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Two-state models (telegraph-like models) have a successful history of
predicting distributions of cellular and nascent mRNA numbers that can
well fit experimental data. These models exclude key rate limiting steps,
and hence it is unclear why they are able to accurately predict the number dis-
tributions. To answer this question, here we compare these models to a novel
stochastic mechanistic model of transcription in mammalian cells that presents
a unified description of transcriptional factor, polymerase and mature mRNA
dynamics. We show that there is a large region of parameter space where the
first, second and third moments of the distributions of the waiting times
between two consecutively produced transcripts (nascent or mature) of two-
state and mechanistic models exactly match. In this region: (i) one can
uniquely express the two-state model parameters in terms of those of the
mechanistic model, (ii) the models are practically indistinguishable by
comparison of their transcript numbers distributions, and (iii) they are dis-
tinguishable from the shape of their waiting time distributions. Our results
clarify the relationship between different gene expression models and identify
a means to select between them from experimental data.
1. Introduction
One of the most popular models of gene expression is the telegraph model, a two-
state model where genes are assumed to be either on or off , being able to produce
mature messenger RNA (mRNA) in the on state and having no mature mRNA
production in the off state [1–3]. Because gene expression is inherently stochastic
[4], mathematical models of the telegraph model often employ probabilistic
modelling techniques such as the chemical master equation [5,6] or the stochastic
simulation algorithm (SSA) [7]. By fitting the steady-state analytical solution of
the telegraph model to experimentally measured distributions of the number
of cellular mRNA in single cells, several studies have estimated the rates of
gene switching and of initiation for several mammalian genes [8–12]. However,
mapping cellular mRNA number to the underlying transcription kinetics is dif-
ficult because fluctuations in this number reflect noise owing to many processes
downstream of transcription [13,14].

By contrast, the numberof actively transcribingRNApolymerase II (Pol II) on a
gene is not subject to these complex processes, and hence revealsmore information
on the details of transcription [15–17]. Therefore, unlike mature mRNA statistics,
fluctuations of actively transcribing Pol II provide a direct readout of transcription.
Because the speed of actively transcribing Pol II is approximately constant along a
gene and since its premature detachment is not frequent, it follows that the loss of
actively transcribingPol II (leading to theproductionof amaturemRNAtranscript)
cannot bedescribedbya first-order reaction (as assumed in the telegraphmodel for
cellular mRNA). Rather it is much better captured by a delayed degradation reac-
tionwhere the removal of an actively transcribing Pol II occurs after a fixed elapsed
time since its binding to the promoter. A recent paper [14] has modified the tele-
graph model to account for the aforementioned speciality, a model that we shall
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refer to as the delayed telegraph model. This alternative two-state
model, unlike the telegraph model, is non-Markovian; while
its mathematical analysis is complex, it can be solved exactly
in steady state to obtain distributions of the number of bound
Pol II. Transcriptionalparameters can thenbeobtainedby fitting
these distributions to those obtained experimentally using elec-
tron microscopy [18] or nascent mRNA sequencing [19].
Alternatively, because each actively transcribing Pol II has
attached to it an incomplete nascent mRNA, one can also use
the delay telegraph model to numerically calculate the steady-
state distribution of nascent mRNA numbers which can then
be fitted to distributions obtained using single-molecule
fluorescence in situ hybridization (smFISH) [20].

Despite their success in predicting distributions of transcript
numbers that match those calculated from experimental data, it
is important to remember that both the telegraphmodel and the
delayed telegraph model do not include a description of all the
key rate limiting steps. In the past decade, several experimental
papers have shown the necessityof includingPol II pausing and
release inmodelsof transcription.Bartman et al. [21] showexper-
imentally that it is the release ofPol II fromthepausing state, and
not the Pol II recruitment rate, that is a key control point for gene
expression. In fact, it is found universally amongst all metazoan
genes that the rate of release of Pol II frompausing is the rate lim-
iting step in transcription [22]. Inmammalian cells, the release of
Pol II from the paused state is dependent on the activity of sev-
eral molecules, including the transcription elongation factor
P-TEFb [22–24]. Specifically in embryonic stem cells, ChIP-Seq
data have revealed that Pol II peaks near genes are at the promo-
ter-proximal region, and that inhibiting the P-TEFb causes Pol II
to remain in the promoter-proximal region genome-wide [24].
Figs 1 and 2 in Core & Adelman [22] provide a good overview
of the key step of transcription, including Pol II pausing and
release.ThemechanismofPol IIpausing, inaddition to thebind-
ing of Pol II and other transcription factors to the promoter,
provides two layers of control over the production of nascent
and mature mRNA. It is also found that expressed genes with-
out a peak of paused Pol II in one cell type can acquire
pausing in a different cell type, therefore genes have the poten-
tial of being regulated byproximal pausing evenwhen the Pol II
pausing peak is absent [23]. Clearly, if Pol II pausing and release
is such a key feature of transcriptionalmodels, the current ambi-
guity of the mechanisms’ roles in the standard and delayed
telegraph models is a problem in need of a solution.

Thus far, themodelling literature contains few studies where
transcription is modelled incorporating Pol II pausing and
release. One model, found in [26], includes pausing and release
in a three-state gene model based on the findings of Bartman
et al. [21], where the three states represent (i) an inactive gene
state D0, (ii) a ‘burst initiated’ state D10 where the gene is bound
to transcription factors and enhancers, and (iii) a gene state D11

in which the Pol II is bound and paused. Mature mRNA is pro-
duced in the transition from D11�!D10; this reaction should
actually produce nascent mRNAbut in thismodel, it is assumed
that the nascent lifetime is so short that a nascentmRNAdescrip-
tion can be ignored. By ignoringnascentmRNA fluctuations and
assuming that thepausingandunpausingof thePol II isvery fast,
itwas shown in [26] that thematuremRNAdistribution fromthis
model is well approximated by that from the telegraph model.
Two other recent studies [27,28] also explore similar models
albeit in the context of transcription reinitiation [29].

In summary, it is currently not so clear why the telegraph
model is so successful in fitting experimental mature mRNA
distributions, even though it misses important reaction steps
which are key control points for gene expression. It is unclear if
the assumptions made in [26] are necessary to guarantee that
the true mature mRNA distribution is well approximated by the
telegraph model; it could well be that these are sufficient but not
necessary conditions. Because this study did not derive nascent
mRNA statistics, nothing can be inferred about the reasons
underlying the success of the delayed telegraph model in fitting
experimental nascent mRNA distributions. A related and impor-
tant question still remains: if the two-state and more detailed
mechanistic models of transcription cannot be distinguished
from distributions of the number of transcripts, is there another
statistic that is useful to distinguish between them? In this study
we take a first step at answering these questions.

The paper is divided as follows. In §2, we introduce the
standard and delayed telegraph models (two-state models), as
well as a mechanistic multi-state gene model that provides a
stochastic description of transcription factor, Pol II and mature
mRNA dynamics. Then, in §3 we explore the relationship
between the two-state and mechanistic models by comparing
the distributions of their waiting times between two consecu-
tive transcripts. We show that two-state models can always be
told apart from the mechanistic model from the shape of the
waiting time distribution, even when they are indistinguishable
from a comparison of their number distributions. We also
derive conditions under which the moments of the waiting
time distribution (up to third order) of the mechanistic model
agree with those of two-state models, leading to expressions
relating the parameters of the latter with those of the former.
In §4, we perform a sensitivity analysis using the aforemen-
tioned expressions to understand which parameters of the
mechanistic model are the parameters of two-state model
most sensitive to. This uncovers non-trivial correlations
between the parameters of two-state models. In §5, we show
that the conclusions previously based on waiting time distri-
butions agree with those obtained using model reduction
methods based on number statistics. Finally, in §6 we conclude
the study and discuss our results in the context of the literature.

2. Models of transcription
In this section, we start by introducing an effective reaction
scheme for a mechanistic model of transcription describing
activator, Pol II and mature mRNA dynamics. Then, we
introduce the standard and delayed telegraph models as the
two-state models whose dynamics we will attempt to
match to that of mature mRNA and actively transcribing
Pol II in the mechanistic model, respectively.

2.1. A non-Markovian mechanistic model of
transcription

The mechanistic model of transcription in metazoan cells that
we henceforth consider is defined in terms of the following
effective reactions:

UO
a

a0
U� O

b

b0
U��, U�� !c U� þ A, A)

t
M!d ;: ð2:1Þ

The model is also illustrated in figure 1. State U describes a
gene state in which Pol II cannot access the promoter region
at the beginning of a gene since activator binding is impaired
by chromatin [30,31]. By contrast, state U� describes a state
where activator binding has reorganized the local nucleosome
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Figure 1. Illustration of system (2.1). The U state describes the state where both the activator binding site (ABS) and the promoter are unbound. In the U* state,
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from U** to U* either result from premature termination or else pause release and the subsequent production of an actively transcribing Pol II. Elongation (and
termination) takes a deterministic time τ after which the mature mRNA is produced. The latter is subsequently degraded in the cytoplasm. For more details, see
the main text.
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structure [31], allowing Pol II to access the promoter region
along with all transcription factors, co-activators, unpho-
sphorylated Pol II and initiation factors needed for
transcription initiation to start. This state is coincident with
the dynamic promoter condensate (or transcription factories)
proposed in various papers [32–34]. Transcription factors
recruit cofactors and Pol II, and hence drive the (reversible)
change of state from U to U�.

Initiation starts with the binding of Pol II to the promoter; it
then pauses promoter-proximally [35]. These processes aremod-
elled by the change of state fromU� toU��, where the latter is the
paused state. Once the pause is released, Pol II begins moving
away from the promoter region, thus starting productive
elongation that leads to a Pol II molecule with a nascent mRNA
tail (even paused Pol II has a tail but it is very short and we will
hence ignore it). Note that the nascent transcript is not a fully
formed mRNA transcript since the length of the tail attached to
Pol II increases as elongation progresses. The number of Pol II
bound to the gene is equal to the number of nascent mRNA irre-
spective of their lengths. We call any Pol II undergoing
productive elongation as an active Pol II (A), which implies that
the change of state frompausedU�� to unpausedU� must simul-
taneously lead to the production of an A particle. Note that the
binding of another Pol II to the promoter is not possible when
there is already a Pol II paused promoter-proximally owing to
volume exclusion imposed by the latter [36].

Elongation (and termination) finishes after a fixed elapsed
time τ leading to the detachment of Pol II from the gene and
the dissociation of the mRNA tail from Pol II. We hence
call the fully formed mRNA a mature transcript M and
elongation is described by the effective reaction A⇒M (the
double horizontal arrow is here used to denote delayed
degradation which occurs after a fixed time τ). Note that the
change from A to M cannot be modelled by a first-order
reaction because elongation involves the movement of Pol II
along the gene with an approximately constant velocity and
hence the lifetime of an active Pol II molecule is not exponen-
tially distributed [14,37]. Note that probably there are
fluctuations in the elongation time (the lifetime of an active
Pol II molecule) but we will ignore them because (i) we
could not find single-cell measurements of the distribution of
the elongation time for a given gene, and (ii) theory suggests
these fluctuations are very small for long genes with low
transcription rates [37].

Note that paused Pol II instead of leading to productive
elongation can also undergo premature termination [22], i.e.
the paused Pol II releases the short nascent mRNA tail
attached to it (which is rapidly degraded) and the polymerase
is recycled into the free Pol II pool. These reactions may
happen quite often [38,39]; it is thus quite unlikely that they
simultaneously lead to a dissociation of the dynamic promoter
condensate since otherwise the efficiency of gene expression
would become extremely low. Hence we assume that prema-
ture termination leads to a change from the paused state U��

to the unpaused state U� but do not consider transitions of
the type U�� to the non-permissive/inactive state U.
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Finally, the mature transcripts are removed via various
mRNA decay pathways in the cytoplasm [40,41]. Because
many mammalian genes follow single-exponential decay kin-
etics [42], we model mature mRNA turnover via a first-order
reaction of the form M�!;.

We emphasize that a speciality of our model is the reaction
U���!U� þ A. This involves a change of gene state each time a
transcription event occurs, whereas common models of gene
expression in the literature do not have such a coupling
[1,3,14,43–45]. As explained above, the change of state is
necessary to model the fine-scale details of the molecular
biology, namely the fact that unpausing a Pol II frees the
promoter and enables the binding of a new Pol II to it.
Unpausing of Pol II is a key rate limiting step since the
mapping of Pol II using chromatin immunoprecipitation
(ChIP) revealed peaks of Pol II near many promoters
[24,46,47]. In fact, this accumulation of Pol II near the promo-
ters indicates that the relative rates of premature termination
(b0) and pause release (c) are much slower than rates of recruit-
ment and entry into the paused state (b). Because regulatory
processes often target rate-limiting steps, the release of
paused Pol II has emerged as a central point of gene
expression control [21,22].

We note that while the mechanistic model described
incorporates more biological detail than the standard
two-state models, nevertheless it is to be kept in mind that
it is still based on some assumptions because the actual
mechanisms of pausing and how variable it is between
species is still an ongoing discussion in the experimental
community. For instance, Pol II volume exclusion may not
be enough to avoid the immediate recruitment of other
polymerases.

A master equation can bewritten downwhich describes the
stochastic dynamics of the mechanistic model; its form is quite
different than the standard chemical master equation that is
popular in the literature of gene expression [6]. The right
hand side of the latter equation is only a function of the present
time t. By contrast, the master equation describing our model
has a right-hand side that is a function of not only the present
time t but of the history of the process in the interval [t− τ, t].
This is because of the fixed time τ between the release from the
paused state and the production of a mature transcript. The
dependence of the dynamics of the system on its history
means that our model is non-Markovian [48].
2.2. Two-state models of transcription: telegraph and
delay telegraph models

In the literature, two models are commonly used to (separ-
ately) describe active Pol II and mature mRNA dynamics:

GO
su

sb
G�; G!r Gþ A; A)

t
; ð2:2Þ

and

GO
su

sb
G�; G!r GþM, M�!d ;: ð2:3Þ

The chemical master equation describing the stochastic
dynamics of the systems defined by schemes (2.2) and (2.3)
were exactly solved in steady-state by Xu et al. [14] and
Peccoud & Ycart [1], respectively. model (2.3) also has a tran-
sient solution which is reported in [2]. model (2.3) is often
called the telegraph model of gene expression; by analogy,
we shall refer to model (2.2) as the delayed telegraph
model. Note that the former is a Markov model while the
latter is non-Markov in character for the same reason as
described above for the mechanistic model.

Clearly, the difference between the two models is how the
transcripts are removed from the system: active Pol II is
removed after a fixed elapsed time τ (owing to the termination
of elongation which results in a mature transcript), whereas
mature mRNA degradation follows the first-order kinetics.
Both models postulate that at any point in time, the gene is
in one of two states: an active state G from which tran-
scription can occur and an inactive state G*. As argued
by Bartman et al. [21], it is unclear what is the precise
biological meaning that should be associated with these
two states because the reaction in these models cannot be
clearly associated with polymerase processes that are central
to transcription.

As we argued in the Introduction, both telegraph
and delayed telegraph models have been shown to accurately
replicate experimental distributions of mature and nascent
mRNA numbers. This leads us to the following question:
could it be possible that the stochastic dynamics of our
mechanistic model defined by (2.1) are accurately approxi-
mated by these simpler models? To be more precise, is there
a set of effective transcriptional parameters ρ, σu, σb of the
two-state models such that predict the same (or very similar)
distributions of active Pol II and mature mRNA numbers in
the mechanistic model. If there is such a set of effective
parameters, ideally we would also want expressions showing
their relationship to the parameters a, a0, b, b0, c of the
mechanistic model.
3. Relationship between the parameters of the
two-state and mechanistic models

3.1. When can the two-state and mechanistic models
be matched? A waiting time distribution
perspective

In appendices A and B, we calculate the distribution of the
time between the production of two consecutive M (A) mol-
ecules for the mechanistic and (delayed) telegraph models.
Using these distributions we can compute the square of the
coefficient of variation of the time between two consecutive
M (or A) production events. Throughout the paper, we will
refer to this time between production events as the waiting
time. In line with previous usage in the single enzyme mol-
ecule literature [49], we shall refer to the coefficient of
variation of the waiting time distribution as the randomness
parameter, which is given by

Rtele ¼ ht2i � hti2
hti2 ¼ 1þ 2rsu

(sb þ su)2
, ð3:1Þ

for the telegraph or delayed telegraph models and by

Rmec ¼ ht2i � hti2
hti2 ¼ 1þ 2bc(a0(b0 þ c� a)� a2)

(a0(b0 þ c)þ aðbþ b0 þ cÞ)2 , ð3:2Þ

for the mechanistic model. Note that the waiting time stat-
istics for A and M in the two-state models are the
same because the waiting time distribution calculation is
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not sensitive to the mode of degradation (first-order or
delayed) since the absorbing state corresponds to the pro-
duction of a new mature mRNA transcript or a new active
Pol II which necessarily always precedes its degradation or
removal. In addition to this reason, the statistics are the
same for active Pol II and mature mRNA in the mechanistic
model also because of the fixed time τ between the unpausing
of a Pol II and the production of a mature mRNA.

Note that while the randomness parameter for A or M is
greater than 1 for all parameter values (see equation (3.1)) in
the two-state models, the same statistical measure can be less
than or greater than 1 in the mechanistic model (see equation
(3.2)). In fact, evaluating the latter equation for over a million
random values of parameters shows that Rmec≥ 1/2. The
2 appears because in our model, it is the smallest
number of reaction steps between A production events
(U� ! U�� ! U� þ A). Similar results have been derived in
the context of single molecule enzyme kinetics [49].

It follows that the two-state models can only capture the
waiting time statistics of the mechanistic model (up to
second order) when Rmec≥ 1, which is the case when the
following condition is satisfied:

b0 þ c � a
a0
ðaþ a0Þ: ð3:3Þ
This implies that the conditions which favour a description of
the mechanistic model by the two-state models are: (i) prema-
ture termination and unpausing from the paused promoter-
proximal state must be fast i.e. large b0 + c; (ii) transcription
factor binding to DNA elements and the reverse unbinding
reaction must be slow, i.e. small a + a0; and (iii) transcription
factor unbinding is fast compared to transcription factor
binding, i.e. a/a0 is small. Note that the condition given by
equation (3.3) is not a function of b, the rate at which poly-
merase binds the promoter and moves to the proximal
paused state (see later for an explanation of the role of b).
3.2. Analytical expressions for the effective parameters
of the two-state models

Matching the first three moments of the waiting time distri-
bution of the times between consecutive M or A production
events of the telegraph/delayed telegraph model (given by
equations (A 5)) with those calculated using the mechanistic
model (given by equation (B 5) evaluated for i = 1, 2, 3), we
obtain a set of three simultaneous equations for the effective
parameters of the two-state models ρ, σu, σb. The solution of
these equations gives:
r ¼ bca0(Da0 þ a2)
a0(a0(Da0 þ a2 þ 3aDþ Dðbþ DÞ)þ a2ð2aþ bþ 2DÞ)þ a4

,

su ¼ D3(a0)4

(Da0 þ a2)(a0(a0(Da0 þ a2 þ 3aDþ Dðbþ DÞ)þ a2ð2aþ bþ 2DÞ)þ a4)

and sb ¼ aDa0

Da0 þ a2
,

9>>>>>>>>=
>>>>>>>>;

ð3:4Þ
where Δ = b0 + c− a− (a2/a0). Note that if the condition given
by equation (3.3) is satisfied, then Δ≥ 0 and hence the effec-
tive parameters defined by equations (3.4) are positive and
physically meaningful. If the condition is not satisfied, then
one of these effective parameters is negative which means
that there are no two-state models that can approximate the
mechanistic model’s waiting time moments up to third-
order. We emphasize that the effective parameters are the
same for the telegraph and delay telegraph models because
the waiting time calculation is insensitive to the mode of
decay (first-order or delayed). In figure 2a–f, we compare
the steady-state number distribution of the two-state
models (which is analytically derived in [1,14]) evaluated
with these effective parameters (for Δ > 0) and the steady-
state number distribution of the mechanistic model (which
is obtained from stochastic simulations modified to take
into account fixed time delays [25]). In the cases shown, the
two-state models provide an excellent match to the mechan-
istic model for both unimodal and bimodal distributions of
active Pol II and mature mRNA numbers. Note that because
most of the parameters in the mechanistic model have not
been measured directly, we chose parameters such that the
number distributions looked similar to those measured
experimentally and such that the average number of mRNA
is larger than the average number of active Pol II (the
former can range from few tens to few hundreds whereas
the latter is at most few tens) [9,50].
3.2.1. The case of fast switching between U� and U��
Where min(b, b0)≫max(a, a0), the two statesU� andU�� can be
effectively subsumed into a single super state W and the
system dynamics amounts to switching between an inactive
state U and an active state W. Physically, one sees that this
arises since in this limit transitions between U� and U��

occur almost instantaneously compared to transitions between
U and U�. The transition rate from U to W is the same as from
U to U� and hence in the two-state model this implies

sb ¼ a: ð3:5Þ
The transition rate fromW to U must be equal to the transition
rate from U� to U multiplied by the probability of being in
state U� given that currently the effective system is in state
W. This implies

su ¼ a0
b0

bþ b0
: ð3:6Þ

Similarly, the effective production rate is the rate of producing
active Pol II from state U�� multiplied by the probability of
being in this state given that currently the effective system is
in state W. This implies

r ¼ c
b

bþ b0
: ð3:7Þ

These results can be formally obtained from equations (3.4) by
choosing b0 = γb (where γ is a constant) and taking the limit



0.30
mechanistic model

two-state model

0.25

0.20
pr

ob
ab

ili
ty

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

0.15

0.10

0.05

0

0.30
0.25

0.35

0.20
0.15
0.10

0.01
0.02
0.03
0.04
0.05
0.06

0.05
0

0.25

0.20

0.15

0.10

0.05

0

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

0.25

0.20

0.15

0.10

0.05

0

0.001

0.002

0.003

0.004

0

0

1 10 100 1000 1 10 100 1000

0 2

2

3 4

4

5 6

6 8 10

110 20

20

30

no. active Pol II

no. mature mRNA

waiting time waiting time
1 10 100 1000

waiting time

no. mature mRNA

mechanistic model

two-state model

no. mature mRNA

no. active Pol II no. active Pol II

40

40 60 80

0
0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80

10 20 30 4050

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Comparison between the molecule number distributions of active Pol II and mature mRNA distributions of the two-state (reduced) models (equations
(2.2) and (2.3)) and the mechanistic model (equation (2.1)). For a particular choice of parameters of the mechanistic model, equations (3.4) give the two-state
model parameters. In (a–c), for three different parameter sets (one per column), we show that the mechanistic model describing the number of active Pol II
molecules is well approximated by the exact steady-state solution of the delay telegraph model [14] evaluated with the effective parameters. Panels (d–f )
show a similar level of agreement between the mechanistic and two-state models but instead for the mature mRNA distributions, where the two-state model
is now the telegraph model whose exact steady-state solution can be found in [1]. Steady-state distributions of the mechanistic model were obtained using
the delay SSA (algorithm 2 of [25]) with 104 samples. In (g–i), we show the corresponding distributions of the waiting time between two consecutive active
Pol II (or mature mRNA) production events for the two-state and mechanistic models. The waiting time distributions for the mechanistic and two-state
models are calculated by taking the inverse Laplace transform of equations (A 4) and (B 4), respectively. Clearly, the models can be distinguished through
their waiting time distributions even when their number distributions are almost indistinguishable. Parameters of the mechanistic model and the corresponding
effective parameters for two-state models are: (a) a = 0.001 s−1, a0 = 0.001 s−1, b = 0.16 s−1, b0 = 0.016 s−1, c = 0.24 s−1 mapped to σu = 0.0007 s−1,
σb = 0.001 s−1, ρ = 0.092 s−1; (b) a = 0.144 s−1, a0 = 0.032 s−2, b = 0.016 s−1, b0 = 0.56 s−1, c = 0.24 s−1 mapped to σu = 3.8 × 10−8 s−1, σb =
0.002 s−1, ρ = 0.004 s−1; and (c) a = 0.032 s−1, a0 = 0.032 s−1, b = 0.16 s−1, b0 = 0.016 s−1, c = 0.32 s−1 mapped to σu = 0.012 s−1, σb = 0.029 s−1,
ρ = 0.086 s−1. The mature mRNA decay rate is d = 0.0016 s−1, and the delay time owing to elongation is τ = 273.62 s.
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b→∞. The case of fast switching in a similar three-state model
of gene expression (without an explicit description of active
Pol II dynamics) has been previously studied in [26]. While
it is obvious that fast switching between U� and U�� simplifies
to an effective two-state model, our condition (3.3) shows that
fast switching is sufficient but not a necessary condition for a two-
state model to describe the dynamics of the mechanistic model. We
note that fast switching between U� and U�� is unlikely to
be the general case since the average time scale of Pol II paus-
ing is approximately 7min [23] and almost 1 h in a small subset
of genes [51]. This indicates Pol II pausing is very stable and
‘not the consequence of fast, repeated rounds of initiation
and termination’ [23].
3.2.2. Distinguishing between two-state and mechanistic models
using waiting time distributions

It is interesting to note that while for Δ≥ 0 the two-state and
mechanistic models are practically indistinguishable by
comparison of their number distributions, they can be always
distinguished by the distribution of the time between consecutive
active Pol II or mRNA production events. In particular, in
figure 2g–i we show that while f (t), the waiting time
distribution between consecutive production events, is a
monotonically decreasing function for the two-state models,
it has a peak at a non-zero value of time for the mechanistic
model. Another distinguishing feature is that for two-state
models, f(0) is non-zero while for the mechanistic model it
is exactly zero. The latter feature can be explained as follows.
For two-state models, since there is no change in the gene
state when production occurs, hence there is no lower
bound on how short the time between two consecutive pro-
duction events can be. However, in the mechanistic model,
a production event is accompanied by a change of state
(from U�� to U�), therefore there is a finite non-zero time to
switch back to state U�� from which the next production
event occurs. Consequently, for the mechanistic model f (0)
must be zero.
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Table 1. Signs of the derivatives of the two-state effective parameters ρ,
σu and σb with respect to the mechanistic model parameters
a, a0, b, b0and c. (Expressions for the effective parameters are given by
equations (3.4).)

a a0 b b0 c

ρ ± − + − +

σu − + − + +
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By this reasoning, it follows that the mode should be close
to zero whenever the state U�� is recovered rapidly after an
active Pol II production event, which occurs when b is
large. In figure 3, we confirm this intuition and show that
for the mechanistic model as we increase b, the waiting
time distribution of the two-state model better approximates
the waiting time distribution of the mechanistic model. Note
that a log-scale is used on the x-axis to emphasize that there
are always differences between the mechanistic and two-state
models for small values of t.
σb ± + 0 + +

β = ρ/σu + − + − ±
4. Sensitivity analysis
Equations (3.4) allow us to understand how the parameters of
the mechanistic model influence the effective parameters of
the two-state models. We define the ordered set of mechanis-
tic model parameters as θmec = {a, a0, b, b0, c} and the ordered
set of the two-state model parameters as θtele = {ρ, σu, σb}. In
table 1, we show the sign of the derivative of a parameter
in a two-state model with respect to changes in the parameter
of the mechanistic model (when Δ≥ 0). For example, the first
row shows the sign of the derivative of ρ with respect to
a, a0, b, b0and c. A positive (negative) sign for the pair (ρ, a)
indicates that an increase in a leads to an increase (decrease)
in ρ. We also show the same but for the burst size β = ρ/σu, a
commonly cited measure equal to the amount of mRNA pro-
duced while the gene is in the on state (in the two-state
models). Note that while the sign is fixed for most cases, in
three instances the sign can flip. There is also a case where
one of the two-state model parameters is independent of
one of the parameters of the mechanistic model (marked
with a 0). Owing to the complicated nature of equations
(3.4), it is difficult to deduce the signs in table 1 using
simple arguments, however in some cases it can be done.
For example, the relationship of ρ with respect to parameters
b, b0 and c is intuitive because: (i) increasing b increases the
time in the U�� state meaning production of A (orM) happens
more often; (ii) decreasing b0 has the opposite effect, meaning
production of A (or M) occurs less often; and (iii) increasing c
obviously increases the production rate of A (orM) and hence
increases the predicted value of ρ.
Next, we investigate the sensitivities of the parameters θtele

of the two-state model to the parameters of the mechanistic
model θmec. For this purpose, we randomly selected 103 par-
ameter sets from a log-scaled space in the θmec parameters,
accepting only those parameter set combinations that came
within 2 experimental errors of the measurements of Oct4
gene: ρ= 3.2 × 10−2 ± 1.0 × 10−2 s−1, σu = 3 × 10−3 ± 2 × 10−3 s−1

and σb= 1.5 × 10−4 ± 0.5 × 10−4 s−1 [50]. We also did this for
the Nanog gene whose measurements were: ρ= 1.3 × 10−2 ±
0.3 × 10−2 s−1, σu= 1.2 × 10−4 ± 0.2 × 10−4 s−1 and σb= 3.2 × 10−5

± 0.3 × 10−5 s−1. A log-scaled parameter space was used such
that various combinations of mechanistic model parameter
timescales could be easily explored. The ranges of the mechan-
istic model parameters that we explored were umec

i [

½10�4, 10� s�1 for the Oct4 gene and umec
i [ ½10�5, 10�1� s�1 for

the Nanog gene. The sensitivities calculated are the absolute
values of the relative sensitivities given by,

senðutelei , umec
j Þ ¼ umec

j

utelei

dutelei

dumec
j

�����
����� ¼ dðlogðutelei ÞÞ

dðlogðumec
j ÞÞ

�����
�����, ð4:1Þ

where senðutelei , umec
j Þ is the magnitude of the relative sensitivity

of utelei with respect to umec
j .

As we show in figure 4, we find that for both genes:
(i) the initiation rate ρ of the two-state models is most sensi-
tive to parameters b and c in the mechanistic model, i.e.
parameters that control the rate of Pol II binding, of entering
and leaving the promoter-proximal paused state; (ii) the rate
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Figure 4. Pie charts showing the most and least sensitive of the telegraph model parameters θtele = {ρ, σu, σb} with respect to mechanistic model parameters
θmec = {a, a0, b, b0, c}, for the Oct4 gene in (a–f ) and for the Nanog gene in (g–l) [50]. We chose 103 parameter sets θmec at random, accepting only parameter
sets for which the predicted telegraph model parameters ρ, σu and σb from equations (3.4) were within two experimental errors of values reported in [50]. From
these randomly chosen parameter sets, we then calculated the relative sensitivity senðutelei , umecj Þ which is given by equation (4.1). The proportions on the pie
charts show the proportion of parameter sets for which {i, j} were the most/least sensitive parameters, where {i, j} states that i is the most/least sensitive parameter
followed by j. (a) for Oct4, the most sensitive parameters for ρ are b and c, with the majority of parameter sets being most sensitive to b and second-most to c.
(b) for Oct4, the least sensitive parameters for ρ are a and a0, with the majority of parameter sets being least sensitive to a and second-least sensitive to a0. (c–f )
follow similar interpretations as made for (a) and (b) for the Oct4 gene, and (g–l ) follow similar interpretations for the Nanog gene.
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of switching off of the two-state models σu is most sensitive
to parameter a0 (controlling transcription factor unbinding)
and also to parameters b, c which control the initiation
rate; and (iii) the rate of switching on of the two-state
models σb is most sensitive to parameter a (controlling tran-
scription factor binding) but also to parameters a0, c which
control the rate of switching off and the initiation rate. In
figure 4, we also show which parameters of the mechanistic
model are the three parameters of the two-state model least
sensitive to. This analysis identifies how ‘microscopic’ par-
ameters of the mechanistic model affect the ‘macroscopic’
parameters of the two-state models. More importantly, it
shows that the latter are typically correlated owing to their
dependence on common microscopic parameters.
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5. Model reduction using number statistics
or three-state models

Thus far, we have explored model reduction solely using wait-
ing time statistics. Alternatively, one can match two-state and
mechanistic models using moments of the number of mol-
ecules. As well, one can match three-state models and
mechanistic models using waiting time or number statistics.
In this section, we explore these alternative perspectives.
journal/rsif
J.R.Soc.Interface

18:20210510
5.1. Obtaining reduced models with two states using
number statistics

We begin by finding the Fano factor (defined as the variance
divided by the mean) of the active Pol II and mature mRNA
numbers in both the two-state and mechanistic models. In
appendices C and D, we derive expressions for the mean
and variance of active Pol II and mature mRNA numbers
in steady-state conditions for both the mechanistic and
two-state models (for a test of their accuracy versus stochastic
simulations using the delay SSA, see table 2). The Fano factor
of the two-state models is easily proved to be always greater
than 1. Specifically, for the delayed and standard telegraph
models, we have, respectively:

FFdteleA ¼ 1þ 2rsu(e�(sbþsu)t � 1)
t(sb þ su)3

þ 2rsu

(sb þ su)2
ð5:1Þ

and

FFteleM ¼ 1þ rsu

(sb þ su)(sb þ dþ su)
: ð5:2Þ

The Fano factor of the number of active Pol II in the mechan-
istic model is given by:

FFmec
A ¼ Rmec � 1

gt
A0 þ A1

gt
exp � 1

2
t S�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(S� 2a)2 þ 4a0(a� b0 � c)

q� �� �

þA2

gt
exp � 1

2
t Sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(S� 2a)2 þ 4a0(a� b0 � c)

q� �� �
, ð5:3Þ

where A0, A1 and A2 can be positive or negative and are com-
plicated functions of a, a0, b, b0, c, and where we have defined

S ¼ aþ a0 þ bþ b0 þ c

and g ¼ abc
a0(b0 þ c)þ a(b0 þ bþ c)

:

9>=
>; ð5:4Þ

Note that the arguments of the exponential functions
are negative for all positive values of the parameters. The
Fano factor of the mature mRNA statistics is derived in
appendix D and is given by

FFmec
M ¼ 1

þ bc(a0(b0 þ c)� a(a0 þ d)� a2)
(a0(b0 þ c)þ a(b0 þ bþ c))(a0(b0 þ cþ d)þ a(b0 þ bþ cþ d)þ d(b0 þ bþ cþ d))

:

ð5:5Þ
Because FFdteleA � 1 and FFteleM � 1, clearly model reduction using
molecule number moments will only be possible if the parameters of
the mechanistic model are such that FFmec

A � 1 and FFmec
M � 1. For

the mature mRNA, this analysis is straightforward. Similar to
the derivation of the condition (3.3), from the numerator of
the second term in equation (5.5), it can be deduced that
FFmec

M � 1 provided the following condition holds:

b0 þ c � a
a0
ðaþ a0 þ dÞ: ð5:6Þ
When condition (5.6) is satisfied, one can find a mapping
between the standard telegraph model describing mature
mRNA and the mechanistic model. We note that this condition
is not the same as that derived from model reduction using
waiting time statistics, namely equation (3.3). In fact, if
equation (3.3) is not satisfied then neither is equation (5.6);
i.e. for all points in parameter space in which it is not possible
to match the moments of waiting time distributions of the two-
state and mechanistic models, it is also not possible to match
the moments of the mature mRNA numbers. However, it
also follows that there is a region of parameter space of the
mechanistic model where moment matching of the two-state
model using waiting time statistics is possible (equation (3.3)
is satisfied) whereas moment matching using number statistics
is not (equation (5.6) is not satisfied). This region of parameter
space where the two methods give different results is very
small whenever a + a0 ≫ d where the rates of transcriptional
factor binding/unbinding to the promoter are much larger
than the rate of mature mRNA degradation. This seems to
be generally the case since degradation timescales of mature
mRNA are generally many hours in eukaryotic cells [8]. Inci-
dentally, this offers an explanation why the Fano factor of
mature mRNA is invariably measured to be greater than 1
in the literature of eukaryotic gene expression [9,10,52].

Owing to the complicated nature of the expression in
equation (5.3), the derivation of an analytic condition for
which the Fano factor of active Pol II is greater than 1 appears
to be difficult to obtain. However, in the limit of τ→∞ it is
clear that FFmec

A ! Rmec. Hence, in the limit of long elongation
times, the condition necessary for model reduction using
active Pol IImoment number statistics, i.e. FFmec

A � 1, is equival-
ent to the condition necessary for model reduction using
waiting time statistics given by equation (3.3) (which is the
same as Rmec≥ 1). This is intuitive because thewaiting time cal-
culation does not consider the removal of active Pol II via
elongation but only their production time statistics. It can also
be proved from equation (5.3) that in the limit τ→ 0 we have
FFmec

A ! 1. What happens for finite τ > 0 is difficult to deduce
from equation (5.3) and hence we investigate this numerically.

In figure 5, we evaluate equation (5.3) as a function of τ
for a number of parameter sets with different Rmec. Several
notable features can be seen: (i) if Rmec < 1 then FFmec

A , 1,
i.e. if model reduction using waiting time statistics is not
possible then it is also impossible using number statistics;
and (ii) for Rmec≥ 1, as we increase τ, FFmec

A decreases from
1 to a value below 1, reaches a minimum and then increases
up to the value Rmec. Consequently, if the condition for model
reduction using waiting time statistics is satisfied, it is not necess-
arily true that it is possible to achieve model reduction according to
number statistics. In figure 6a–c, we show a heat map of the
minimum Fano factor (achieved at intermediate τ) in
the parameter space of the mechanistic model. Note that
the minimum achieved inside the region where Rmec > 1
(the region above the white line) is not far below 1. As a con-
sequence, while here there is no model reduction from a
number statistics point of view, model reduction using wait-
ing time statistics is possible, and the distribution computed
using the effective parameters given by equations (3.4)
while not perfect, it is acceptable (figure 6d–f ).

Thus far, we have looked at model reduction via number
statistics from the perspective of when the Fano factor
numbers of the mechanistic and two-state models are both
greater than one. In appendix E, we extend this analysis
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further by considering two other types ofmodel reduction via
number statistics: (i) matching of the molecule number
moments and (ii) of the number distributions of the mechan-
istic and the two-state models for active Pol II and mature
mRNA numbers. In particular, we found the following:
(i) within the region of parameter space of the mechanistic
model described by the condition equation (3.3), it was poss-
ible to numerically find parameters of the two-state models
such that the first three moments of the active Pol II and
mature mRNA number distributions of the two-state
models agreed with those of the mechanistic model
(figure 7a–c,g–i); and (ii) the Hellinger distance between the
molecule number distributions predicted by the mechanistic
model and the molecule number distributions of the two-
state models that provides the best approximate distribution
of the mechanistic model, is very small within the region
defined by equation (3.3) (figure 7d–f, j–l ). The analysis
shows there is a close relationship between model reduction
using waiting time and number statistics, and supports the
conclusions reached in §§3 and 4 usingwaiting time statistics.

5.2. Obtaining reduced models with three states using
waiting time statistics

Thus far, we have considered the approximation of the
mechanistic model by two-state models (telegraph and
delay telegraph models). However, some papers have postu-
lated the existence of two off states for some mammalian
genes because the time spent by the gene in the off state is
measured to be non-exponential [11]. This has led to a
variation of the telegraph model, which we will refer to as
the refractory model:

G�!su G� �!s
�
u G�� �!sb G, G�!r GþM, M�!d ;: ð5:7Þ

One can also postulate a modification (parallel to the delay
telegraph model) that describes active Pol II rather than
mature mRNA:

G�!su G� �!s
�
u G�� �!sb G, G�!r Gþ A, A)

t
;: ð5:8Þ

An analysis akin to the one shown for the two-state models
in appendix A.1 shows that the Laplace transform of
the waiting time distribution of the time between consecu-
tive active Pol II or mature mRNA production events is
given by

~fðsÞ ¼ r(sb þ s)(s�
u þ s)

ðrþ sÞ(sb þ s)s�
u þ ssus�

u þ s(sb þ s)(rþ sþ su)
,

ð5:9Þ
where ~fðsÞ ¼ Ð1

0 f ðtÞ e�st dt. From the definition of the Laplace
transform, we have that the moments are given by

htii ¼ ð�1Þi@i
s
~fð0Þ: ð5:10Þ

The randomness parameter is then given by the square of the
coefficient of variation squared of the time between two
consecutive production events:

R ¼ ht2i � hti2
hti2 ¼ 1þ 2rsu(sbs

�
u þ (s�

u)
2 þ s2

b)
((sb þ su)su

� þ sbsu)2
: ð5:11Þ
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Hence the randomness parameter of the reduced models (5.7)
and (5.8) is always greater than 1. By contrast, we have
already shown by equation (3.2) that for the mechanistic
model the randomness parameter can be greater than or
less than 1. Hence it follows that the condition given by
equation (3.3) is necessary for both telegraph models and
those with a refractory state to approximate the mechanistic
model. Similar to what we have previously done for the
two-state models, analytical expressions expressing the four
parameters of the reduced refractory models in terms of
the six parameters of the mechanistic model can be
derived by matching the first four moments of the waiting
time distribution of the two models. The steady-state distri-
bution solutions of active Pol II and mature mRNA
numbers of the reduced refractory models evaluated with
these effective parameters provide an excellent approxi-
mation to the distributions of the mechanistic model.
However, because this was already achieved using two-
state models and since the refractory models have the same
limitations as the two-state models (randomness parameter
cannot be less than 1), it follows that two-state models provide
the optimal choice for model reduction within the parameter
space defined by equation (3.3).

6. Discussion
In this paper, we have investigated to what extent can two-
state models predict the active Pol II and mature mRNA
dynamics of a more realistic mechanistic model that
incorporates transcriptional factor binding and unbinding,
Pol II dynamics (binding, pausing, release, elongation) and
mature mRNA dynamics. We found that there is a region of
parameter space where there exists a choice of parameters of
two-state models in terms of the mechanistic model such
that the first three moments of their waiting time distributions
exactly match. The distributions of active Pol II and mature
mRNA numbers predicted by two-state models with these
effective parameters provide a very close match to the distri-
butions predicted by the mechanistic model; nevertheless,
the models can be distinguished by comparison of the
shape of their waiting time distribution. The waiting time dis-
tribution for the two-state model has a non-zero value at t = 0
and decreases monotonically with time; whereas for the
mechanistic model, the waiting time distribution is zero at
t = 0 and has a peak at a non-zero value of time. We note
that while in principle these two distributions are always dis-
tinguishable, in practice the differences will be small if the rate
of Pol II binding and entry into the paused state is very large.
We also showed that the necessary condition for the reduction
of the mechanistic model to two-state models that was analyti-
cally derived using waiting time statistics i.e. equation (3.3), is
compatible with the region of parameter space identified by
model reduction using matching of moments and distri-
butions of molecule numbers. We note that while our model
description was framed in terms of an activator, it has
alternative interpretations which increase its generality
and applicability. One such alternative interpretation is in
terms of a repressor that operates via competitive binding
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Figure 7. Comparison of model reduction of the mechanistic model to two-state models using two different types of number statistics and comparison with
reduction from waiting time statistics. In (a–c) black dots show the points in parameter space where the first three moments of the active Pol II number dis-
tributions of the mechanistic and the delayed telegraph model match numerically using the Newton–Raphson method; in (g–i) we show the same for the
distributions of mature mRNA of the mechanistic and telegraph models. The heat map shows the value of Δ = b0 + c− a− (a2/a0) and the solid black lines
divides areas where Δ > 0 (waiting time moment matching exists) and Δ < 0 (waiting time moment matching does not exist). Note that the black dots in
(a–c) do not fill the whole region Δ > 0 because of numerical issues with the solver (see appendix E for a discussion). In (d–f ) and ( j–l ), we show the Hellinger
distance (h in log scale) between the molecule number distributions predicted by the mechanistic model and the molecule number distributions of the two-state
models that provides the best approximate distribution of the mechanistic model; the parameters of the two-state models are those learnt after O(105) iterations of
an algorithm that maximizes the likelihood. The mature mRNA decay rate d = 0.0016 s−1 in all cases and the delay time is τ = 273.62 s. See appendix E for details
of the numerical procedures used.

12
[53,54]. In this interpretation, U is a state that has a repressor
bound to the promoter such that Pol II is blocked from
being able to bind to the promoter. U� then represents the
state where the promoter is free and neither repressor nor
Pol II is bound to the promoter, meaning that the binding
site is accessible to both repressors and Pol II. Finally, the
U�� state represents the state in which Pol II is recruited and
proximally paused.

A main distinction of this work from the analysis of a
similar model studied in [26] is that the present mechanistic
model has an explicit description of active Pol II that allows
us to study the accuracy of the delay telegraph model. It is
also noteworthy that while [26] showed that the telegraph
model provided an excellent approximation to the mature
mRNA distribution of a similar mechanistic model under
the assumption of rapid entry and exit from the paused
state, in this study we showed using a variety of model
reduction techniques that this assumption though sufficient
is not necessary. We also note that while other papers have
made use of waiting time statistics in the context of gene
expression [11], our approach is distinctly different. The dis-
tribution of the off time in another three-state model of
gene expression [11] is not the same as the distribution of
the time between two consecutive active Pol II production
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events; this is because the former provides only information
about the time between two successive bursts of gene
expression which occurs on long timescales and reflects the
accessibility of the promoter but has no information on the
fast Pol II processes within each burst. To the best of our
knowledge, the experimental measurement of the distri-
bution of the waiting time as defined in our paper has not
been attempted yet. This is because with current labelling
and imaging technology, it is not easy to directly visualize,
track and quantify individual transcriptional initiation
events. However, a set of recent papers report progress in
this direction by estimating an approximate distribution
between two consecutive initiation events in Drosophila
using a machine-learning approach [55,56].

We finish by a discussion of the validity and interpret-
ation of equations (3.4) which express the parameters of
two-state models as a function of the parameters of the
mechanistic model. We have shown from these expressions
that different parameters of the two-state models can be effec-
tively correlated owing to their dependence on a common
parameter/s of the mechanistic model. This may explain cor-
relations found between parameters of two-state models
estimated from single-cell RNA sequencing for mammalian
cells [10]. There is a region of parameter space where the
effective parameters given by our theory become negative
(when the inequality given by equation (3.3) is not satisfied),
meaning that in this case there is no two-state model that can
match the first three moments of the waiting time distri-
bution of the mechanistic model; we also showed that if the
elongation time and the mature mRNA degradation time-
scale are large enough, the aforementioned region is also
characterized by Fano factors of active Pol II numbers and
mature mRNA numbers that are less than one, i.e. sub-
Poissonian statistics. To see whether such a case is realistic
we extensively searched through the experimental literature
of gene expression, and found that for mature mRNA all
papers report a Fano factor of greater than 1 which is consist-
ent with constitutive or bursty expression; for nascent
mRNA, the majority of papers report Fano factors greater
than 1 (see for example [9,20,57]) with the exception of one
paper (see supplementary fig. 6 of [58]). However, it is to
be borne in mind that while theoretically nascent mRNA
numbers should equal the active Pol II numbers in our
model, in practice owing to the intricacies of smFISH this is
not the case, as we now explain. The number of nascent
mRNA is most commonly calculated by dividing the total
fluorescent signal from a transcription site by the fluor-
escence emitted by a mature transcript. In this technique, a
fluorescent signal is emitted by oligonucleotide probes
bound to the nascent mRNA tail. Since as an active Pol II tra-
vels along the gene, its nascent mRNA tail grows, we expect
the fluorescent signal intensity to increase as well [14]. Hence
it follows that the total nascent mRNA nN calculated using
this method is generally a lower bound on the actual
number of active Pol II nA at a transcription site in the
nucleus, i.e. nN ∼ f nA where f is a fraction. From this, it
immediately follows that the Fano factor of nascent mRNA
is always less than the Fano factor of active Pol II. Thus the
measurement of Fano factors of nascent mRNA numbers
slightly less than 1 in [58] probably implies Fano factors of
active Pol II which are above 1. Hence we come to the con-
clusion that all available evidence to date for both nascent
and mature mRNA seems consistent with equation (3.3),
which implies that equations (3.4) provide a generally
useful means to understand the parameters of two-state
models in terms of underlying microscopic processes.
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Appendix A. Waiting time calculations for two-
state models

A.1. Derivation of the waiting time distribution and its
moments

Consider the delayed telegraph model describing active Pol II
dynamics:

GO
su

sb
G�, G�!r Gþ A, A)

t
;: (A 1Þ

We want to calculate the distribution of the waiting time
between the production of two consecutive active Pol II mol-
ecules (A) along the gene. In other words, given that a paused
Pol II has just been released and become active, what is the
distribution of the time before the next Pol II becomes
active? Note that the mechanism of removal of active Pol II
does not influence the statistics of the production events.
Hence the calculation that proceeds remains the same if
instead of the delayed telegraph model, we had to use the tel-
egraph model to calculate the waiting time distribution
between two consecutive mature mRNAs.

We define three states: state X where the gene is in state G
and the number of active Pol II is n; state Y where the gene is
in state G� and the number of active Pol II is n; state Z where
the gene is in state G and the number of active Pol II is n + 1.
Hence the effective reaction scheme describing these three
states is

XO
su

sb
Y, X�!r Z: (A 2Þ

Immediately after an active molecule of Pol II is produced,
the gene is in state G and hence our initial condition is state
X. The absorbing state is state Z. The master equations
describing the effective reaction scheme are

@tPXðtÞ ¼ �ðsu þ rÞPXðtÞ þ sbPYðtÞ
and @tPYðtÞ ¼ suPXðtÞ � sbPYðtÞ,

)
(A 3Þ

with initial condition PX(0) = 1, PY(0) = 0 and PZ(0) = 0. The
distribution f (t) of the time t at which the system enters
the absorbing state Z is given by the probability that the
system is in state X at time t multiplied by the rate of switch-
ing from state X to Z, i.e. f (t) = ρPX(t). Solving the differential
equations (A 3) using the Laplace transform we obtain:

~fðsÞ ¼ rðsþ sbÞ
ðrþ sÞðsþ sbÞ þ ssu

, (A 4Þ

https://github.com/jamesholehouse/Delayed-SSA-Models
https://github.com/jamesholehouse/Delayed-SSA-Models
https://github.com/jamesholehouse/Delayed-SSA-Models
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where ~fðsÞ ¼ Ð1
0 f ðtÞ e�st dt. It then follows that the first three

moments of the time between two consecutive active Pol II
production events are given by

hti ¼ �@s
~fð0Þ ¼ sb þ su

rsb

ht2i ¼ @2
s
~fð0Þ ¼ 2((sb þ su)2 þ rsu)

r2s2
b

and ht3i ¼ �@3
s
~fð0Þ ¼ 6((sb þ su)((sb þ su)2 þ 2rsu)þ r2su)

r3s3
b

:

9>>>>>>>>>=
>>>>>>>>>;

(A 5Þ
The square of the coefficient of variation of the waiting time
(the randomness parameter) is

Rtele ¼ ht2i � hti2
hti2 ¼ 1þ 2rsu

(sb þ su)2
: (A 6Þ

Note that Rtele > 1 for all parameter values. For reference, the
exponential distribution is characterized by a coefficient of
variation squared equal to 1.
A.2. Proof of the monotonicity of the waiting time
distribution

Here we prove that the waiting time distribution of the
delayed telegraph model (and of the telegraph model) is a
monotonically decreasing function. We start by rewriting
equation (A 4) in the form:

~fðsÞ ¼
X2
k¼1

bkð1þ sakÞ�1, (A 7Þ

where

b1 þ b2 ¼ 1, (A 8Þ
a2b1 þ a1b2 ¼

1
sb

, (A 9Þ

a1 þ a2 ¼ rþ su þ sb

rsb
, (A 10Þ

and a1a2 ¼ 1
rsb

: (A 11Þ

Taking the inverse Laplace transform of equation (A 7) one
can show that

f ðtÞ ¼ b1
e�t=a1

a1
þ b2

e�t=a2

a2
(A 12Þ

and

@tf ðtÞ ¼ �b1

a21
e�t=a1 � b2

a22
e�t=a2 : (A 13Þ

To determine if f (t) is monotonically decreasing in t, we need
to know what is the sign of a1, a2, β1, β2. From equations
(A 10) and (A 11), since the right hand sides of both equations
are positive then a1, a2 must also be positive (if one or both are
negative then the sign of the left hand side will not match the
sign on the right hand side of one of the two equations). Also
by solving equations (A 8) and (A 9) simultaneously for β1,2
one finds that these are positive. Because a1, a2, β1, β2 > 0, it
follows from equation (A 13) that ∂t f (t) < 0 for all times
and hence f (t) is a monotonic decreasing function of time t.
Furthermore, by the initial value theorem [59] and equation
(A 4), we have f ð0Þ ¼ lims!1 s~fðsÞ ¼ r.
Appendix B. Waiting time calculations for the
mechanistic model

B.1. Derivation of the waiting time distribution and its
moments

In this section, we extend the analysis of appendix A to study
the mechanistic model, which is given by

UO
a

a0
U� O

b

b0
U��, U�� !c U� þ A, A)

t
M!

d
;: (B 1Þ

We now derive the distribution of the time between two
consecutive active Pol II production events and also the
same but for mature mRNA M. We first consider the active
Pol II case. We define four states: state W where the gene is
in state U and the number of active Pol II is n; state X
where the gene is in state U� and the number of active Pol
II is n; state Y where the gene is in state U�� and the
number of active Pol II is n; and state Z where the gene is
in state U� and the number of active Pol II is n + 1. Hence
the effective reaction scheme describing these four states is

WO
a

a0
XO

b

b0
Y, Y�!c Z: (B 2Þ

Just after an active Pol II is produced, the gene is in state U�

and hence our initial condition is state X. The absorbing state
is state Z. The master equations describing the effective
reaction scheme are:

@tPWðtÞ ¼ �aPWðtÞ þ a0PXðtÞ,
@tPXðtÞ ¼ aPWðtÞ þ b0PYðtÞ � ða0 þ bÞPXðtÞ

and @tPYðtÞ ¼ bPXðtÞ � ðb0 þ cÞPYðtÞ,

9>=
>; (B 3Þ

with initial condition PX(0) = 1, PW(0) =PY(0) =PZ(0) = 0. The
distribution f(t) of the time t at which the system enters
the absorbing state Z is given by the probability that the
system is in state Y at time t multiplied by the rate of switching
from state Y to Z, i.e. f(t) = c PY(t). Solving the differential
equations (B 3) using the Laplace transform we obtain:

~fðsÞ

¼ bcðaþ sÞ
s(a0(b0 þ dþ s)þ s(b0 þ cþ s)þ bðcþ sÞ)þ a(s(b0 þ cþ s)þ bðcþ sÞ) :

(B 4Þ
From the definition of the Laplace transform, we have that the
moments are given by

htii ¼ ð�1Þi@i
s
~fð0Þ: (B 5Þ

The square of the coefficient of variation squared of the time
between two consecutive production events (the randomness
parameter) is:

Rmec ¼ ht2i � hti2
hti2 ¼ 1þ 2bc(a0(� aþ b0 þ c)� a2)

(a0(b0 þ c)þ ab0 þ aðbþ cÞ)2 : (B 6Þ

Note that depending on the parameter values, Rmec can be
greater than or less than one (unlike for two-state models
where it was shown in appendix A that the randomness
parameter is always greater than one).

Suppose there is a fixed time τ between the production of
an active Pol II and the production of a mature mRNA (via
elongation and termination). It follows that the time between
two consecutive mature mRNA production events is pre-
cisely the same as the time between two consecutive Pol II
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activation events, i.e. all the waiting time statistics that we
have derived for active Pol II also hold for mature mRNA too.

B.2. Some properties of the waiting time distribution
We note that since ~fðsÞ in equation (B 4) can be written in the
form ~fðsÞ ¼ P3

k¼1 gkð1þ sckÞ�1 (for particular values of the
constants γk and ck), it follows that

fmecðtÞ ¼ g1
e�t=c1

c1
þ g2

e�t=c2

c2
þ g3

e�t=c2

c3
: (B 7Þ

This is unlike that for two-state models in Appendix Awhere
the waiting time distribution was a sum of two exponentials.

Also by the initial value theorem and equation (B 4), we
have that f ð0Þ ¼ lims!1 s~fðsÞ ¼ 0. As well necessarily for any
distribution we have that lim t→∞ f(t) = 0. Hence it follows
by the behaviour of f(t) at t = 0 and t =∞, that the positive
function f(t) must achieve one or more maxima at intermediate
times. Hence the waiting time distribution for the mechanistic
model is non-monotonic in time t (unlike for two-state models,
which have a monotonic waiting time distribution).

Appendix C. Derivation of the steady-state mean
and variance of active Pol II numbers for the
mechanistic model
We first calculate the statistics of the accumulated active Pol II
on the gene, i.e. ignoring its removal owing to elongation.
Hence we want to derive the time-dependent first and
second moments of the reaction scheme:

UO
a

a0
U� O

b

b0
U��, U�� �!c U� þ A: (C 1Þ

The easiest way to calculate these moments is using the linear-
noise approximation, which is exact up to second-order moments for
any system with linear propensities (as in our case). The stoichio-
metric matrix and the propensity (column) vector are given by

S ¼
�1 1 0 0 0
1 �1 �1 1 1
0 0 0 0 1

0
@

1
A (C 2Þ

and

f ¼ ahUi, a0hU�i, bhU�i, b0ð1� hUi � hU�iÞ, cð1� hUi � hU�iÞð Þ,
(C 3Þ

where 〈ψ〉denotes the average number ofmolecules of speciesψ.
The species are numbered in the order U, U�, A and the reac-
tions in the order U ! U�, U� ! U,U� ! U��, U�� ! U�,
U�� ! U� þ A. The matrix element [S]ij is the net change in
the number of molecules of species i when reaction j occurs,
and the vector element fj is the average propensity of the jth reac-
tion. Note that we have used the conservation law
hU��i ¼ 1� hUi � hU�i to simplify the vector f.

The equations for the first two moments are given by

d
dt

hni ¼ S � f (C 4Þ

and

d
dt

C ¼ J � Cþ C � JT þD, (C 5Þ

where 〈ni〉 is the average number of molecules of species i and
[C]ij = Cij is the covariance between species i and j. Further-
more, we have defined the matrix J as the Jacobian of the
rate equations equation (C 4) and D as the diffusion matrix
which equals D = S · Diag(f ) · ST. The matrix Diag(f ) is a
diagonal matrix with diagonal elements given by the
elements of the vector f.

The time-dependent solution of these equations is quite
complex since we have three interacting species. However,
the calculation is much simplified if one makes use of the
fact that U, U�, U�� will reach a steady-state after some
time. This implies that

dhn1i
dt

¼ dhn2i
dt

¼ dhC11i
dt

¼ dhC12i
dt

¼ dhC13i
dt

¼ dhC22i
dt

¼ dhC23i
dt

¼ 0,

which leads to the solutions:

hn1i ¼ hUi ¼ a0(b0 þ c)
a0(b0 þ c)þ a(b0 þ bþ c)

, (C 6Þ

hn2i ¼ hU�i ¼ a(b0 þ c)
a0(b0 þ c)þ a(b0 þ bþ c)

, (C 7Þ

C11 ¼ aa0(b0 þ c)(b0 þ bþ c)
(a0(b0 þ c)þ a(b0 þ bþ c))2

, (C 8Þ

C12 ¼ � aa0(b0 þ c)2

(a0(b0 þ c)þ a(b0 þ bþ c))2
, (C 9Þ

C13 ¼ abca0(ab� (b0 þ c)(b0 þ bþ c))
(a0(b0 þ c)þ a(b0 þ bþ c))3

, (C 10Þ

C22 ¼ a(b0 þ c)(a0(b0 þ c)þ ab)
(a0(b0 þ c)þ a(b0 þ bþ c))2

(C 11Þ

and C23 ¼ abc(a0(b0 þ c)2 þ a2b)

(a0(b0 þ c)þ a(b0 þ bþ c))3
: (C 12Þ

However, because active Pol II keeps accumulating with time,
we have to solve the time-dependent equations for its mean
and variancewhich from equations (C 4) and (C 5) are given by

d
dt

hn3i ¼ cð1� hn1i � hn2iÞ

and
d
dt

C33 ¼ c
ab

a0(b0 þ c)þ a(b0 þ bþ c)
� 2C13 � 2C23

� �
:

9>>>=
>>>;

(C 13Þ
Substituting equations (C 6), (C 7), (C 10) and (C 12) in equation
(C 13) and solving the resulting differential equations with zero
initial conditions, we finally obtain the time-dependent mean
and variance of the accumulated active Pol II:

hn3ðtÞi ¼ abc
a0(b0 þ c)þ a(b0 þ bþ c)

t (C 14Þ

and

C33ðtÞ ¼
abc(2cb0(ba0 þ (a0 þ a)2)þ ((a0 þ a)b0 þ ab)2 þ c2(2ba0 þ (a0 þ a)2))

(a0(b0 þ c)þ a(b0 þ bþ c))3
t:

(C 15Þ
Hence the Fano factor of accumulated active Pol II is given by

FFaA ¼ C33

hn3i ¼ 1þ 2bc(a0(� aþ b0 þ c)� a2)
(a0(b0 þ c)þ a(b0 þ bþ c))2

: (C 16Þ

Note that FFaA ¼ Rmec given by equation (3.2). This equivalence
between the Fano factor of accumulated products and the coef-
ficient of variation of the waiting times has been previously
reported in the single enzyme molecule literature [49].

Next we use these results to calculate the mean and var-
iance of active Pol II in steady-state conditions, i.e. the
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statistics of active Pol II owing to both binding and unbinding
reactions. Let the number of observed active Pol II at time t be
n(t); then it follows that if elongation happens after a determi-
nistic time τ we can write

nðtÞ ¼ n3ðtÞ � n3ðt� tÞ, (C 17Þ
where n3(t) is the number of active Pol II accumulated up until
time t. This relationship between the observed number of active
Pol II and the number of accumulated active Pol II follows from
the elongation dynamics: since all active Pol II molecules have a
fixed lifetime of τ, it follows that molecules produced before
time t− τmust have all died by time t and only those produced
in the interval (t− τ, t] will contribute to the number of
observed molecules at time t. Hence the first two moments of
the observed active Pol II at time t are given by

hnðtÞi ¼ hn3ðtÞi � hn3ðt� tÞi (C 18Þ
and

VarðnÞ ¼ hnðtÞ2i � hnðtÞi2 ¼ C33ðtÞ þ C33ðt� tÞ
� 2ðhn3ðtÞn3ðt� tÞi � hn3ðtÞihn3ðt� tÞiÞ: (C 19Þ

The equation for the steady-state mean equation (C 18) can be
easily evaluated by means of equation (C 14) leading to

hni ¼ abc
a0(b0 þ c)þ a(b0 þ bþ c)

t: (C 20Þ

To calculate the steady-state variance of observed active Pol II,
we need to first evaluate the correlator 〈n3 (t)n3 (t− τ)〉− 〈n3 (t)〉
〈n3 (t− τ)〉 which appears on the right-hand side of equation
(C 19). Following Gardiner [60], for any linear system, the auto-
correlation vector in steady-state conditions ϵ(t) with elements

eiðtÞ ¼ hniðtÞniðt0Þi � hniðtÞihniðt0Þi, (C 21Þ
obeys the differential equation:

d
dt

e ¼ J � e, (C 22Þ

with the initial condition given by C(t = t0). Hence we have

eðtÞ ¼ exp (�ðt� t0ÞJ) � Cðt0Þ: (C 23Þ
Choose t0 = t− τ, it follows that the correlator 〈n3 (t)n3 (t− τ)〉−
〈n3 (t)〉〈n3 (t− τ)〉 is equal to ϵ3(t). Note that C(t0) =C(t− τ) has
elements given equations (C 8)–(C 12) and (C 15). Hence we
can finally evaluate equation (C 19):
VarðnÞ ¼ t
abc(2cb0(ba0 þ (a0 þ a)2)þ (a0b0 þ a(b0 þ b))2 þ c2(2ba0 þ (a0 þ a)2))

(a0(b0 þ c)þ a(b0 þ bþ c))3
� A0

þ A1 exp � 1
2
t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�a0 þ a� b0 � b� c)2 þ 4a0(a� b0 � c)

q
þ a0 þ aþ b0 þ bþ c

� �� �

þ A2 exp �1
2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�a0 þ a� b0 � b� c)2 þ 4a0(a� b0 � c)

q
þ a0 þ aþ b0 þ bþ c

� �� �
,

(C 24Þ
where
A0 ¼ 2ab2c2(� a0(a� b0 � c)(a0 þ 2aþ b0 þ bþ c)� a3)
(a0(b0 þ c)þ a(b0 þ bþ c))4

, (C 25Þ
A1 þ A2 ¼ A0, (C 26Þ

and
A1 � A2 ¼ 2ab2c2(a3(� aþ b0 þ bþ c)þ ð�3a� 2bÞ(a0)2(a� b0 � c)þ (a0)3(� aþ b0 þ c))

(a0(b0 þ c)þ a(b0 þ bþ c))4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a0 � aþ b0 þ bþ c)2 þ 4a0(a� b0 � c)

p
þ 2ab2c2a0(b0(3a2 � abþ b0(b0 þ 2bþ 3c)þ ðbþ cÞðbþ 3cÞ)� a2ðb� 3cÞ � 3a3 � abðbþ cÞ þ cðbþ cÞ2)

(a0(b0 þ c)þ a(b0 þ bþ c))4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a0 � aþ b0 þ bþ c)2 þ 4a0(a� b0 � c)

p : (C 27Þ
Note that A1 and A2 are the solution of the simultaneous
equations equations (C 26) and (C 27).

Appendix D. Derivation of the steady-state mean
and variance of mature mRNA numbers for the
mechanistic model
The statistics of mature mRNA numbers can be derived much
more straightforwardly than those of the active number of Pol
II. In steady-state, the flux across a system of species connected
by irreversible reactions will be the same for each species and
hence deletion of an intermediate species has no effect on the
statistics of a downstream species. Hence, for the purpose of
studying mature mRNA statistics in the steady-state [37],
instead of the full scheme (2.1), we can consider a reduced
scheme where the active Pol II is not explicitly described:

UO
a

a0
U� O

b

b0
U��, U�� �!c U� þM, M�!d ;: (D 1Þ

The stoichiometric matrix and the propensity vector are given
by

SM ¼
�1 1 0 0 0 0
1 �1 �1 1 1 0
0 0 0 0 1 �1

0
@

1
A (D 2Þ

and

fM ¼ ahUi, a0hU�i, bhU�i, b0ð1� hUiÞ � hU�iÞ, cð1� hUi � hU�iÞ, dhMið Þ,
(D 3Þ



Table 2. Comparison of the mean and variance of n active Pol II and m mature mRNA numbers in the mechanistic model evaluated from the exact theory
(appendices C and D) and delay SSA (dSSA) with 105 samples. (Six different parameter sets are considered.)

method 〈n〉 var(n) 〈m〉 var(m)

1. a = 0.016 s−1, a0 = 0.08 s−1, b = 0.16 s−1, b0 = 0.016 s−1, c = 0.24 s−1, d = 0.002 s−1, τ = 273.62 s

theory 6.195 17.554 14.151 27.701

dSSA 6.12 17.333 14.169 27.595

2. a = 0.112 s−1, a0 = 0.032 s−1, b = 0.16 s−1, b0 = 0.016 s−1, c = 0.24 s−1, d = 0.016 s−1, τ = 100 s

theory 7.851 6.194 4.907 4.384

dSSA 7.664 6.08 4.908 4.38

3. a = 0.144 s−1, a0 = 0.032 s−1, b = 0.96 s−1, b0 = 0.16 s−1, c = 0.24 s−1, d = 0.002 s−1, τ = 273.62 s

theory 43.511 37.646 99.387 92.745

dSSA 43.292 37.524 99.376 92.712

4. a = 0.144 s−1, a0 = 0.032 s−1, b = 1.12 s−1, b0 = 0.8 s−1, c = 0.24 s−1, d = 0.1 s−1, τ = 80 s

theory 8.993 9.216 1.124 1.115

dSSA 8.904 9.127 1.124 1.114

5. a = 0.032 s−1, a0 = 0.032 s−1, b = 0.16 s−1, b0 = 0.016 s−1, c = 0.32 s−1, d = 0.002 s−1, τ = 273.62 s

theory 16.838 36.098 38.462 61.715

dSSA 16.707 35.825 38.473 61.668

6. a = 0.016 s−1, a0 = 0.032 s−1, b = 0.16 s−1, b0 = 0.016 s−1, c = 0.4 s−1, d = 0.005 s−1, τ = 50 s

heory 2.273 5.909 9.091 21.629

dSSA 2.185 5.6 9.096 21.611
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where 〈X〉 denotes the average number of molecules of species
X. The species are numbered in the order U, U�, M and the
reactions in the order U ! U�, U� ! U, U� ! U��,
U�� ! U�, U�� ! U� þM, M ! ;. We have here also used
the same conservation law as in the previous appendix C.

The time-evolution equations for the mean numbers and
covariance matrix are given by equations (C 4) and (C 5)
where we replace S by SM and f by fM. Setting the time deriva-
tives to zero and solving these equations simultaneously, we
find the steady-state mean and variance of mature mRNA
given by 〈n3〉 and C33, respectively. The Fano factor of
mature mRNA is then determined by their ratio:
FFmec
M ¼ C33

hn3i ¼ 1þ bc(a0(b0 þ c)� a(a0 þ d)� a2)
(a0(b0 þ c)þ a(b0 þ bþ c))(a0(b0 þ cþ d)þ a(b0 þ bþ cþ d)þ d(b0 þ bþ cþ d))

: (D 4Þ
Appendix E. Comparison to reduction methods
using number statistics
Here we compare the waiting time moment matching
approach to two well-known model reduction techniques,
which are: (i) matching of the moments of the number distri-
butions, and (ii) matching of the number distributions.

The first method consists of matching the first three
moments of transcript number distributions of the mechanis-
tic and two-state models. We find the steady-state mean,
variance and skewness of the transcript numbers in two-
state models as functions of ρ, σb and σu and then we
equate them to the steady-state mean, variance and skewness
of the transcript numbers computed for the mechanistic
model (the first two moments are in appendices C and D
while the third moments can be computed similarly by sol-
ving the moment equations). For a given set of parameters
of the mechanistic model, we solve the resulting system of
three equations (with three unknowns ρ, σb and σu) numeri-
cally—this gives us the effective parameters of the two-state
models. We have searched for numerical solutions through-
out huge ranges of parameter space, however as shown in
figure 7a–c,g–i we only find a physically meaningful solution
(positive real numbers for the parameters of the two-state
models which are shown by black dots in the figure) in the
region of space given by equation (3.3) (where the mechanis-
tic and two-state models can be matched using waiting time
statistics; this is the region above the black solid line in the
figure). Additionally note that the moment expressions for
active Pol II for both the delayed telegraph model and
mechanistic model are complicated and moment matching
results in transcendental equations for the parameters ρ, σb
and σu. The effective parameters for the delayed telegraph
model, close to the contour lines where Δ = 0, are relatively
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small. Thus, conventional numerical solvers struggle to find
solutions close to the boundaries (see figure 7a–c). By con-
trast, figure 7g–i shows that effective parameters for the
telegraph model can be found for nearly all mechanistic
model parameter sets within the region given by equation
(3.3). This is thanks to the relative simplicity of the analytical
expressions for the telegraph model (compared to the trans-
cendental equations encountered for the delayed telegraph
model). In both figure 7a–c and g–i, we use the FindRoot

function with the Newton–Raphson method in Mathematica,
where we start very close to the parameter prediction of the
waiting time moment matching method and do 2 × 104 iter-
ations with a working precision of 200. Starting with points
far from the theoretical predictions, no physical solutions
are possible.

The second method consists of matching the transcript
number distributions of the mechanistic and two-state
models via maximum likelihood estimation (MLE). The
results are presented in figure 7d–g and j–l. The likelihood
function is given by

LuðfxigÞ ¼
YNs

i¼1

PðxijuÞ, (E 1Þ

where {xi} is a set of samples (with length Ns) generated using
the delay SSA of the mechanistic model with specified par-
ameters {a, a0, b, b0, c} (each xi represents the ith sample for
the transcript number), θ is some candidate set of telegraph
model parameters {ρ, σu, σb}, and P(xi|θ) is the probability
of measuring xi given a telegraph model with parameters θ.
We calculate the probability density function for a given par-
ameter set θ using the exact solution for the delayed telegraph
model [14] in figure 7d–f and the exact solution for the tele-
graph model [1] in figure 7j–l. Next, we minimize the
negative log-likelihood function:

u� ¼ argmin
u[Q

(�logLuðfxigÞ), (E 2Þ

using the adaptive differential evolution algorithm in Julia’s
BlackBoxOptim package to find the optimal parameters
θ* of the two-state model, where Q is the set of all possible
two-state model parameters (essentially amounting to a
choice of parameter space bounds in BlackBoxOptim).
Using these optimal parameters we obtain the steady-state
distributions of active Pol II and of mature mRNA using
the exact solutions of the two-state models. Finally, we com-
pute the Hellinger distance (h) between these distributions
and the corresponding ones from the mechanistic model—
the distance is shown by the colour in figure 7d–f and j–l.
Note that in the regions where Δ > 0, h is generally smaller
than in the regions where Δ < 0, i.e. the transcript number dis-
tributions found by MLE best approximate those of the
mechanistic model in the region of parameter space given
by equation (3.3) (where the mechanistic and two-state
models can be matched using waiting time statistics). There-
fore, we can conclude that waiting time moment matching
agrees with this alternative model reduction method, albeit
the former is much more computationally efficient and accurate
than the latter.
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