR as the mediator revealed that
pDMN lateralization was a significant predictor
of SUVR (b = 1.441, SE = 0.0411, p = 0.001). Both
pDMN lateralization and SUVR were predictors of
delayed recall (b = –19.318, SE = 7.189, p = 0.007;
b = –6.598, SE = 1.496, p = 0.000). After control-
ling for the mediator, pDMN lateralization did
not significantly predict delayed recall (b = –10.305,
SE = 7.024, p = 0.145). SUVR was a mediator of the
pDMN lateralization effects on delayed recall scores
(b = –9.507, SE = 3.331, 95% CI –17.206, –3.885).
Association between the delayed recall scores and
pDMN lateralization is depicted in Fig. 6.

When separated by group, the A�+MCI group
showed more left functional lateralization of the
pDMN to be associated with higher learning scores
(r = –0.634, p = 0.049) (controlled for age, and years
of education), and higher delayed recall scores
(r = –0.314, p = 0.045) (controlled for age, years of
education, and gender). Whereas in the A�+AD
group, higher delayed recall scores were associated
with more left lateralization of the aDMN (r = –0.422,
p = 0.036) (controlled for age, years of education, and
gender).

DISCUSSION

In this study, we addressed how functional lateral-
ization of the DMN differs across the AD spectrum.
Functional lateralization of the pDMN appears to
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Fig. 6. Relationship between delayed recall (number of words) on
the RAVLT and lateralization of the pDMN. More left lateralized
is depicted by more negative scores.

be related to presence of cognitive impairment and
amyloid load, while functional lateralization of the
aDMN was related to age. Reduction in anterior func-
tional lateralization is consistent with the idea that the
frontal lobes become less specialized with age or are
required to be more bilaterally active in order to com-
pensate for reductions in efficiency, as suggested by
the authors of the HAROLD model [41]. The cog-
nitively unimpaired groups did not differ on aDMN
or pDMN lateralization, suggesting that the presence
of amyloid in the brain may, by itself, not be related
to reduced lateralization. However, when amyloid is
assessed as a continuous variable, higher levels were
associated with reduced left-functional lateralization
across the cohort in the pDMN, whereas only age
was associated with reduced functional lateralization
in the aDMN.

The DMN is a resting state network which deac-
tivates during tasks and interaction with external
stimuli [42, 43]. Many intrinsic brain networks
are lateralized, including the DMN [8]. In healthy
controls, the DMN was found to be mostly left lat-
eralized with age shifting this lateralization to the
right side [8]. Our findings suggest that reductions
in left-functional lateralization occur beyond overall
connectivity change within either DMN, thus left-
functional lateralization is impacted by aging and/or
the advancement of AD. Previously, dementia sever-
ity in AD has been associated with DMN atrophy
and this atrophy showed a lateralized pattern [44].
As our findings were not explained by differences in

lateralization of volume within the DMN, we were
able to exclude the effect of DMN volume on the
association between functional lateralization and AD
in our sample.

The relationship between lateralization and cog-
nition differed by group and subnetwork. Whereas
left-functional lateralization of the pDMN was asso-
ciated with better performance in learning and recall
in the MCI group; left-functional lateralization of the
aDMN was related to better recall performance in AD
group. Thus, the pDMN lateralization may have more
of a compensatory role, while aDMN lateralization
may reflect lack of specialization. Only a small com-
ponent of the variance in verbal learning and memory
was explained by functional asymmetry, thus the clin-
ical significance of these findings is questionable, but
warrants further study.

Deposition of A� in the brain is considered to be
the first pathological mechanism of AD [45], which
can precede the onset of symptoms by up to 15
years [46]. While it has traditionally been thought
to be diffuse very early in the preclinical phase of
AD, a recent study by Palmqvist and colleagues,
early stage A� deposition was found to be located
within DMN regions alongside hypoconnectivity
within the network [47]. Interestingly, the deposi-
tion and hypoconnectivity were not coupled with any
metabolic or structural changes. This suggests that
early A� deposition is an important reflection of net-
work disruption, occurring before hypometabolism
or atrophy. In our study, amyloid did not specifically
relate to functional lateralization in the two unim-
paired groups when analyzed separately, although
it was a significant predictor of reduced functional
lateralization of the pDMN when the groups were
combined. It seems likely, given information about
the cascade of biological changes seen in AD [48],
that reduction in pDMN functional lateralization is
related to either the very early deposition of amyloid,
which impacts the cortical regions of the pDMN [49]
or it may be due to later processes such as tau depo-
sition or changes in the integrity of the underlying
brain networks (atrophy, reduced structural connec-
tivity or functional capacity of networks). Indeed,
the mediation analysis in the current study showed
that only with the additional impact of amyloid was
pDMN lateralization predictive of cognitive decline,
suggesting that the decline in lateralization may be
related to amyloid-fueled network disruption which
is characteristic of AD. Application of other imaging
modalities, such as diffusion tensor imaging and other
structural methods, as well as tau PET imaging, may
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help elucidate the etiology and pathological stage
at which reduced functional lateralization becomes
relevant.

Our results on overall connectivity within each
DMN differed from earlier results by Damoiseaux
and colleagues [7], who showed lower pDMN con-
nectivity in AD patients, and enhancement in aDMN
connectivity compared with healthy controls, but
reduction in both networks with progression of the
disease. The groups in the current study were larger
and characterized with amyloid imaging, thus pro-
viding greater diagnostic accuracy. However, the
participants in the current study were on average
a decade older than those in the earlier study, per-
haps accounting for some of the difference. On the
other hand, ICA, a data-driven method for imaging
analysis was used in both studies. As DMN was iden-
tified based on our overall sample, which includes
more diseased brains than healthy brains, our find-
ings may have differed from the study by Damoiseaux
and colleagues, which included a similar number of
individuals with AD and healthy controls [7].

The current study highlights the potential role of
functional lateralization of the DMN in understand-
ing changes in brain activity with aging and AD.
However, the study was limited to the tests com-
pleted during ADNI visits, where memory is assessed
only through the verbal modality (word lists and sto-
ries). Using an extensive cognitive battery including
both verbal and nonverbal memory measures, Royall
and colleagues (2014) found that non-verbal decline,
rather than verbal change was associated with aging
[50]. Thus, future research using nonverbal memory
measures will be important in understanding the role
of lateralization of these networks in memory more
widely. It is possible that the use of verbally medi-
ated memory tests in diagnosis and tracking of AD is
biased toward patients with reduced left hemisphere
functional integrity. It might be that functional lateral-
ization is not a sign of amyloid deposition or AD, but
a sign of poor performance on verbal memory mea-
sures. It will be important to investigate nonverbal and
spatial memory measures to see if performance on
these tests is equally related to reduction in functional
lateralization.

While the RAVLT results are not used in the defi-
nition of MCI status, ADNI relies heavily on a verbal
memory task (Logical Memory) to define the cogni-
tive impairment group which may add a tautology to
the current results. Importantly, our results pertained
to resting state data, it is unclear how this will map
on to task-positive findings. While the results suggest

lateralization changes in those with markers of AD
while at rest, further studies are required to determine
the implications during verbal and nonverbal tasks.
As we only analyzed cross-sectional data, our results
do not speak to causality or temporal ordering of
changes in amyloid and lateralization, which could be
further investigated with a longitudinal design. While
the group level findings showing that better verbal
performance is associated with more left-functional
lateralization among the cognitively impaired partici-
pants, longitudinal data could help elucidate whether
functional lateralization plays an active role in cog-
nitive impairment. The current study indicates that
functional lateralization may be an important, and
currently neglected, facet of default mode network
research. Limitations of the present study that could
be surmounted in future studies include the relatively
small size of each group, and the lack of exten-
sive neuropsychological testing which might have
allowed for more thorough exploration of the impact
of lateralization on different aspects of memory and
other cognitive functions.

In sum, this study points to the potential impor-
tance of examining not only connectivity of the
DMN, but also functional lateralization of the DMN,
in understanding the early changes in preclini-
cal AD. There appears to be distinct relationships
between functional lateralization with age and amy-
loid, depending on which subnetwork of the DMN
we assess. Given the overlaps between early amyloid
deposition and spread with the DMN, there may be
a mechanistic relationship between changes in func-
tional lateralization and the progression of amyloid
in the brain.
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