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Assessing regulatory features 
of the current transcriptional 
network of Saccharomyces 
cerevisiae
Pedro T. Monteiro1,2,7, Tiago Pedreira2,3,7, Monica Galocha4,5, Miguel C. Teixeira4,5* & 
Claudine Chaouiya 3,6*

The capacity of living cells to adapt to different environmental, sometimes adverse, conditions 
is achieved through differential gene expression, which in turn is controlled by a highly complex 
transcriptional network. We recovered the full network of transcriptional regulatory associations 
currently known for Saccharomyces cerevisiae, as gathered in the latest release of the YEASTRACT 
database. We assessed topological features of this network filtered by the kind of supporting 
evidence and of previously published networks. It appears that in-degree distribution, as well as motif 
enrichment evolve as the yeast transcriptional network is being completed. Overall, our analyses 
challenged some results previously published and confirmed others. These analyses further pointed 
towards the paucity of experimental evidence to support theories and, more generally, towards the 
partial knowledge of the complete network.

Transcriptional regulation is a key mechanism for the control of genomic expression, crucial for the ability of 
living cells to adapt to environmental stimuli, to thrive under expectable stress and sometimes also under unex-
pectedly harsh conditions. Despite decades of research in the field, the actual degree of complexity underlying 
global transcriptional control is yet to be understood. Throughout the years, structural and biochemical studies 
have highlighted key features of interactions between different specific transcription factors (TFs), and of the 
role of promoter/enhancer structures in combinatorial regulation of eukaryotic  genes1–3. There is a consensual 
opinion that the dominant mechanism underlying the observed complexity of gene expression patterns relies 
on combinatorial regulation of gene  expression4,5, defined as the regulation of a single gene by two or more TFs 
that might either act simultaneously or independently upon different spatial or temporal  conditions6,7. Never-
theless, general principles underlining the activity of TFs and the combinatorial regulation at a genomic scale 
are still to be established.

Few, if any, eukaryotic organisms have been as thoroughly investigated as the model yeast Saccharomyces 
cerevisiae. This is particularly true when referring to the study of global transcriptional control, as this organism 
has been among the first for which extensive analyses of transcription factor activities have been conducted. This 
effort is illustrated by the analysis of the effect of DNA binding activity for more than one hundred TFs, using 
Chromatin Immunoprecipitation (ChIP)-on-chip  experiments8, or the analysis of the effect of the overexpression 
of 55 TFs in transcriptome  remodelling9. Moreover, thousands of papers describe transcriptional associations 
in the model yeast S. cerevisiae, obtained through various experimental platforms and observed in many dif-
ferent environmental conditions. The YEASTRACT database, first launched in  200610, and regularly updated 
since  then11–15, has provided access to all available data on transcriptional associations in S. cerevisiae, gathered 
from more than a thousand publications in peer-reviewed international journals, and curated by a dedicated 
team of yeast researchers. YEASTRACT thus provides a great platform to address transcriptional regulation at 
a global scale.
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This accumulation of data on the yeast network has led to several computational studies of topological prop-
erties with the intent to uncover design principles of genome-wide transcriptional regulation. Most interest has 
been focused on in- and out-degree distributions, which correspond to the number of TFs per gene and to the 
number of target genes (TGs) per TF,  respectively8,16–18. In 2006, Balaji et al.17 assembled and analysed the largest 
S. cerevisiae transcriptional network at that time, relying on the TF-DNA binding evidence data available then.

A network feature that has attracted attention is the over-representation, in the global regulatory network, of 
small network architectures, referred to as network motifs. In this respect, Lee et al. searched for the existence of 
6 types of regulatory motifs (auto-regulation, multi-component loop, feedforward loop, single and multi-input 
motifs, and regulatory chain) in the yeast  network8, whereas Milo et al. assessed the profiles of significant triads 
(motifs composed of 3 nodes), i.e., their frequencies in the yeast network compared to randomized  networks19.

In this paper, we recovered the full network of transcriptional regulatory associations currently known for S. 
cerevisiae, as gathered in the latest YEASTRACT  release15. Annotations in YEASTRACT were used to produce 
subnetworks that encompass associations supported by binding and/or expression evidence. In our analyses, 
we also included networks considered in previous studies. For all these networks, we assessed their topological 
characteristics aiming at uncovering properties of the transcriptional control of single genes, of specific biological 
functions and of the complete genome. The consideration of diverse networks allowed to observe that while some 
properties were verified by all of them, others clearly differed, suggesting that caution should be exercised when 
drawing general rules on transcriptional genome-wide networks. Furthermore, functional analyses indicated 
potential relationships between the connectivity (in- or out-degree) of the genes and their biological functions.

Results
Transcriptional regulatory networks of Saccharomyces cerevisiae. There are more than 195,000 
regulatory associations between transcription factors (TFs) and target genes (TGs) in Saccharomyces cerevisiae, 
according to the data deposited in the YEASTRACT  database15, which is the most comprehensive source of such 
interactions. In YEASTRACT, 1580 references support the stored regulatory associations. Each reference docu-
ments an average of 199.68 interactions (0.1% of the total number of interactions, with a standard deviation of 
1.29). Interactions are supported by an average of 1.61 references. Table 1 provides statistics for the references 
that support more than 5% of the YEASTRACT interactions with the total number of documented interactions 
and the number of interactions supported by another reference.

Regulatory associations in YEASTRACT have been registered based on numerous experimental setups that 
may be classified into two major groups: (1) those leading to DNA binding evidence, including ChIP-on-chip, 
ChIP-seq, Electrophoretic Mobility Shift Assay (EMSA), or DNA footprinting; and (2) those leading to expression 
evidence, which is the demonstration that the deletion, mutation or overexpression of a TF affects the expression 
of a TG, typically including DNA microarray hybridisation, RNA-sequencing, qRT-PCR, northern blotting or 
the use of reporter genes. In the sequel, we will denote by:

• E the set of regulatory associations supported by expression evidence;
• B the set of regulatory associations supported by binding evidence;
• E|B the set of regulatory associations supported by expression or binding evidence (i.e., the whole set of 

interactions);
• E& B the set of regulatory associations supported by both expression and binding evidence.

Note that the 28 associations in YEASTRACT that still lack annotations of supporting evidence were excluded 
from the datasets considered in this study.

To assess whether previous observations were maintained in the updated S. cerevisiae transcriptional network, 
we also included in our analyses networks from two reference studies: the Costanzo et al.’s  network24 that was used 
by Milo et al. as a source transcriptional network to uncover recurrent network motifs with the intend to disclose 
topological general  principles19,24,25; and the Balaji et al.’s network that was assembled to analyse combinatorial 
regulation on a genomic  scale17. In both networks, regulatory associations are supported by binding evidence 
only (indicated as B). Note that all the networks considered here are defined over the TFs and genes involved in 
transcriptional interactions, that is to say, no nodes are isolated.

Table 2 recapitulates the number of nodes and interactions for each of the six networks used in the present 
work, where, for each network, the nodes are those involved in interactions supported by corresponding evidence. 
It also indicates the proportion of actual interactions out of the possible interactions between all the identified 

Table 1.  Statistics for the five reference documents documenting more than 5% of the 195,470 interactions 
stored in YEASTRACT. For each reference, the number of documented interactions (and percentage of the 
total number of interactions in YEASTRACT), the number of those interactions not documented by other 
references, and the number of interactions documented by at least another reference, are provided.

Number of interactions supported by Salin et al.20 Reimand et al.21 Moxley et al.22 Chua et al.9 Harbison et al.23

That ref. 74,131 58,089 25,142 17,756 10,026

(% of YEASTRACT interactions) (37.92%) (29.71%) (12.86%) (9.08%) (5.13%)

No other ref. 1966 48,385 20,614 12,294 3955

At least another ref. 72,165 9704 4528 5462 6071
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TFs and genes, showing that the transcriptional networks are rather sparse, with a notable difference between 
networks containing only interactions supported by binding evidence, and those containing interactions sup-
ported by expression evidence.

Intersection assessment between Balaji et al. network on the one hand, and YEASTRACT B and B&E on the 
other hand shows that: YEASTRACT B contains a good proportion of Balaji’s dataset, but around 15% of it has 
been discarded, whereas YEASTRACT B&E only contains about 29% of Balaji’s dataset, underlining again the 
restricted number of associations supported by both binding and expression evidence.

Most regulatory associations based on expression evidence are associated with a sign depending on the 
observed effect on the TG: positive when the TF is an activator, negative when it is a repressor, more rarely dual 
when it has a dual effect, or possibly unknown when the observed effect has no directionality (i.e., a modified 
level of expression, but whereas the level increased or decreased was not clear in the supporting article).

Figure 1 displays a first assessment of the experimental basis of the data currently available in YEASTRACT. 
Among the documented regulatory associations, 76.87% are in the set E � B , i.e., based on expression evidence 
only. Part of these associations may be indirect since there might be an intermediate TF through which the reg-
istered interaction operates. On the other hand, 17.25% of the documented regulatory associations are based on 
DNA binding evidence alone (in the set B� E ). This may imply that a TF can bind to a promoter region without 
affecting the expression of the corresponding gene. If this is the case, it would confirm that binding evidence 
is not enough to establish a clear regulatory association. This is confirmed by the surprisingly restricted set of 
regulatory associations that are supported by both DNA binding and expression evidence (i.e., the small cardi-
nality of the set B&E). Indeed, only 11,486 regulatory associations (5.88% of the whole interaction set B|E) can 
be considered reliable with evidence showing that the TF binds to the promoter region of its TG, and promotes 
or represses its transcription. This small number of associations in B&E may be explained by the scarcity of 

Table 2.  (Top) Statistics of the six S. cerevisiae regulatory networks used in this work (TF stands for 
Transcription Factor, TG for Target Gene). Each network is defined by a specific dataset, which is related to 
particular supporting evidence. The last column indicates the proportion of actual interactions out of the 
possible interactions. For example, for the YEASTRACT B&E network, there are 152× 3937 = 598, 424 such 
possible interactions, corresponding to the 152 identified TFs regulating all the 3937 TFs and TGs. (Bottom) 
Percentages of interaction overlaps of Balaji et al. with YEASTRACT B and with B&E networks.

Regulatory network Evidence type # Nodes # Interactions # TFs # TGs % Possible interactions

Costanzo et al.24 B 688 1079 131 592 1.20

Balaji et al.17 B 4441 12,871 159 4408 1.82

YEASTRACT 15 B|E 6886 195,470 220 6886 12.90

YEASTRACT 15 E 6711 161,747 215 6711 11.21

YEASTRACT 15 B 6478 45,209 176 6475 3.97

YEASTRACT 15 B&E 3937 11,486 152 3912 1.92

Network intersection # Interactions % Balaji % YEASTRACT B % YEASTRACT B&E

Balaji ∩ YEASTRACT B 10,909 84.76 24.26 –

Balaji ∩ YEASTRACT 
B&E 3359 26.1 – 29.24

B
Binding evidence

E
Expression evidence

17.25%
(33,723)

3.16%
(6,172)

0.77%
(1,500)

1.95%
(3,814)

Positive
38.13%
(74,531)

Negative
30.14%
(58,915)

Dual 8.57%
(16,750)

Unknown sign
0.03%
(65)

Figure 1.  Venn diagram showing the content of YEASTRACT regulatory associations between transcription 
factors and target genes in S. cerevisiae according to their classification in the sets B, E and B&E, depending on 
the supporting experimental evidence. In the set E (and B&E), expression evidence allows to attribute a sign to 
the associations. Percentages refer to the fractions of the total number of associations, i.e., the cardinality of B|E.
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expression and DNA binding evidence experiments conducted in the exact same  conditions26,27. In any case, as 
those interactions are the most reliable, this analysis suggests that our current knowledge of the transcriptional 
regulatory network in S. cerevisiae is still limited.

Numbers of regulators and gene functions. In‑degree analysis. In order to assess potential trends in 
the transcriptional control in S. cerevisiae, we first considered the gene in-degrees, i.e., for each gene, the num-
ber of TFs controlling its transcription, regarding the different datasets. Plots in Fig. 2 indicate the in-degree 
distributions for the six versions of the yeast transcriptional network, considering only the regulated genes as 
 in16,17. Hence, 3 nodes were excluded for the YEASTRACT B network, 25 for the YEASTRACT B & E network, 
none for the YEASTRACT B|E and E networks, 33 for the Balaji network, and 96 for the Costanzo network. Sup-
plementary File 3 provides the in-degree distributions without excluding non-regulated nodes, where the four 
YEASTRACT networks now contain all the nodes present in the E|B network (i.e., the bigger set of genes). These 
plots further illustrate the lack of regulatory information supported by both binding and expression evidence.

The degree distributions display similar trends for the Costanzo et al., the Balaji et al. and the YEASTRACT 
B&E networks, with many genes controlled by a few regulators and a few genes controlled by many regulators. 
For each of these networks, the degree distribution is a decreasing function. In contrast, when considering the 
networks from YEASTRACT B, B|E and E, the degree distributions tend to bell shaped functions, with reduced 
numbers of genes having small in-degrees, higher numbers of genes having intermediate in-degrees, and then 
again reduced numbers of genes having higher in-degrees. It is likely that these distributions follow from a high 
number of false positive interactions.

The in-degree analysis on the updated YEASTRACT B&E network thus confirms the previously suggested 
exponential in-degree distribution of the yeast transcriptional  network16,17.

Relating in‑degrees and biological functions. To assess whether in-degrees could relate to biological functions, 
we analysed the distribution of functional categories according to the in-degrees, focusing on interactions in 
B&E, i.e., supported by binding and expression evidence. The genes were associated to their major biological 
functions (see “Methods” section, and Supplementary File 4). To get a better view, we considered bins, gathering 
genes according to their in-degrees. These bins, appropriately defined (see “Methods” section), are as follows: 
degrees 1 to 4, 5 to 9, 10 to 25, including 3160, 608 and 144 genes, respectively. The results are displayed in Fig. 3.

In this distribution of functional categories, the genes associated with the Unknown function mainly appear in 
the lower in-degree bin. This is most likely because these genes are less studied. More generally, the vast majority 
of the genes lies in the bin 1–4.

Considering the genes associated with Stress response, 13 (8.78%) of them are in the higher in-degree bin, 
87 (58.78%) in the lower 1-4 in-degree bin, and 48 (32.43%) in the intermediate 5–9 in-degree bin. Among the 
highly regulated stress genes, the small heat shock protein encoding genes HSP12 (19 regulators) and HSP26 
(12 regulators) are both known to be required in many environmental stress conditions. HPS12 is activated 
upon high ethanol concentrations, glucose starvation, cell wall stress, chemical stress, oxidative stress, DNA 
damage, and plays a role in the protection of protein and lipid  folding28. Hsp12 is an intrinsically unstructured 
stress protein that folds upon membrane association and modulates membrane  function29. Similarly, Hsp26 is 
activated by a variety of triggers: heat shock, salt shock, cell cycle arrest, nitrogen starvation, carbon starvation, 
oxidative stress, and low  pH30.

Figure 2.  In-degree distributions, i.e., numbers of genes with given in-degrees. Six distinct datasets (or 
networks) are considered: YEASTRACT B|E (in purple), YEASTRACT E (in green), YEASTRACT B (in light 
blue), YEASTRACT B&E (in orange), Balaji et al.’s B17 (in yellow), Costanzo et al.’s B24 (in dark blue).
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In the functional category Lipid metabolism, there are four (1.97%) genes in the higher in-degree bin: FAA1 
(15 regulators), OLE1 (14 regulators), ERG11 (11 regulators), and LAC1 (10 regulators). Lac1 is a ceramide 
synthase subunit, that plays a crucial role in sphingolipid biosynthesis. Indeed, it catalyses the enzymatic branch 
point in sphingolipid biosynthesis, joining a sphingosine backbone to a very long fatty acid chain, giving rise 
to ceramide and controling ER-to-golgi traficking of GPI-anchored proteins. Faa1 is one of four fatty acyl-CoA 
synthetases, but on its own accounts for most acyl-CoA synthetase activity in yeast cells, playing a central role in 
both glycerolipid and sphingolipid metabolism. Ole1 is the single fatty acid desaturase in S. cerevisiae, required 
for mono-unsaturated fatty acid synthesis. Unsaturated fatty acids are essential for all eukaryotes as key compo-
nents of cellular membranes that control the membrane organisation, fluidity and permeability, especially under 
stress. Finally, Erg11 is a lanosterol 14-alpha-demethylase responsible for a key step of ergosterol biosynthesis. 
Its inactivation not only blocks ergosterol biosynthesis, but it also leads to the accumulation of a toxic ergosterol 
intermediate. Other ergosterol biosynthesis encoding genes with intermediate in-degrees include ERG2, ERG3, 
ERG4, ERG5, ERG25, ERG26, ERG28, while the remaining steps of the pathway are regulated by a relatively low 
number of TFs, suggesting that they are not bottlenecks in ergosterol biosynthesis (Fig. 4).

Finally, in the case of the Multidrug resistance (MDR) functional category, only three genes (6.67%) belong to 
the 10–25 in-degree bin: TPO4 with 12 regulators, and AQR1 and PDR5 with both 11 regulators. These genes are 
involved in multiple  functions31,32. In particular, PDR5, controls resistance to a wide range of unrelated drugs, 
steroid transport, response to cation stress and cellular detoxification even when growing exponentially in liquid 
 culture31. However, most MDR genes (66.67%) have less than five regulators. This is notably the case for genes 
encoding MDR transporters of the ATP-Binding Cassette (ABC), PDR12, PDR15 and YOR1, and of the Major 
Facilitator Superfamily (MFS) AZR1, DTR1, HOL1, QDR1, and QDR3, as well as the MDR transcription factors 
encoded by PDR1 and PDR3. Some of these genes have very specific functions. For example, although Pdr12 
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Figure 3.  Distribution of biological functions within three in-degree bins, considering the YEASTRACT B&E 
network.
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Figure 4.  Ergosterol biosynthesis pathway, highlighting the differences in terms of individual gene regulation. 
Proteins in red, blue or black are encoded by genes whose transcriptional in-degree lays within the 10–25, 5–9 
or < 5 bins, respectively. In grey, ERG7 is not part of the B&E network.
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belongs to the ABC drug efflux pump family, it has been shown to have a distinct role in the transport of weak 
organic acids of intermediate lipophilicity such as sorbic and benzoic  acids33. Another interesting example is the 
case of Pdr1, the major regulator of MDR in yeast, whose activation occurs by direct binding to drug molecules 
and not by increased expression in the presence of  drugs34.

Numbers of targets and functions of transcription factors. Out‑degree analysis. Here, we consid-
ered TF out-degrees, in order to evaluate the distribution of the number of controlled genes per TF (Fig. 5). This 
analysis was performed on the six networks presented in Table 2. The out-degree distribution is a decreasing 
function, following the same trend for all the networks, contrary to the behaviour of the in-degree distributions 
(Figs. 2 and 5). These results are in line with previous observations of a power law out-degree distribution in the 
S. cerevisiae transcriptional  network16–18.

Relating out‑degrees and biological functions. To evaluate if out-degree values could have a functional meaning, 
we focused on the YEASTRACT B&E network, which includes more reliable associations, and we assessed the 
functions of the 25 TFs with higher out-degrees and the 25 TFs with lower out-degrees.

Identified TFs with lower and higher out-degrees were grouped according to their major functional categories 
(Table 3). Overall, this analysis suggests that a few functions are specific to TFs with high out-degrees and others 
are specific to TFs with low out-degrees. This is the case for the function Ubiquitous, which is associated to TFs 
playing a role in the response to, and control of, a broad range of biological processes (such TFs are impossible 
to assign to a specific biological process, and appear to act more like general TFs). This function associated to the 
TFs Cbf1, Rap1, Sfp1, Ifh1 and Fhl1, stands out as exclusive of this higher out-degree group, that is no TF with 
a degree lower than 3 is associated with this function. Significantly, these transcription factors are responsible 
for the simultaneous transcriptional control of genes involved in numerous cell functions, including cell cycle, 
carbon and nitrogen metabolism, or ribosome biogenesis.

The functional categories Alternative carbon sources, Sulphite metabolism and Unknown function appear at 
the other extreme (out-degrees lower or equal than 3), and are not associated with TFs with higher out-degrees. 
TFs in the Unknown function thus seem to control a small number of genes that are not well characterised. The 
Alternative carbon sources function includes transcription factors such as Azf1, Gal80, Aca1, Mal63 or Usv1, 
which control the use of non-preferential carbon sources including galactose, maltose, sucrose, oleate, glycerol, 
acetate or ethanol. These factors control a limited number of genes as it takes only a few metabolic steps to convert 
the alternative carbon sources into a metabolite that can then be channelled through central carbon metabolism 
pathways such as glycolysis/gluconeogenesis and the TCA cycle. The function Sulphite metabolism includes a 
single factor, Fzf1, and involves a relatively low number of genes, acting directly on the uptake and metabolisa-
tion of sulphur containing molecules.

While the remaining functional categories include both TFs with high and low out-degrees, these TFs play 
different role in these processes; a factor with a higher out-degree displays a major influence on the associated 
processes. For example, transcriptional regulators involved in the Stress response include those required for the 
so-called general stress response, Msn2 and Msn4, which control the expression of many genes in response to 
a multitude of stress stimuli, including heat shock, osmotic shock, oxidative stress, low pH, glucose starvation, 
sorbic acid and high ethanol  concentrations35. The major regulators of oxidative stress response in yeast, Yap1 
and Skn7, are also present in the 25 TFs with higher out-degrees. The regulatory network underlying oxidative 
stress response is known to be highly complex, encompassing a large number of genes, as oxidative stress leads 
to damage in most of the cell components.

Remarkably, the Stress response category is also well represented among the 25 TFs with lower out-degrees. 
However, these TFs have a more restricted role in each process, as they target only a few genes involved in the 
response to stress agents for which the cell displays more specific and narrow-scope response mechanisms.
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Of course, we cannot exclude the possibility that the low out-degree of some of these TFs (e.g. Haa1) also 
reflects the lack of expression and/or DNA binding experiments conducted in the precise conditions in which 
they are activated.

Enriched regulatory motifs in the S. cerevisiae transcriptional network. In 2004, Milo et al. pre-
sented an approach to assess network local structures in terms of recurring transcriptional motifs. In particular, 
they considered the triad significance profile, which relates to the enrichment significance of the numbers of 
directly connected triads (defined as 3 node subgraphs) in a given network, compared to these numbers in ran-
dom networks. Here, we repeated this analysis to assess the motif profile of the YEASTRACT database content, 
restricted to triadic motifs. We compared the enrichment of the 13 triadic motifs for the datasets from Costanzo 
et al.24 (used by Milo et al.19 in their analysis), from Balaji et al.17 and from the YEASTRACT binding (B) and 
binding and expression (B&E) evidence (Fig. 6).

According to the analysis performed by Milo et al.19, biological networks would exhibit a motif profile that is 
preserved across organisms, with a clear under-representation of the triads 1, 2 and 3, and over-representation 
of the motif 7, known as feed‑forward loop (dark blue profile in Fig. 6). Interestingly, this profile is not conserved 
when considering other versions of the yeast transcriptional network (Fig. 6). In particular, the feed-forward 
loop is less over-represented in the YEASTRACT networks, and the motif 10 is over-represented in all but Cos-
tanzo et al. network. In this triad, two TFs cross-regulate themselves and target the same gene. Altogether, these 
results suggest that the over-representation of specific motifs depends on the data underlying the considered 
transcriptional network.

The regulatory associations documented in the YEASTRACT datasets relate to all experimental conditions, 
whereas the networks considered by Milo et al. and that of Balaji et al. are based on data obtained for cells grow-
ing under Control conditions. In order to analyse comparable datasets, we isolated the YEASTRACT interactions 
seen to occur only in Control conditions, confirming the different motif profiles (Supplementary File 5), with the 
exception of the motif 12, which is not over-represented anymore. Indeed, different environmental conditions 
may lead to the activation of different TFs and potentially to different motif profiles. To test this hypothesis, the 
YEASTRACT network of transcriptional associations supported by binding and expression evidence (B& E) was 
filtered according to the specific environmental conditions in which the associations were found to take place. 
We performed this analysis for the two transcriptional networks as stored in YEASTRACT releases of  201714 
and  201915 (the Supplementary File 6 provides an overview of the differences between these two networks). We 
observed that the motif profiles for the Control environmental condition of the 2017 and 2019 networks are 

Table 3.  The set of 25 TFs with higher out-degree (higher than 91) and 25 TFs with lower out-degree (lower 
or equal than 3) from the YEASTRACT B&E network.

Higher out-degree Lower out-degree

TF # Targets Function TF # Targets Function

Cbf1 622

Ubiquitous

Stb4 3

Unknown functionRap1 573 Yjl206c 1

Fhl1 199 Hms2 1

Sfp1 187 Ppr1 3
Nucleotide metabolism

Ifh1 126 Urc2 2

Ino4 183
Lipid metabolism

Gzf3 3 Nitrogen metabolism

Ino2 172 Fzf1 2 Sulphite metabolism

Ixr1 202 Hypoxia Cha4 2 Aminoacid metabolism

Gcn4 517
Aminoacid metabolism

Azf1 2

Alternative carbon source

Met32 336 Gal80 2

Msn2 905

Stress response

Rsf2 2

Msn4 395 Mig2 2

Yap1 297 Aca1 1

Yrr1 220 Mal63 1

Cin5 203 Rtg2 1

Rpn4 181 Usv1 1

Pdr1 172 Rds1 3

Stress response
Skn7 152 Yap3 2

Hsf1 138 Haa1 2

Ste12 942

Cell cycle

Rdr1 1

Sok2 364 Ime1 3

Cell cycle

Tec1 311 Kar4 3

Fkh1 290 Ndd1 2

Swi4 175 Tbf1 2

Ndt80 169 Wtm1 1
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similar, whereas they differ for the Stress environmental condition (see Supplementary File 7). This highlights 
again that motif profiles may vary as new data become available (even with small variations as it is the case here). 
It also supports the fact that there is no immediate functional significance of the over-representation of a network 
 motif36, and that function does not follow motif structure neither structure follows function, as proposed by 
Payne and  Wagner37.

Altogether these results show that, unless having the “full network”, one should not draw definite conclusions 
on motif profiles, as these vary significantly between different versions of the transcriptional network.

Discussion
Networks have proved to be a convenient unifying representation for a wide range of biological processes involv-
ing genes, proteins, metabolites, etc. Indeed, cellular responses to environmental signals are governed by complex 
networks encompassing protein–protein, protein-to-gene and metabolic interactions. In this work, the tran-
scriptional regulatory network of the model yeast Saccharomyces cerevisiae was globally evaluated in terms of 
topological features, using previous data as well as the most recent data available in the YEASTRACT database.

Investigation of the regulatory associations gathered into YEASTRACT database highlighted the lack of 
associations supported by binding evidence. This suggests that the current network of regulatory associations 
in S. cerevisiae is far from being complete (Fig. 1). Further systematic assessment of transcriptional regulation 
in yeast is thus still needed, combining different technical approaches.

An exponential distribution of the in-degree in the yeast network was previously suggested, where a few 
genes would be regulated by a high number of regulators, whereas many genes would be regulated by a few 
 regulators16,17. Our analyses showed that, while this distribution seems to be maintained in the YEASTRACT 
B&E network, this is not the case when considering larger, yet less reliable YEASTRACT networks (Fig. 2).

By relating functions and in-degrees, it appeared that, given specific biological processes, some involved 
genes are more tightly regulated than others, operating in broader scopes of conditions. This is the case for the 
stress responsive genes HSP12 and HSP26 that have over 12 regulators, and that are involved in a variety of stress 
conditions. In contrast, a good proportion (58.78%) of the stress genes have less than 5 regulators, and seem to 
be activated under the control of a lower number of signaling pathways. Furthermore, we found that for the Lipid 
metabolism functional category, most genes have less than 10 regulators, except a few genes that seem to require 
a tighter regulation because of their critical role. For example, the crucial nature of the step catalysed by Erg11 
in ergosterol biosynthesis might explain why ERG11 has a higher in-degree, when compared to other players in 
lipid metabolism. Furthermore, the importance of ergosterol in the organisation of the plasma membrane may 
explain the intermediate in-degree of a good part of the remaining genes controlling its production. Finally, in 
the case of the Multidrug resistance genes, most of them have a low in-degree. A possible explanation for this 
may be that yeast does not often resort to the MDR network since natural habitats are normally devoided of 
chemical stress agents such as drugs. Nevertheless, conclusions about genes with lower in-degrees should be 
taken with caution. Indeed, a low number of regulators may be due to the lack of knowledge, as suggested by the 
high number of such genes associated with Unknown function.

Our analysis of TFs out-degrees confirmed the power law distribution previously proposed by different 
authors. It also corroborated the property established by Ouma et al.18, basically stating that subnetworks resulting 
from a sampling of the associations (i.e., the edges) would follow a power law out-degree distribution. According 
to what was observed for the in-degrees, the TFs with high out-degrees are known to be key regulators involved 

Figure 6.  Motif profiles of four S. cerevisiae transcriptional networks.
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in a range of biological processes, whereas the TFs with low out-degrees would play a role in very specific func-
tions or have yet no known function.

To uncover potential structural design principles of the yeast transcriptional network, we performed an 
analysis of motif profiles, focusing on triads. We showed that these motif profiles vary as the network is enriched 
with novel regulatory associations, and that they also depend on the environmental conditions in which the 
regulatory associations take place.

Altogether, our study provides a detailed analysis of the most recent version of the transcriptional network, 
as stored in the YEASTRACT database. Moreover, it highlights the complexity of the transcription regulatory 
processes that control gene expression, as well as our limited knowledge of the complete S. cerevisiae regulatory 
network. While previously observed properties were confirmed, other could not be retrieved when considering 
the up-to-date S. cerevisiae network. Hence, it seems to be hard to find general principles concerning the yeast 
transcriptional network as long as the complete network is not known. Still, while being cautious in trying to get 
definite conclusions, assessment of current genome wide transcriptional networks from topological and func-
tional view points can still be informative. Promises of network biology probably rely on disclosing biological 
mechanisms rather than general principles.

Methods
All networks considered (Table 2), as well as processing scripts and intermediate results mentioned below are 
provided as Supplementary Files.

Data extraction from the YEASTRACT database. The YEASTRACT database contains all regulatory 
associations between transcription factors and target genes documented in Saccharomyces cerevisiae, up to July 
2019. These regulatory associations were obtained from thousands of publications and curated by  experts15.

The full network (B|E) considered is provided in Supplementary File 1. Regulatory associations from the full 
network are annotated with information extracted from one or more supporting papers, whenever such infor-
mation is available. Regulatory associations can be classified according to the set of employed experiments as: 
Binding, when having at least one publication based on TF–DNA binding assays; or Expression, when having at 
least one publication based on expression evidence and no publication based on TF–DNA binding assays. Then, 
regulatory associations having at least one publication based on expression evidence, are further classified as: 
Positive, when all publications supported a positive effect; Negative, when all publications supported a negative 
effect; or Dual, otherwise.

Additionally, each regulatory association is annotated with the environmental condition in which it was found 
to take place, such as: Biofilm formation, Carbon source quality/availability, Cell cycle/morphology, Human 
niche conditions, In vitro, Lipid supplementation, Nitrogen source quality/availability, Oxygen availability, Stress, 
Unstressed log-phase growth (control).

Supplementary File 2, provides a script with trimming capabilities to generate all the sub-networks and associ-
ated network measures from Table 2 derived from the original full network. For example, networks used for the 
motif profile analyses displayed in Supplementary Files 5 and 7 include regulatory associations supported by both 
Binding and Expression evidence, where the full network is further filtered by a given environmental condition.

Node degree analysis. Supplementary File 2, provides the degree.py Python script to compute, for 
each network in Table 2, the in- and out-degrees of all the network’s nodes, saving these results in intermediate 
files. The script then uses these intermediate files to call GNUplot in order to generate the in- and out-degree 
distributions comparing all networks. In particular, it generates Figs. 2 (for the in-degree) and 5 (for the out-
degree). Additionally, it selects the 25 TFs with higher and the 25 TFs with lower out-degrees used in Fig. 3.

Functional analysis. In order to evaluate a possible link between gene in-degree or TF out-degree and the 
functional categories associated to these genes and TFs, we performed a classification of the biological function 
of all the genes/TFs in the YEASTRACT B & E network, based on the description available in the Saccharomyces 
Genome Database (http://www.yeast genom e.org), as well as the associated Gene Ontology terms and relevant 
literature. This classification was manually performed for genes/TFs with at least 5 regulators (752 genes), which 
were then used to train a Support Vector Machine text classifier based on the Python scikit-learn (https ://sciki 
t-learn .org/) library. We then used this text classifier to classify the remaining 3,160 genes. The code is available 
in Supplementary File 2.

To obtain statistically significant groups, we performed Chi-squared tests for association between consecutive 
in-degrees, which led to the definition of three bins: in-degrees 1–4, 5–9 and 10–25 (see Supplementary File 4).

The number of genes associated with each biological function in each of the three bins is presented in Fig. 3. 
Additionally, the 25 TFs with higher out-degree and the 25 TFs with lower out-degree are presented in Table 3 
together with their functional classifications. Supplementary File 4 includes the Spreadsheets for both the in-
degree and out-degree functional classifications.

Motif analysis. In order to assess the network recurring transcriptional motifs, we considered the triad sig‑
nificance profile presented by Milo et al.19, where the number of connected triads in the network is computed and 
compared with random networks of the same dimensions in order to assess each triad enrichment significance 
(Z-score). To compute the triad enrichment, we considered the motif discovery software tool gtrieScanner 
(http://www.dcc.fc.up.pt/gtrie s/) by Pedro  Ribeiro38.

Supplementary File 2 provides the motifs.py Python script which, for each network from Table 2, starts 
by converting the supplied network of genes into an equivalent network of numerical nodes. It then computes 

http://www.yeastgenome.org
https://scikit-learn.org/
https://scikit-learn.org/
http://www.dcc.fc.up.pt/gtries/
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the triad enrichment, using gtrieScanner with the following parameters: -s 3 for motifs of size 3, -m 
subgraphs dir3.str for the subgraph list of size 3 to be considered, -d to consider directed graphs, -f 
simple for non-weighted graphs, -r 10000 to generate 10,000 random networks and -g network to 
supply the numerical network previously created. It produces the result file containing the corresponding 
Z-score for each motif, and a file listing all occurrences of the motifs in the supplied numerical network. Then, the 
motifs.py Python script parses the results and automatically performs the necessary corrections considered 
by Milo et al.19: (a) the Z-score of a given motif is set to 0 if the motif has less than 4 occurrences; (b) the triad 
significance profile is computed as normalisation of the Z-score to length 1 considering the following formula: 
SPi = Zi/(

∑n
j=1 Z

2
j )

1/2 . The normalised triad significance profiles of all networks are saved in corresponding files 
which are used by GNUplot to produce the motif profiles in Fig. 6 and Supplementary Files 5 and 7.
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