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Simple Summary: Crabs within the family Portunidae are important marine species in both aquaculture
and fishery sectors. The current aquaculture status of most portunids still relies on wild-caught fisheries
due to the lack of essential knowledge regarding their reproductive biology and underlying governing
mechanism. In the present study, we compared the differentially expressed genes (DEGs) between the
different sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently
contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of the family Portunidae.
In total, 40,964 DEGs between the ovaries and testes of P. sanguinolentus were uncovered, with 27,578
up-regulated and 13,386 down-regulated in females. After comparison, C. feriatus has approximately
63.5% of genes in common with P. sanguinolentus, with 62.6% showing similar expression patterns.
Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus, while its homologous
gene—doublesex (DSX)—was specifically expressed in male C. feriatus. The DEGs obtained from the
gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research
in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references
for better understanding the sex determination and differentiation mechanisms among portunids.

Abstract: Crabs within the family Portunidae are important marine species in both aquaculture and
fishery sectors. The current aquaculture status of most portunids, however, still relies on wild-caught
fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying
governing mechanism. With the advancement of sequencing technology, transcriptome sequencing
has been progressively used to understand various physiological processes, especially on non-model
organisms. In the present study, we compared the differentially expressed genes (DEGs) between sexes
of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted
them with the gonadal DEGs of Charybdis feriatus, the other member of Family Portunidae. In total,
40,964 DEGs between ovaries and testes were uncovered, with 27,578 up- and 13,386 down-regulated
in females. Among those, some sex-related DEGs were identified, including a dmrt-like (DMRT) gene
which was specifically expressed in males. C. feriatus has approximately 63.5% of genes common with
P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was
specifically expressed in male P. sanguinolentus while its homologous gene—doublesex (DSX)—was specifi-
cally expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus
are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species.
The transcriptomic comparison analysis might provide references for better understanding the sex
determination and differentiation mechanisms among portunids.
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1. Introduction

Portunidae are important marine crab species with a diversity and speciation of
around 300 members [1], among which many are considered important marine aquaculture
and captured-fishery species [2]. The culture of crabs has been gaining attention since the
last decade because of the high demand for live crabs and crab products in the global market.
In particular, Portunus sanguinolentus and Charybdis feriatus are potential marine aquaculture
species in China due to their high meat quality and fast growth rate [3]. However, the
current crab culture is still largely dependent on wild capture fishery [4]. The unregulated
fisheries practice, combined with increasing overfishing and environmental deterioration,
resulted in the quick depletion of many crab resources [5]. P. sanguinolentus is generally
named the three-spot swimming crab for its three distinct red to chestnut spots on the back
of its carapace. It can be found in Indo-Pacific waters from the east coast of South Africa to
Hawaii [6]. So far, genetic studies on P. sanguinolentus are limited. Thus, the availability of
P. sanguinolentus gonadal transcriptomic profiles will benefit greatly to the revealing of the
regulatory roles of ovary and testis in portunids and serve as a useful comparison for other
marine crabs.

Charybdis feriatus, naturally distributed in the coastal areas of Guangdong, Zhejiang,
Guangxi, Hainan, and Fujian provinces of China and the waters of Indo-Pacific regions, is a
large, highly prized marine portunid crab species. Juvenile crabs inhabit sandy shores while
adults preferentially move to the muddy offshore areas [7]. They are easy to distinguish
according to their prominent red and white carapace and an obvious cross on the median
surface of their carapace [8]. Despite belonging to different genera, P. sanguinolentus and
C. feriatus share not just morphological similarities, but also life cycles and regeneration
ability. However, the information of a genome, transcriptome, and associated molecular
markers of these two species are rare at the moment.

RNA-seq is a practical tool for uncovering differential gene expression under certain conditions
of non-model organisms. It has been successfully performed in many aquaculture invertebrates
for various purposes, including identification of differentially expressed genes (DEGs) in different
tissues or under specific conditions in crabs like Scylla paramamosain [9,10], Scylla olivacea [4],
Portunus trituberculatus [11,12], Eriocheir sinensis [13,14] and Sinopotamon henanensis [15]. RNA-
seq analysis is also used in resolving comparative genomic-level issues, especially for non-model
organisms [16]. In principle, comparative RNA-seq studies between closely related species could
offer excess genomic resources and simultaneously supply information about the processes of
differentiation between species [17].

The present study aimed at screening the DEGs between sexes of P. sanguinolentus
based on its gonadal transcriptome data. In addition to contributing to the genetic resources
available for portunid species, we compared the gonadal DEGs of P. sanguinolentus with
that of C. feriatus obtained from previous research [18] in an attempt to understand the
similarities and differences in sex-biased genes of both portunid species. These data
would be helpful for future studies on the gonad molecular regulatory mechanism and sex
differentiation mechanism of marine crabs.

2. Materials and Methods
2.1. Transcriptome Analysis and Validation

The present experiment was approved by the Institutional Animal Care and Use
Ethics Committee of Shantou University. The detailed transcriptome analysis method
was described in [19]. The ovaries in stage III-IV and testes in stage II-1II without vas
deferens were extracted from four females and four males P. sanguinolentus, respectively.
Females P. sanguinolentus were named as PS-F and males as PS-M. In brief, total RNA was
extracted from the gonads of PS-F and PS-M, converted into cDNA libraries, and sequenced
on Illumina HiSeq 3000 platform. Clean reads were subjected to de novo assembly and
annotated to public databases.
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2.2. Analysis of Differentially Expressed Genes of P. sanguinolentus

StringTie was used to calculate FPKMs (Fragment per kilobase of exon model per
million mapped reads) [20] of transcripts of the testes (PS-M) and ovaries (PS-F) samples of
P. sanguinolentus. FPKMs were calculated based on the length of the fragments and reads
count mapped to this fragment. Prior to differential gene expression analysis, for each
sequenced library, the read counts were adjusted by edgeR program package through one
scaling normalized factor. DEGs were detected by the EBSeq package with raw counts as
inputs. Unigene with false discovery rate (FDR) < 0.001 and the absolute value of log2 Ratio
> 1 was considered significantly different expressed gene. GOseq with the Wallenius non-
central hyper-geometric distribution model was used for Gene Ontology (GO) enrichment
analysis (p-value < 0.05), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis using KOBAS with the hyper-geometric distribution model.

2.3. RNA-Seq Results Verification

Nineteen genes, i.e., one male-specific expressed gene DMRT, three up-regulated
genes in male (male reproductive-related LIM protein (MRLIM), male sterility domain-containing
protein (MSD), myosin heavy chain (MHC)), and 15 up-regulated genes in female (androgen-
induced protein 1 (AIP), cyclin B (CYCB), estradiol receptor-like protein (ER), extra sex combs
(ESC), fem-1-like protein (FEM1), heat shock protein 70 (HSP70), HSP90, juvenile hormone
esterase (JHE), ovarian fibroin-like substance-2 (OFLS), progesterone-like protein (PG), vasa-like
(VASA), vitellogenin (VTG), vitellogenin receptor (VTGR), ovary development-related protein
(ODR), sox14 protein (SOX14)), were selected for RNA-seq verification using quantitative
real-time PCR (qPCR). cDNA was reverse transcripted from 1 pg total RNA using Reverse
Transcription System (Transgen Biotech Co. Ltd., Beijing, China). Primer 6.0 Software
was used to design the primers (Supplementary Table S1) for qPCR which is performed
in a Mini Option real-time detector (Roche Light Cycle@480). The reaction solution for
qPCR included 2.0 pL ¢cDNA solution (20 ng), 0.6 pL PCR forward primer (10 uM), 0.6 pL
PCR reverse primer (10 uM), 10 pL Talent qPCR Premix (2x) (TTANGEN Biotech Co., Ltd.,
Beijing, China), and 6.8 pL. RNase-free water. The reaction conditions were performed
following the recommendation of the instruction. All amplicons were initially separated
by agarose gel electrophoresis to ensure their sizes. The expression level of each gene was
normalized towards the reference gene (18s *RNA). Gene expression levels were calculated
using the optimized comparative Ct (2~24Ct) value method.

2.4. Comparison of the DEGs between P. sanguinolentus and C. feriatus

Using the previously published data of C. feriatus (CF) [18], the whole gonadal tran-
scriptome profiles between the two crab species were compared using BLAST. The as-
sembled sequences from the two species were considered as the same transcriptome and
given a new ID considering as “new unigene” when the identity reached 98%. At least one
transcript was mapped to one “new unigene” in both libraries. Raw fragments detected
in each sample of the two profiles and FPKM values were accordingly considered as the
FPKM value of the “new unigene”. If the new unigene is composed of more than one
transcript, the FPKM values of more than one transcript are added together as the FPKM
of the “new unigene”. Subsequently, the expression values (FPKM) of the “new unigenes”
among females (PS-F vs. CF-F) and males (PS-M vs. CF-M) of the two portunid species
were compared, respectively. The threshold of the DEGs was set as FDR < 0.001 and the
absolute value of log2 Ratio > 1. The GO and KEGG annotations of the “new unigenes”
were performed following Section 2.2.

3. Results
3.1. DEGs of P. sanguinolentus
To identify the DEGs between males and females of P. sanguinolentus, the mapped

reads were normalized to calculate the unigenes expressions between the PS-M and PS-F
using FPKM value. The details of unigene expressions can be found in Supplementary
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Table S2. Among all unigenes, 40,964 DEGs were obtained with 27,578 up- and 13,386
down-regulated in female P. sanguinolentus (Figure 1, Supplementary Table S3). Some
genes directly or indirectly related to sex determination and differentiation, like AIP, CYCB,
DmX-like (DMX), ER, FEM1, GPR, HSP90, PG, wnt4 precursor (WNT4P), VASA, VTG, VTGR,
crustacean hyperglycemic hormone (CHH) and ovary development-related protein (ODR) were
up-regulated in females, while male-reproductive-related genes such as Dmc1-like (DMC1),
MRLIM, MSD, sex peptide receptor (SPR), insulin receptor (IR) and spermatogenesis-associated
protein 2 (SPATA2) were up-regulated in males. Besides, SRY-like (SRY) and dmrt-like (DMRT)
gene were specifically expressed in males.

Expression Level PS-M vs PS-F

7
5 FDR <0.001 and |log2Ratio| > 1
7 M up-regulated genes
5 | M down-regulated .
B Not DEGs
4
- .
2
1
A -1
S
=3
i -2
&
S -3 -—eme
20
‘2 -4 1 | 1 1 L] 1 1 | 1
-4 -3 -2 -1 0 1 2 3 4 5 6

log10(PS-M FPKM)

Figure 1. The genes were classified into three classes. Blue genes are not differentially expressed genes. Green genes are
down-regulated that gene expression of left sample is larger than right sample. Red genes are up-regulated that gene
expression of right sample is larger than left sample. The horizontal coordinate is the expression level of PS-M and the
vertical coordinates is the expression level of PS-F. PS-M represents the male Portunus sanguinolentus and PS-F represents
female Portunus sanguinolentus. n = 4 for each sex.

These DEGs were further analyzed using KEGG pathway enrichment to determine
their metabolic pathways. The significant enrichment KEGG pathway (p value < 0.0001)
were Ribosome biogenesis in eukaryotes, Aminoacyl-tRNA biosynthesis, Parkinson’s
disease, Proteasome as well as Glyoxylate and dicarboxylate metabolism (Figure 2).
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Figure 2. Gene ontology (GO) assignment of differentially expressed genes (DEGs) of Portunus sanguinolentus. GO functions
is showed in X-axis. The Y-axis shows the percent and number of genes which have the GO function.

The DEGs obtained from the comparison of PS-F and PS-M were subjected to GO
annotation to see their potential functions. In the biological process, cellular process
(6143 DEGs), single-organism process (5418 DEGs), metabolic process (4803 DEGs), bio-
logical regulation (3280 DEGs), and multicellular organismal process (3034 DEGs) were
the most significant enrich GO function items in the comparison while cell (5268 DEGs),
cell part (5261 DEGs), organelle (3819 DEGs), membrane (2617 DEGs), organelle part (2287
DEGs) were the most in a cellular component. Followed binding which was the most
significant abundant GO function items with 4426 DEGs, catalytic activity (3630 DEGs),
transport activity (580 DEGs), molecular transducer activity (298 DEGs), and molecular
function regulation (216 DEGs) were more significant enrich GO items than the others in
the classify of molecular function (Figure 3). The similar expression patterns of the 19 genes
between qPCR and RNA-Seq verified the results of the mRNA-seq (Figure 4).
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Figure 3. Top 20 statistics of pathway enrichment for PS-M vs. PS-F. PS-M represents the male Portunus sanguinolentus and

PS-F represents female Portunus sanguinolentus.
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Figure 4. Candidate unigene expression levels revealed by qRT-PCR (red bar) and RNA-seq (green bar). n = 4 for each sex,
the results of qRT-PCR were performed by relative expression using 185 rRNA as the reference gene and measured by the
method of optimized comparative Ct (2~24Ct) value, the qRT-PCR results were performed by log, (female/male) and the
RNA-seq results by logy (female FKPM/male FKPM). They are showing the same expression trend.

3.2. Comparison of Unigenes between P. sanguinolentus and C. feriatus

The expression levels (FPKM values) of the unigenes in both libraries were mostly
(~99%) between 0-100 (Table 1). 9,436 “new unigenes” with more than 98% similar
identities on both libraries (Table 2, Supplementary Table 54) were identified. Among
the 9,436 unigenes, approximately 63.5% of genes were shared between the libraries of
P. sanguinolentus and C. feriatus, with 62.6% showed similar expression patterns. More
DEGs were shared among females (1 = 5085) of the two species compared to males (1 = 906).
The number of upregulated (n = 7080) and specifically expressed (n = 256) DEGs were
higher in P. sanguinolentus females when compared to C. feriatus females. In contrast, the
males of C. feriatus had higher upregulated and specifically expressed DEGs compared to
those of P. sanguinolentus (Figure 5). Some genes related to sex determination and differ-
entiation in P. sanguinolentus and C. feriatus were screened out from the shared up- and
down-regulated DEGs between the two portunid species (Figure 6), such as AIP, ODR,
CYCB, DMX, GPR, PG, WNT4P, VASA, and VTGR were up-regulated in females, and some
were up-regulated in males including SPR and SPATA2. We also verified those genes with
the same expression tendency in both P. sanguinolentus and C. feriatus, revealing the same
expression patterns with RNA-seq (Figure 7). Additionally, DMRT was specifically ex-
pressed in PS-M while no DMRT gene was found to be differentially expressed in C. feriatus,
but its homologous gene DSX was specifically expressed in CE-M.
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Table 1. The distribution of genes according to the expression level FPKM.

FPKM Gene Number Gene Number Gene Number Gene Number
of PS-F of PS-M of CF-F of CF-M
0-100 119,142 119,469 85,851 86,074
101-1000 521 216 507 309
1001-10,000 47 23 63 45
>10,000 8 10 12 5

PS-M represents the male Portunus sanguinolentus and PS-F represents female Portunus sanguinolentus. CF-M
represents the male Charybdis feriatus and CF-F represents female Charybdis feriatus.

Table 2. The summary of new unigenes with >98% identity between two libraries of Portunus
sanguinolentus and Charybdis feriatus.

PS-M PS-F CF-M CF-F
Up-regulated 1853 7080 2745 6118
Specifically 220 256 384 174
expressed
No expression 26 14
Total 9435

PS-M represents the male Portunus sanguinolentus and PS-F represents female Portunus sanguinolentus. CF-M
represents the male Charybdis feriatus and CF-F represents female Charybdis feriatus.

Female

upregulated expressed

specifically expressed

upregulated expressed

specifically expressed

Male

Figure 5. A Venn diagram showing the number of unigenes comparing PS vs. CF. The circle with the red border refers to
the females and the blue refers to the males. PS represents Portunus sanguinolentus and CF represents Charybdis feriatus.
The numbers of the unigenes represent all the new unigenes detected in the present study.
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Figure 6. Heat map of DEGs related with sex differentiation and determination co-expressed
in males and females Portunus sanguinolentus and Charybdis feriatus. PS-M represents the male
Portunus sanguinolentus and PS-F represents female Portunus sanguinolentus. CF-M represents the
male Charybdis feriatus and CF-F represents female Charybdis feriatus.
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Figure 7. The verification of the genes which have the same expression patterns between sexes of Portunus sanguinolentus

and Charybdis feriatus. PS-M represents the male Portunus sanguinolentus and PS-F represents female Portunus sanguinolentus.
CF-M represents the male Charybdis feriatus and CF-F represents female Charybdis feriatus.

The “new unigenes” were annotated against the GO database, respectively (Figure 8).
In the biological process, metabolic process (GO: 0008152, 245 unigenes), single-organism
cellular process (GO: 0044763, 210 unigenes), oxidation-reduction process (GO: 0055114,
132 unigenes), sensory perception of pain (GO: 0019233, 118 unigenes) and regulation of
transcription, DNA-dependent (GO: 0006355, 116 unigenes) were the most enrichment
items while protein binding (GO: 0005515, 519 unigenes), ATP binding (GO: 0005524, 287
unigenes), binding (GO: 0005488, 247 unigenes), metal ion binding (GO: 0046872, 208
unigenes), nucleotide-binding (GO: 0000166, 159 unigenes) were the most in the classify
of molecular function. In cellular component, membrane (GO: 0016020, 539 unigenes),
nucleus (GO: 0005634, 463 unigenes), cytoplasm (GO: 0005737, 431 unigenes), integral to
the membrane (GO: 0016021, 382 unigenes), cytosol (GO: 0005829, 301 unigenes) enriched
most unigenes.
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Figure 8. Gene ontology (GO) enrichment of new unigenes with >98% identity between two libraries of PS and CF. PS

represents Portunus sanguinolentus and CF represents Charybdis feriatus.

4. Discussion
4.1. DEG Profiles of P. sanguinolentus

High-throughput transcriptome sequencing allows analysis of DEGs under different
physiological conditions and treatments [21,22]. Our previous study identified a total of
119,718 unigenes with an average length of 904 nt in P. sanguinolentus [19]. As a continua-
tion, in the present study, an analysis of DEGs in male and female P. sanguinolentus was
performed, aiming to explore potentially valuable genes to better comprehend the basics
of sex determination and differentiation biological mechanisms in P. sanguinolentus and
possibly serve as references for other crustacean species. A comprehensive grasp of the
molecular mechanisms of sex preference and the regulatory pathways that occur in the
gonads may lead to future manipulation of desired traits and will impart data resources
for future gene expression, functional and reproductive investigation for P. sanguinolentus.

Comparing between sexes, the expression of upregulated unigenes in P. sanguinolentus
ovary was almost twice that of the testis. This expression pattern of more transcripts
upregulated in females was also found in the comparative gonadal transcriptome of
other invertebrates, such as in the gonadal transcriptome of the S. paramamosain [23,24]
and C. feriatus [18], as well as crustacean Caligus rogercresseyi [25]. This pattern of ex-
pression might be due to the complex role of the ovary in the female reproduction pro-
cess. After DEG annotation, most DEGs were involved in ribosome biogenesis in eu-
karyotes (p value: 2.81 x 10°). Ribosomes are the workplace for protein biosynthesis and
are directly associated with translation, localization, and cell growth, cycle, and prolifera-
tion [26]. The high enrichment of DEGs in ribosome biogenesis could be due to the different
reproduction-related processes occurring within the testis and ovary of P. sanguinolentus,
including gametogenesis and hormonal regulation. Additionally, growth-related GO items
such as cellular process, cell, binding in the classify of biological process, cellular component,
and molecular function were found to be enriched based on the DEGs of P. sanguinolentus.
A similar pattern was detected in the gonadal DEGs of S. paramamosain [10] and E. sinensis [27],
highlighting the potential involvement of a high number of sex-biased genes in the gonadal
growth and development of portunid species.

4.2. Genes Differentially Expressed in Females and Males of P. sanguinolentus

The FPKMs of the unigenes obtained from gonads of P. sanguinolentus were mainly
in the range of 0-100, which is accordant with C. feriatus. However, several unigenes
exhibited FPKM values beyond ten thousand, among which was the ODR gene, specifically
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expressed in females of P. sanguinolentus and C. feriatus, suggesting that the ODR were
vital for female reproductive development. Additionally, as expected, PG and VTGR were
upregulated in both females of P. sanguinolentus and C. feriatus. The former is involved in oo-
genesis and ovarian development and maturation of animals including crustaceans [28,29]
while the latter existed in the oocyte membranes [30]. PGs participate in regulating the
oocyte maturation of animals including crustaceans [28,31,32]. And it has been reported to
stimulate ovarian maturation in Parapanaeopsis hardwickii [33]. Furthermore, PG can also
promote the synthesis of VTG mRNA, as reported in freshwater crayfish Cherax albidus [34].
The female up-regulated VTG gene is crucial to the development of oocyte and embryo [35].
VTGs were up-regulated in the mature female gonad of P. trituberculatus [36], suggesting
that the up-regulation of VTG might be a preparation for oocyte development. Addition-
ally, estrogen hormones may also increase the synthesis of VIG in oviparous vertebrates
by the increase in VTG gene transcription, and the estrogen hormone is regulated by
HSPI0 [37,38]. Paolucci et al. [39] showed that the presence and up-regulation of PG and
ER resulted in the accumulation of VIG in crayfish. A previous study also showed that
HSP90 was involved in the regulation of VTG synthesis [38] and was upregulated in the
copulated ovary of D. melanogaster [40]. In the present study, PG, VTG, HSP90, and ER
genes were differentially expressed in our transcriptomic sequencing data, with a higher
level of expression in ovaries than in testes. This indicates the involvement of PG, VTG,
HSPI90, and ER genes in the oocyte development of crabs and highlights the conserved
oogenesis maturation pathway in animals.

Specifically expressed in the gonads, the VASA gene is actively expressed during early
gametogenesis [41,42]. VASA exists in both invertebrates and vertebrates [41] and plays a
vital role in germ cell development, proliferation, maintenance, and gametogenesis [41],
including the gonadal development and gametogenesis of crustaceans [42—44]. Specifically,
the VASA gene is expressed in germ cells encoding for RNA-dependent helicase during the
whole developmental stages of pacific white shrimp Litopenaeus vannamei [43]. The present
study found that the VASA gene was up-regulated in ovaries, which is in accordance with
that in S. paramamosain [23] and C. feriatus [18], verifying its reproduction-related function.
And it was found that Vasa mainly function in auxiliary cells of oyster ovaries [45].

The upregulation of CYCB in the females of P. sanguinolentus and C. feriatus was
expected as cyclin B was commonly known to be related to the meiotic maturation
of oocytes [46] and active during crab’s ovarian maturation [46]. In line with the re-
sults of this study, a high expression level of CYCB in the ovary was also observed in
S. paramamosain [47], E. sinensis [48], Macrobrachium rosembergii [49], and P. monodon [46],
suggesting that cyclin B is crucial for the ovarian development and maturation of crustaceans.

Some female up-regulated genes in P. sanguinolentus that were potentially involved in
the regulation of gametogenesis, reproduction, gonadal differentiation, and development,
such as FEM-1 [11], CHH [50], and GPR [23] were identified in this study. It is reported that
FEM-1 might be involved in the early sex determination and late gonad development of
crabs [51]. CHH may be involved in the inhibition of molting and ovarian development of
crabs [52,53]. GPR is involved in the reproductive system’s maturation [23]. WNT4P was
also found to be upregulated in females. WNT4, a member of the WNT family, plays a
vital role in female reproductive development in mammals, controlling steroidogenesis
in the gonad and supporting oocyte development [54,55]. Lack of WNT4 in mice led
to a striking reduction in the number of developing oocytes and resulted in gonadal
masculinization of the female [56]. Besides, DM X, which contains a DNA-binding motif
called DM domain, was up-regulated in both males of P. sanguinolentus and C. feriatus,
which might be potentially related to the sex determination mechanisms of the two species.
The up-regulated gene AIP was a useful probe for studies on specific gene expression and
prostatic secretory mechanisms regulated by androgen [57].

Additionally, some sex determination and differentiation-related genes were found
to be upregulated in males, including DMC1, MRLIM1, MSD, SPR, and SPATA2. The up-
regulated expression of DMC1 in male P. sanguinolentus was in accordance with that in
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the male giant tiger shrimp Penaeus monodon [58]. DMC1 was specifically expressed in
embryonic ovaries and testicular germ cells during meiosis of Chinese mitten crab [59].
A similar up-regulation pattern of MRLIM1 in males of both P. sanguinolentus and C. feriatus
was also observed in the oriental river prawn Macrobrachium nipponense [60]. The MRLIM1
was reported to be involved in the endocrinal function of the eyestalk [61]. MSD might be
related to male sterility. SPR, upregulated in both males of P. sanguinolentus and C. feriatus,
was also expressed in embryonic and larval stages of Drosophila as well as in the adult
male nervous system, while the expression of SP was confined to the male reproductive
system [62]. Maurizio et al. [63] reported that SPATA2 was expressed in testis of rats and
originated from Sertoli cells in the period of infantile-juvenile and increases gradually
during growing up. Some genes like IR, SRY, and DMRT were specifically expressed in
males. IR was found to be the receptor of insulin-like androgenic gland hormone (IAG) [64].
IAG is regarded as the key regulator in crustacean male sexual differentiation [65]. SRY
was discovered in the human Y chromosome for the first time as a sex-determining factor
and contains a conserved high-mobility group (HMG) box [66], SOX14 was similar to the
HMG box with SRY on sequences [67].

In short, some genes showed similar upregulation patterns in both females and males
of P. sanguinolentus and C. feriatus. This might signify the close relationship between the
two species and indicate that the genes related to sex determination and differentiation
mechanisms were relatively conservative between portunids. The GO annotation of the
“new unigenes” indicated that metabolic process, protein binding, and membrane were re-
spective enriched most amount of unigenes, which was accordance with the GO annotation
of total unigenes in P. sanguinolentus [19], C. feriatus [18], E. sinensis [26], S. paramamosain [23]
and P. trituberculatus [11].

4.3. Differences between the DEGs of P. sanguinolentus and C. feriatus

When comparing the DEGs of P. sanguinolentus and C. feriatus, the DMRT gene was
specifically expressed in male P. sanguinolentus, whereas its homologous gene DSX gene was
specifically expressed in male C. feriatus instead of the DMRT gene. DMRT and DSX belong
to the same DM DNA-binding domain superfamily [68]. DMRT, which has a function in sex
differentiation and reproductive development, was also found to be differentially expressed
in other crabs [11,69] but not in E. sinensis [26] and S. paramamosain [10]. Whereas, DSX
gene functions in the sexual differentiation of crustaceans and is indispensable for male
trait development [70]. The species-specific expression pattern here might be related to the
different sex determination regulation mechanisms and the DM domain gene evolutions in
different species, which warrants further research. DMRT1 is one of the well-conserved
genes associated with sex differentiation from invertebrate to vertebrate, despite the great
diversity of animal sex-determination mechanisms [71]. The difference in the expression of
DMRT and DSX between the two species in our study was speculated on the account of
the divergence of sex determination mechanisms between P. sanguinolentus and C. feriatus,
although future validation is urgently needed to support this hypothesis.

5. Conclusions

The present study provides a comprehensive excavation of DEGs of P. sanguinolentus
through the comparison of its gonadal transcriptome profiles. As a whole, functional
analyses of the present dataset identified many gonadal DEGs (such as female up-regulated
genes including AIP, ODR, CYCB, DMX, GPR, PG, WNT4P, SOX21b, VASA, CHH, and
VTGR, male up-regulated genes including DMC1, MRLIM, MSD, SPR, SPATA2, IR, and
SRY) that are potentially involved in reproduction, specifically sex determination and
differentiation. In addition, we found that the DMRT gene was specifically expressed
in male P. sanguinolentus and the DSX gene specifically in male C. feriatus. We proposed
to focus on sex determination mechanisms of P. sanguinolentus and C. feriatus in future
work to verify the difference revealed in the present study. Our results illustrate the
application of high throughput transcriptome sequencing as a basis for mining tissue
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specific functional genes in a non-model species. The mine of sex-related genes from gonads
of P. sanguinolentus in the present study will be helpful for the study of the mechanism of
sex determination and differentiation as a reference for crabs. These transcriptome data
will contribute to future gene functional and genomic analysis of portunid species.
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