ORIGINAL ARTICLE

Fumio Yoshie

Dormancy of alpine and subalpine perennial forbs

Received: 8 May 2006 / Accepted: 19 December 2006 / Published online: 8 February 2007 © The Ecological Society of Japan 2007

Abstract Depth of dormancy of alpine and subalpine perennial forbs in autumn was investigated, which was judged by the number of days required for growth initiation at 24 °C. The depth of dormancy differed depending on Raunkiaer's life-form and shoot habits. Chamaephytes with perennial shoot-axes showed shallower dormancy than hemicryptophytes with annual shoot-axes, and geophytes with annual shoot-axes showed the deepest dormancy. The results strongly suggest that the dormancy is more endogenously controlled in forbs less hardy to freezing stress. Potential growth ability of alpine herbaceous chamaephytes in autumn is an adaptive advantage, since they utilize the short vegetative period as long as possible. All of the species with annual shoot-axes had winter buds covered with scales. In plants with perennial shoot-axes, percentage of winter buds covered with scales increased with increasing depth of dormancy. The results indicate that the shoot apices are well protected by bud scales in forbs with a long endogeneous-dormant period.

Keywords Alpine plants · Bud scale · Frost hardiness · Raunkiaer's life-form · Shoot habit

Introduction

Perennial plants cease growth more or less at the beginning of the unfavorable season. The growth cessation of perennial plants native to temperate regions is generally more endogenously controlled than that of plants native to tropical and subtropical regions (Larcher 1980). The deep dormancy of the temperate plants is adaptive, since

F. Yoshie

Biological Laboratory, Institute of Natural Sciences, Senshu University, Higashi-mita, Tama-ku, Kawasaki 214-8580, Japan E-mail: yoshie@isc.senshu-u.ac.jp Tel.: +81-44-9110553 Fax: +81-44-9007816 the photosynthetic carbon gain is limited and the carbon loss due to frost injuries increases at low temperatures if they grow in the unfavorable season.

From the viewpoint of the carbon budget, alpine perennial plants may be expected to have deeper dormancy than temperate plants because of severe low temperatures during the unfavorable season, unless snow cover protects the plant from freezing. However, it is known that some alpine perennial plants have the ability to tolerate extremely low temperatures in winter and also to resist moderate frost temperatures, even in summer (e.g., Pisek et al. 1967; Sakai and Otsuka 1970; Käinmüller 1975; Larcher 1977; Larcher and Wagner 1983; Sakai and Larcher 1987; Körner and Larcher 1988; Körner 1999). These alpine plants do not appear to have much of a need to develop deep dormancy during the unfavorable season because of low risk of frost injuries.

Depth of dormancy of alpine and arctic plants has been known to differ depending on the snow cover of the habitat. Alpine snow-patch plants lack an endogenous dormancy, or at any rate the period of dormancy has only a very short duration (Rübel 1925; Sørensen 1941). This appears to be related to low risk of frost injuries under the snow cover, and this condition enables the plants to start growth as soon as snow disappears. The dormancy of alpine plants living in windswept ridges is more endogenously controlled than alpine snowbed plants (Körner 1999). This property enables the plants to avoid careless growth during the unfavorable season at the habitat, where they experience winter sunshine and daytime canopy warming above 20 °C (Körner 1999). The percentage of arctic plants that have no endogenous dormancy in terms of the development of flower organs increased in late snow-free localities (Sørensen 1941). An adaptive significance of this lack of endogenous dormancy was considered to be an effective utilization of even a very short period with favorable temperatures for continued development (Sørensen 1941). On the other hand, little information is available on the relationship between the depth of dormancy and

frost hardiness. This study focuses on this relationship in alpine and subalpine perennial forbs.

If the depth of dormancy of perennial forbs depends on the frost hardiness, it must be closely associated with traits associated with hardiness. Raunkiaer's life-forms (1934) indicate the frost hardiness of winter buds of temperate plants; chamaephytes are hardier than hemicryptophytes, and geophytes are the least hardy (Till 1956). The same relationships were also found for the potential frost hardiness, as obtained by frost-hardening treatments (Yoshie and Sakai 1981). It has been demonstrated that, in temperate regions, geophytes show a deeper dormancy in autumn than hemicryptophytes (Yoshie and Yoshida 1989).

Shoot habits, or shoot life-spans, of perennial forbs indicate their hardiness. Annual shoot-axes that bear shoot apices die back in the unfavorable season. Shoot apices for the next growing season are newly formed in winter buds that are situated near the base of the old shoot-axes. The buds form and endogenously enter a dormant state during the current growing period. On the one hand, perennial shoot-axes that bear shoot apices survive for over one year. The shoot apices grow during the current growing season and survive during the unfavorable season, and the persistent shoot apices resume growth in the next growing season. Since annual shoot-axes do not have much of a need to develop a freezing tolerance, they are logically considered to be less hardy to freezing stress than perennial shoot-axes.

The winter buds of alpine forbs are classified into two types: buds with scales and buds without scales; some alpine forbs form compact winter buds covered with scales while others form buds without any scales, where the shoot apices are protected by living or withered leaves and petioles (Yoshie 1998). Since bud scales protect shoot apices from physiological stresses, mechanical damage, and biological attack during the dormant period, protection of shoot apices by scales is expected to be more predominant in forbs with longer dormant periods. The duration of the dormant period depends on the shoot habit and the depth of the dormancy.

The objective of this study is to clarify (1) whether the depth of dormancy in autumn differs depending on the life form and the shoot habit, and (2) whether the bud type differs depending on the shoot habit and the depth of dormancy in alpine and subalpine perennial forbs.

Materials and methods

Experiments were done in three temperate high-mountain regions of Japan to avoid reducing natural populations of alpine forbs and to increase the diversity of the species tested. They were: Mt. Senjogadake (2,600– 3,010 m elevation, 35°43'N, 138°11'E), Japanese Southern Alps, central Honshu; Mt. Okudainitidake (2,400–2,550 m elevation, 36°36'N, 137°35'E), Japanese Northern Alps, central Honshu; and Mt. Kurodake (1,750–1,900 m elevation, 43°42'N, 142°55'E), Taisetu Mountains, Hokkaido, northern Japan. Seventy-seven species and varieties found abundantly in these regions were selected as experimental materials.

Experimental sampling on each mountain was performed close to the time of the first snowfall, in order to make sure that the phenological stages of tested plants were uniform. Sexually mature individuals were observed and collected at Mt. Senjogadake and Mt. Okudainitidake in late October of 1991 and 1992, and collected at Mt. Kurodake in late September of 1992. The materials were dug carefully from the ground in order to avoid damaging subterranean organs and so that was little or no effect on the survival. Exceptionally, a part of rhizomes below ca. 25 cm depth from the ground surface were cut away in *Polygonum weyrichii*.

At each sampling time, the positions of winter buds and the survival of shoot-axes and leaves were observed for every species. The survival of shoot-axes and leaves was also observed in the growing season of 1991–1993. Shoot-axes and leaves were regarded as perennial and wintergreen, respectively, if all or large parts them had little or no sign of frost damage at the sampling time and during the next summer. Classification of Raunkiaer's life-forms of the materials was performed at the sampling site, but a few species (*Pedicularis resupinata* and *Tilingia ajanensis*) were classified according to Shimizu (1982).

Immediately after the sampling, the materials were transferred to the laboratory. Over seven individuals per species, as a rule, were used for the dormancy experiment. They were potted with uniform soils adjusted for horticultural herbs on the market, and were cultivated in temperature-controlled room at 24 °C. The potted forbs were irradiated with fluorescent light (ca. 190 μ mol quanta m⁻² s⁻¹ at the pot surface) under a long-day regime (16 h day). Initiation of growth was monitored at intervals of one or two days for the 250-day duration of the experiment. The initiation of flowering and the elongation of stems or flower stalks was also recorded. The nutrients of Hyponex solution were supplied adequately during the experimental period.

The depth of dormancy was evaluated via the mean number of days required for growth initiation. Growth initiation was indicated by (1) an elongation of young foliage leaves (group 1: species belonged to chamaephytes and hemicryptophytes without bud scales), (2) an emergence of new foliage leaves out of scales (group 2: chamaephytes and hemicryptophytes with bud scales), and (3) an emergence of young shoots above the soil surface (group 3: geophytes). In all cases, the plants exhibited normal green leaves during a two-month observation period following the initiation of growth. Some forbs did not initiate growth within the 250 days, but browning of the organs was not detected, and they were all alive at the end of the experiment.

The numbers of days required for growth initiation were compared among plant groups, based on Raunkiaer's life forms and shoot habits. Growth initiation was

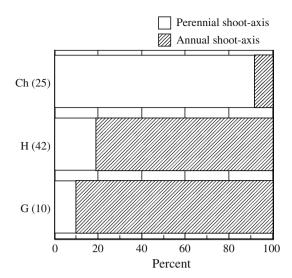


Fig. 1 Relationship between shoot habits and Raunkiaer's life forms. Ch chamaephytes, H hemicryptophytes, G geophytes. Numbers of species are shown in *parentheses*

investigated in exactly the same way for nine species, and only minor differences were observed in the number of the days required for growth initiation between years or between sites for a particular species (see the Appendix). Mean values were used for the analysis of these species. To clarify whether the bud scales differentiate, the buds of three individuals per species were carefully dissected into their components under a microscope in the laboratory. The data for the bud structures of 63 species were obtained from Yoshie (1998).

Results

Shoot habit was different among Raunkiaer's life-forms (χ^2 -test, P < 0.001). Almost all of the chamaephytes had perennial shoot-axes (Fig. 1), for which the leaves were wintergreen or summergreen. In contrast, except for one species, geophytes had annual shoot-axes. Most of the hemicryptophytes had annual shoot-axes which usually elongated upward and were classified into protohemicryptophytes and partial rosette plants. The remaining hemicryptophytes had perennial shoot-axes with summergreen leaves, which usually produced rosettes or large radical leaves and were classified into rosette plants or partial rosette plants.

The number of days required for growth initiation in the autumn was compared among four numerically predominant plant groups (Fig. 2). The number of days differed depending on the plant groups (χ^2 -test, P < 0.001). More than half of the chamaephytes with perennial shoot-axes initiated growth within two weeks. These forbs exhibited potential growth ability at warm temperatures in autumn, although their growth was reduced in their native habitats. The initiation of growth of chamaephytes with perennial shoot-axes (mean \pm SD, 18.7 \pm 15.6 days) and of hemicryptophytes with

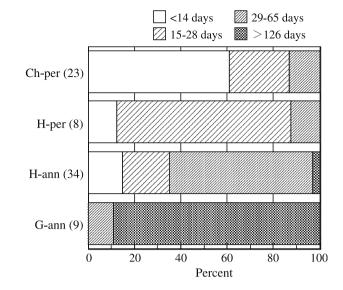


Fig. 2 Percent distribution of the number of days required for growth initiation in four plant groups classified by Raunkiaer's life-forms and shoot habits. *Ch-per* chamaephytes with perennial shoot-axes, *H-per* hemicryptophytes with perennial shoot-axes, *H-ann* hemicryptophytes with annual shoot-axes, *G-ann* geophytes with annual shoot-axes. Numbers of species are shown in *parentheses*

 Table 1 Bud type in relation to shoot habit and days to growth initiation

Shoot habit	Bud type						
(number of days required for growth initiation)	Buds without scales	Buds with scales					
Perennial shoot-axes	Number of species						
(<14 days)	15	0					
(>15 days)	8	9					

perennial shoot-axes (19.8 \pm 6.0 days) occurred much earlier than in hemicryptophytes with annual shoot-axes (35.0 \pm 16.4 days in 33 species; one species did not initiate growth within 250 days). The results indicated that chamaephytes and hemicryptophytes with perennial shoot-axes showed a much shallower dormancy in autumn than hemicryptophytes with annual shoot-axes. In nine species of geophytes with annual shoot-axes, seven species did not initiate growth within 250 days. They never sprout leaves and stems in autumn in native habitats. These results indicate that geophytes have the most endogenously controlled dormancy of all the plant groups.

Bud types of perennial forbs differed depending on the shoot habit (χ^2 -test, P < 0.001). All of the species with annual shoot-axes had winter buds covered with scales (Table 1). Bud types of perennial forbs with perennial shoot-axes differed depending on the depth of dormancy (χ^2 -test, P < 0.01). All of the species that initiated growth within two weeks had winter buds without any scales, while more than half of the species that required over 15 days for growth initiation had buds covered with scales. These results indicate that the shoot apices are well protected by bud scales in the forbs with long endogeneous-dormant periods.

Discussion

This study revealed that the depth of dormancy of alpine and subalpine perennial forbs in autumn differed among plant groups classified by Raunkiaer's life-forms and shoot habits; chamaephytes with perennial shootaxes showed shallower dormancy than hemicryptophytes with annual shoot-axes, and geophytes with annual shoot-axes showed the deepest dormancy. The results strongly suggest that the dormancy is more endogenously controlled in forbs less hardy to freezing stress.

The percentage of herbaceous chamaephytes (such as cushion plants and passive chamaephytes) for which the shoots were persistent increased at high altitude (Raunkiaer 1934). The results suggest that the percentage of forbs with shallow dormancy increases at high altitude. Potential growth ability of alpine herbaceous chamaephytes in autumn is an adaptive advantage, since they can then utilize as much of the short vegetative period as possible. Chamaephytes tended to flower and elongate stems or flower-stalks normally during the experimental period, suggesting a shallow dormancy (see the Appendix).

Protohemicryptophytes avoid autumnal growth of annual shoot-axes, which are probably frost-sensitive, by exhibiting much deeper dormancy than chamaephytes. Winter buds of geophytes were the least hardy to freezing stress (Till 1956; Yoshie and Sakai 1981). In general, active plant organs are less resistant to freezing stress than inactive dormant organs. Although the buds of geophytes are protected from severe low temperatures below the ground, breaking the dormancy and activating the buds in autumn would lead to serious frost damage. Geophytes avoid the activation of buds by exhibiting the deepest dormancy.

The percentage of chamaephytes was also high for arctic tundra (Raunkiaer 1934). Sørensen (1941) studied the developmental morphology and phenology of Greenland plants. When we analyzed his data for perennial forbs (99 species), we observed comparatively high percentages of chamaephytes (40.4%), species with wintergreen leaves (46.4%), and species without any bud scales (83.8%). These traits are characteristic of alpine forbs that have shallow dormancy. Arctic plants are phylogenically related to alpine plants. These results suggest that the percentage of forbs with shallow dormancy also increases at high latitudes.

Almost all of the chamaephytes in this study had perennial shoot-axes. Photosynthetic carbon gain of alpine plants is constrained by low temperatures, short vegetative period, and low soil fertility (Scott and Billings 1964; Bliss 1971; Friend and Woodward 1990; Körner 1999). In these less-productive habitats, an prolonged life-span of the shoot axis increases the efficiency of use of carbon and nutrients, and is potentially an adaptive advantage for photosynthetic carbon gain, as has been indicated before for plant leaves (Chapin 1980; Chabot and Hicks 1982; Kudo 1992). The location of the winter buds on perennial shoot-axes above the ground surface leads to a herbaceous chamaephyte morphology.

Acknowledgments I thank anonymous reviewers for their helpful comments on the manuscript. I also thank Taisetusan, Chubusangaku, and Fuji-Hakone-Izu National Park Offices, the Japan Environmental Agency, the Kamikawa Regional Forestry Bureau, the Hokkaido Cultural Committee, and the Japan Cultural Agency for permission to work in the high-mountain area. This study was supported by Grants-in-Aid for Scientific Research (03640556 and 05304053) from the Ministry of Education, Science and Culture, Japan.

Appendix

 Table 2 Days to initiation of growth and flowering (mean \pm SD), elongation of stem, shoot habit, differentiation of bud scales, and Raunkiaer's life forms of high-mountain forbs, and altitude, site, and year of collection

 Space
 Deve to
 Shoot
 Differentiation
 Life
 Altitude
 Site
 Year

Species	Days to growth initiation	of stem	Days to flowering initiation	Shoot habit	of bud scale	form	Altitude (m)	Site	Year
Hypericum kamtschaticum var. senanense Barbarea orthoceras Barbarea orthoceras Arabis serrata var. glauca Stellaria nipponica Stellaria nipponica Hypericum kamtschaticum Cirsium gratiosum Taraxacum Yatsugatakense	$\begin{array}{c} 3.5 \pm 1.5^{a} \\ 4.7 \pm 0.5^{a} \\ 6.3 \pm 1.7^{a} \\ 7.4 \pm 0.9^{a} \\ 7.7 \pm 2.1^{a} \\ 8.1 \pm 2.3^{a} \\ 8.2 \pm 1.4^{a} \\ 8.6 \pm 2.4^{a} \\ 8.7 \pm 0.8^{a} \end{array}$	+ - + + + + -	$\begin{array}{r} 33.0 \ \pm \ 4.3 \\ nf \\ 28.5 \ \pm \ 3.5 \\ 73.0 \ \pm \ 9.4 \\ 49.4 \ \pm \ 6.8 \\ 32.0 \ \pm \ 4.9 \\ 36.8 \ \pm \ 5.7 \\ nf \\ nf \end{array}$	pe(w) pe(w) pe(w) pe(w) pe(w) pe(w) an pe(s)	ud ud ^f ud ud ^f ud ud ^f d ^f ud ^f	Ch Ch Ch Ch Ch Ch Ch H H	2,400 2,400 2,400 1,890 3,010 3,000 1,750 2,700 2,700	Ok Ok Ku Se Se Ku Se Se	1991 1992 1991 1992 1992 1991 1992 1991 1991
Geranium eriostemon var. reinii	$8.7~\pm~0.5^a$	-	nf	an	d	Н	2,650	Se	1991

Table 2 (Contd.)

Cerastium shizopetalum 8.0 ± 1.4^a + 28.9 ± 3 Cerastium shizopetalum 9.8 ± 1.5^a + 29.7 ± 4 Rumex montanus 9.0 ± 0.7^a + 37.0 ± 6 Arabis lyrata subsp. kamchatica 11.0 ± 1.8^a + 37.0 ± 4 Sedum japonicum var. senanense 11.0 ± 2.7^a -nfDianthus superbus var. speciosus 11.6 ± 1.2^a + 46.5 ± 7 Cirsium kamtschaticum subsp. 11.7 ± 4.1^a -nfDianthus superbus var. speciosus 11.6 ± 1.2^a + 42.1 ± 5 Saxifraga laciniata 13.2 ± 2.1^a + 42.1 ± 5 Saxifraga merkii 13.5 ± 1.9^a + 30.0 ± 4 Potentilla matsumurae 11.6 ± 3.1^a +nfPotentilla matsumurae 15.5 ± 6.0^a +nfSaxifraga bronchialis subsp. funstonii 14.0 ± 3.5^a + 25.6 ± 3 Potentilla matsumurae 15.2 ± 2.9^a +nfCirsium babanum var. otayae 15.3 ± 2.2^a -nfCirsium babanum var. otayae 17.4 ± 3.0^a -nfArtemisia pedunculosa 18.8 ± 5.6^a -nfPolygonum weyrichii var. alpinum 22.0 ± 1.0^a -nfArabis tanakana 21.4 ± 4.7^a + 45.0 ± 4 Gentian algida 22.0 ± 2.5^a + 87.5 ± 2 Saxifraga fusca var. nipponica 22.2 ± 2.9^a -nfArtemisia pedunculosa 18.8 ± 5.6^a -nfPolygonum weyrichii var. alpinum 22.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} ud\\ d^{f}\\ ud^{f}\\ ud^{f}\\ d^{f}\\ d^{f}\\ ud^{f}\\ ud^{f}\\ ud^{f}\\ ud^{f}\\ ud\\ ud\\ ud^{f}\\ ud^{f}$	Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch	2,900 2,900 2,600 2,950 2,850 2,950 1,750 2,440 1,880 1,890 2,750 2,560	Se Se Se Se Ku Ok Ku Ku Se	1991 1992 1991 1992 1992 1991 1992 1991 1992 1992 1991
Rumex montanus 9.0 ± 0.7^a + 37.0 ± 6 Arabis lyrata subsp. kamchatica 11.0 ± 1.8^a + 37.0 ± 6 Arabis lyrata subsp. kamchatica 11.0 ± 1.8^a + 37.0 ± 6 Dianthus superbus var. speciosus 11.6 ± 1.2^a + nf Dianthus superbus var. speciosus 11.7 ± 4.1^a - nf Potentillam - 11.7 ± 4.1^a - nf Biarding and sumurae 13.1 ± 1.4^a - nf Potentilla matsumurae 13.4 ± 3.8^a + 15.7 ± 2 Potentilla matsumurae 13.4 ± 3.8^a + 15.7 ± 2 Potentilla matsumurae 15.5 ± 6.0^a + nf Cirsium batonum vare 15.2 ± 2.9^a + 45.7 ± 5 Primura cumeifolia 15.1 ± 2.8^a + 25.6 ± 3 Potentilla miyabei 15.2 ± 2.9^a + nf Anemone narcissiflora var. sachalinensis 15.2 ± 2.9^a + nf Saxifraga fusca var. kikubuki 16.3 ± 2.6^a + nf Sustiftaga fusca var. nisessiliftar 17.4 ± 3.0^a </td <td>$\begin{array}{ccccc} .6 & an \\ .3 & pe(w) \\ pe(w) \\ .1 & pe(s) \\ an \\ .2 & pe(w) \\ pe(s) \\ .4 & pe(s) \\ pe(s) \\ .4 & pe(w) \\ .0 & pe(s) \\ .7 & pe(s) \\ pe(s) \\ nn \\ .0 & an \\ an \end{array}$</td> <td>$d^{f}$ ud^{f} ud^{f} d^{f} ud^{f} ud^{f}</td> <td>H Ch Ch H Ch Ch Ch Ch Ch Ch Ch Ch</td> <td>2,600 2,950 2,850 2,950 1,750 2,440 1,880 1,890 2,750 2,560</td> <td>Se Se Se Ku Ok Ku Ku Se</td> <td>1991 1992 1992 1991 1992 1991 1992 1992</td>	$\begin{array}{ccccc} .6 & an \\ .3 & pe(w) \\ pe(w) \\ .1 & pe(s) \\ an \\ .2 & pe(w) \\ pe(s) \\ .4 & pe(s) \\ pe(s) \\ .4 & pe(w) \\ .0 & pe(s) \\ .7 & pe(s) \\ pe(s) \\ nn \\ .0 & an \\ an \end{array}$	d^{f} ud^{f} ud^{f} d^{f} ud^{f}	H Ch Ch H Ch Ch Ch Ch Ch Ch Ch Ch	2,600 2,950 2,850 2,950 1,750 2,440 1,880 1,890 2,750 2,560	Se Se Se Ku Ok Ku Ku Se	1991 1992 1992 1991 1992 1991 1992 1992
Arabis lyrata subsp. kamchatica $11.0 \pm 1.8^{a} + 1.0 \pm 2.7^{a} - 1.0 + 1.0 + 1.2^{a} + 1.0 +$	$\begin{array}{cccc} .3 & pe(w) & pe(w) \\ & pe(w) & .1 & pe(s) \\ an & & \\ & an & \\ .2 & pe(w) & pe(s) \\ .4 & pe(w) & pe(s) \\ .4 & pe(w) & .0 & pe(s) \\ .7 & pe(s) & pe(s) \\ pe(s) & an \\ .0 & an \\ an \end{array}$	ud^{f} ud^{f} d^{f} ud^{f}	Ch Ch H Ch Ch Ch Ch Ch Ch Ch Ch	2,950 2,850 2,950 1,750 2,440 1,880 1,890 2,750 2,560	Se Se Ku Ok Ku Ku Se	1992 1992 1991 1992 1991 1992 1992 1992
Sedum japonicum var. senanense $11.0 \pm 2.7^{a} -$ nfDianthus superbus var. speciosus $11.6 \pm 1.2^{a} +$ 46.5 ± 7 Cirsium kamtschaticum subsp. $11.7 \pm 4.1^{a} -$ nfpectinellum $13.1 \pm 1.4^{a} -$ nfHieracium japonicum $13.1 \pm 1.4^{a} -$ nfSaxifraga laciniata $13.2 \pm 2.1^{a} +$ 42.1 ± 5 Saxifraga merkii $13.5 \pm 1.9^{a} +$ 30.0 ± 4 Potentilla matsumurae $11.6 \pm 3.1^{a} +$ nfPotentilla matsumurae $15.5 \pm 6.0^{a} +$ nfSaxifraga bronchialis subsp. funstonii $14.0 \pm 2.0^{a} +$ 45.7 ± 5 Primura cumifolia $15.1 \pm 2.8^{a} +$ 25.6 ± 3 Potentilla miyabei $15.2 \pm 2.9^{a} +$ nfAnemone narcissiflora var. sachalinensis $15.2 \pm 2.2^{a} -$ nfSaxifraga fusca var. kikubuki $16.3 \pm 2.6^{a} +$ 64.0 ± 7 Saustraga fusca var. kikubuki $16.3 \pm 2.6^{a} +$ 64.0 ± 7 Saustraga fusca var. sessilifora $17.4 \pm 3.0^{a} -$ nfArtemisia pedunculosa $18.8 \pm 5.6^{a} -$ nfPolygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} +$ 77.0 Arabis tanakana $21.4 \pm 4.7^{a} +$ 45.0 ± 4 Gentiana algida $22.9 \pm 2.5^{a} +$ 87.5 ± 2 Aquesti fuelta var. nipponica $22.2 \pm 2.9^{a} +$ nfLeontopodium japonicum $23.0 \pm 7.9^{d} -$ nfPolygonum weyrichii var. alpinum $20.9 \pm 2.5^{a} +$ 87.5 ± 2 Saussurea triptera var. nipponica $22.4 \pm 2.9^{a} -$ nfCo	$\begin{array}{cccc} & pe(w) \\ 1 & pe(s) \\ an \\ & \\ .1 & pe(w) \\ .2 & pe(w) \\ pe(s) \\ .4 & pe(w) \\ .0 & pe(s) \\ .7 & pe(s) \\ pe(s) \\ pe(s) \\ nn \\ .0 & an \\ an \\ \end{array}$	$\begin{array}{c} ud^{f} \\ ud^{f} \\ d^{f} \\ ud^{f} \\ ud^{f} \\ ud^{f} \\ ud \\ ud \\ ud^{f} \\ ud^{f$	Ch Ch H Ch Ch Ch Ch Ch Ch Ch	2,850 2,950 1,750 2,440 1,880 1,890 2,750 2,560	Se Se Ku Ok Ku Ku Se	1992 1991 1992 1991 1992 1992 1992 1991
Dianthus superbus var. speciosus $11.6 \pm 1.2^a + 4.1^a - nf$ Cirsium kamtschaticum subsp. $11.7 \pm 4.1^a - nf$ pectinellum $11.7 \pm 4.1^a - nf$ Hieracium japonicum $13.1 \pm 1.4^a - nf$ Saxifraga laciniata $13.2 \pm 2.1^a + 42.1 \pm 5$ Saxifraga merkii $13.5 \pm 1.9^a + 30.0 \pm 4$ Potentilla matsumurae $11.6 \pm 3.1^a + nf$ Potentilla matsumurae $13.4 \pm 3.8^a + 15.7 \pm 2$ Potentilla matsumurae $15.5 \pm 6.0^a + nf$ Campanula lasiocarpa $14.0 \pm 2.0^a + 45.7 \pm 5$ Primura cumeifolia $15.2 \pm 2.9^a + nf$ Anemone narcissiflora var. sachalinensis $15.2 \pm 3.2^a - nf$ Cirsium babanum var. otayae $15.3 \pm 2.2^a - nf$ Saustiraga fusca var. kikubuki $16.3 \pm 2.6^a + 64.0 \pm 7$ Sausurea nikoensis var. sessilifora $17.4 \pm 3.0^a - nf$ Artemisia pedunculosa $18.8 \pm 5.6^a - nf$ Polygonum weyrichii var. alpinum $20.9 \pm 2.1^b + 77.0$ Arabis tanakana $21.4 \pm 4.7^a + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^a - nf$ Aremisis pedunculosa $18.8 \pm 5.6^a - nf$ Folgonum weyrichii var. alpinum $22.9 \pm 2.5^a + 87.5 \pm 2$.1 pe(s) an .0 pe(w) .2 pe(w) pe(s) .4 .4 pe(s) .4 pe(s) .7 pe(s) .9 pe(s) .9 pe(s) .10 an .00 an .01 an .02 an .03 an .04 an .05 an .06 an .07 an .08 an .09 an .010 an	$\begin{array}{c} ud^{f} \\ d^{f} \\ ud^{f} \\ ud^{f} \\ ud^{f} \\ ud \\ ud \\ ud^{f} \\ ud^{f$	Ch H Ch Ch Ch Ch Ch Ch Ch Ch	2,950 1,750 2,440 1,880 1,890 2,750 2,560	Se Ku Ok Ku Ku Se	1991 1992 1991 1992 1992 1991
Cirsium kamtschaticum subsp. 11.7 ± 4.1^{a} nf pectinellum 13.1 $\pm 1.4^{a}$ nf Hieracium japonicum 13.1 ± 1.4^{a} nf Saxifraga laciniata 13.2 ± 2.1^{a} $+$ 42.1 ± 5 Saxifraga merkii 13.5 ± 1.9^{a} $+$ 30.0 ± 4 Potentilla matsumurae 13.4 ± 3.8^{a} $+$ 15.7 ± 2 Potentilla matsumurae 13.4 ± 3.8^{a} $+$ 15.7 ± 2 Potentilla matsumurae 13.4 ± 3.8^{a} $+$ 15.7 ± 2 Potentilla matsumurae 14.0 ± 2.0^{a} $+$ 45.7 ± 5 Primura cuneifolia 15.1 ± 2.8^{a} $+$ 25.6 ± 3 Potentilla miyabei 15.2 ± 2.9^{a} nf 16 Cirsium babanum var. otayae 15.3 ± 2.2^{a} nf 16 Saxifraga fusca var. kikubuki 16.3 ± 2.6^{a} 64.0 ± 7 7.6 ± 0.8^{a} 16 Artemisia pedunculosa 18.8 ± 5.6^{a} nf 17.4 ± 3.0^{a} 16 42.0 ± 1.0^{a} 16 Artemisia pedunculosa 18.8 ± 5.6^{a} 16 10^{a} 16 12.4 ± 4	an an .0 pe(w) .2 pe(w) pe(s) .4 pe(s) .4 pe(s) .6 pe(s) .7 pe(s) pe(s) pe(s) an .0 an an	d^{f} ud^{f} ud^{f} ud^{f} ud ud^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f}	H Ch Ch Ch Ch Ch Ch Ch	1,750 2,440 1,880 1,890 2,750 2,560	Ku Ok Ku Ku Se	1992 1991 1992 1992 1991
pectinellum13.1 \pm 1.4 ^a -nfHieracium japonicum13.2 \pm 2.1 ^a +42.1 \pm 5Saxifraga laciniata13.2 \pm 2.1 ^a +42.1 \pm 5Saxifraga merkii13.5 \pm 1.9 ^a +30.0 \pm 4Potentilla matsumurae11.6 \pm 3.1 ^a +nfPotentilla matsumurae13.4 \pm 3.8 ^a +15.7 \pm 2Potentilla matsumurae15.5 \pm 6.0 ^a +nfSaxifraga bronchialis subsp. funstonii14.0 \pm 2.0 ^a +45.7 \pm 5Primura cuneifolia15.1 \pm 2.8 ^a +25.6 \pm 3Potentilla miyabei15.2 \pm 2.9 ^a +nfAnemone narcissiflora var. sachalinensis15.2 \pm 3.2 ^a -nfSaxifraga fusca var. kikubuki16.3 \pm 2.6 ^a +64.0 \pm 7Saussurea nikoensis var. sessiliflora17.4 \pm 3.0 ^a -nfArtemisia pedunculosa18.8 \pm 5.6 ^a -nfArtemisia pedunculosa21.4 \pm 4.7 ^a +45.0 \pm 4Gentiana algida22.0 \pm 1.0 ^a -nfAuilegia flabellata var. nipponica22.2 \pm 2.9 ^a +59.2 \pm 5Aquilegia flabellata var. nipponica23.4 \pm 6.9 ^a -nfLiveris dentata var. alpicola23.4 \pm 6.9 ^a -nfLiveris dentata var. alpicola23.4 \pm 6.9 ^a -nfLeontopodium japonicum24.3 \pm 3.0 ^a -nfLiveris dentata var. alpicola24.3 \pm 3.0 ^a -	an .0 pe(w) .2 pe(w) pe(s) .4 pe(s) pe(s) .4 pe(w) .0 pe(s) pe(s) pe(s) pe(s) an .0 an an	d^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f} ud^{f}	H Ch Ch Ch Ch Ch Ch	2,440 1,880 1,890 2,750 2,560	Ok Ku Ku Se	1991 1992 1992 1991
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} .0 & pe(w) \\ .2 & pe(w) \\ pe(s) \\ .4 & pe(s) \\ pe(s) \\ .4 & pe(w) \\ .0 & pe(s) \\ .7 & pe(s) \\ pe(s) \\ pe(s) \\ an \\ .0 & an \\ an \end{array}$	ud ^f ud ^f ud ud ud ^f ud ^f ud ^f ud ^f	Ch Ch Ch Ch Ch Ch	1,880 1,890 2,750 2,560	Ku Ku Se	1992 1992 1991
Saxifraga laciniata $13.2 \pm 2.1^{a} + 42.1 \pm 5$ Saxifraga merkii $13.5 \pm 1.9^{a} + 30.0 \pm 4$ Potentilla matsumurae $11.6 \pm 3.1^{a} + nf$ Potentilla matsumurae $13.4 \pm 3.8^{a} + 15.7 \pm 2$ Potentilla matsumurae $15.5 \pm 6.0^{a} + nf$ Saxifraga bronchialis subsp. funstonii $14.0 \pm 2.0^{a} + 45.7 \pm 5$ Primura cuneifolia $15.1 \pm 2.8^{a} + 25.6 \pm 3$ Potentilla miyabei $15.2 \pm 2.9^{a} + nf$ Anemone narcissiflora var. sachalinensis $15.2 \pm 2.3^{a} - nf$ Cirsium babanum var. otayae $15.3 \pm 2.2^{a} - nf$ Sausurea nikoensis var. sessiliflora $17.4 \pm 3.0^{a} - nf$ Stallaria pterosperma $17.6 \pm 0.8^{a} + 16.0^{a} + 45.0 \pm 4$ Artemisia pedunculosa $18.8 \pm 5.6^{a} - nf$ Pologonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0^{a} + 45.0 \pm 4$ Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Aquilegia flabellata var. nipponica $22.4 \pm 2.9^{a} - nf$ Sausurea triptera var. ninor $23.0 \pm 7.9^{d} - nf$ Itaria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Anemone narcissiflora var. nipponica $22.4 \pm 2.9^{a} - nf$ Aquilegia flabellata var. alpicola $23.4 \pm 6.9^{a} - nf$ Arris dentata var. alpicola $23.4 \pm 6.9^{a} - nf$ Anemone narcissiflora var. nipponica $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Aquilegia flabellata var. nipponica $24.3 \pm 3.0^{a} - nf$ Itaria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Arrica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$	$\begin{array}{cccc} 0 & pe(w) \\ .2 & pe(w) \\ pe(s) \\ .4 & pe(s) \\ pe(s) \\ .4 & pe(w) \\ .0 & pe(s) \\ .7 & pe(s) \\ pe(s) \\ pe(s) \\ an \\ .0 & an \\ an \end{array}$	ud ^f ud ^f ud ud ud ^f ud ^f ud ^f ud ^f	Ch Ch Ch Ch Ch Ch	1,880 1,890 2,750 2,560	Ku Ku Se	1992 1992 1991
Potentilla matsumurae $11.6 \pm 3.1^a + 13.4 \pm 3.8^a + 15.7 \pm 2$ Potentilla matsumurae $13.4 \pm 3.8^a + 15.7 \pm 2$ Potentilla matsumurae $15.5 \pm 6.0^a + 15.5 \pm 5.2 \pm 3.2^a + 15.5 \pm 5.5 \pm 5.5$.4 pe(s) pe(s) .4 pe(w) .0 pe(s) .7 pe(s) pe(s) pe(s) an .0 an an	ud ^f ud ud ^f ud ^f ud ^f ud ^f ud ^f	Ch Ch Ch Ch	2,750 2,560	Se	1991
Potentilla matsumurae 13.4 ± 3.8^a + 15.7 ± 2 Potentilla matsumurae 15.5 ± 6.0^a +nfSaxifraga bronchialis subsp. funstonii 14.0 ± 3.5^a + 50.2 ± 6 Campanula lasiocarpa 14.0 ± 2.0^a + 45.7 ± 5 Primura cuneifolia 15.2 ± 2.9^a +nfDotentilla miyabei 15.2 ± 2.9^a +nfAnemone narcissiflora var. sachalinensis 15.2 ± 2.9^a +nfCirsium babanum var. otayae 15.3 ± 2.2^a -nfSaxifraga fusca var. kikubuki 16.3 ± 2.6^a + 64.0 ± 7 Saussurea nikoensis var. sessiliflora 17.4 ± 3.0^a -nfArtemisia pedunculosa 18.8 ± 5.6^a -nfPolygonum weyrichii var. alpinum 20.9 ± 2.1^b + 77.0 Arabis tanakana 21.4 ± 4.7^a + 45.0 ± 4 Gentiana algida 22.0 ± 1.0^a -nfIxeris dentata var. nipponica 22.2 ± 2.9^a + 59.2 ± 5 Aquilegia flabellata var. pumila 22.9 ± 2.5^a + 87.5 ± 2 Saussurea triptera var. minor 23.0 ± 7.9^d -nfIxeris dentata var. alpicola 24.3 ± 3.0^a -nfFauria crista-galli subsp. japonica 24.3 ± 3.0^a -nfIkeontopodium japonicum 24.9 ± 9.0^a +nfIkeontopodium japonicum 27.8 ± 5.7^a -nfIkeontopodium japonicum 27.8 ± 5.7^a -nfIkeontopodium var. nipponicum </td <td>.4 pe(s) pe(s) .4 pe(w) .0 pe(s) .7 pe(s) pe(s) pe(s) an .0 an an</td> <td>ud ud ud^f ud^f ud^f ud^f</td> <td>Ch Ch Ch</td> <td>2,560</td> <td></td> <td></td>	.4 pe(s) pe(s) .4 pe(w) .0 pe(s) .7 pe(s) pe(s) pe(s) an .0 an an	ud ud ud ^f ud ^f ud ^f ud ^f	Ch Ch Ch	2,560		
Potentilla matsumurae $15.5 \pm 6.0^{a} + 1$ nfSaxifraga bronchialis subsp. funstonii $14.0 \pm 3.5^{a} + 50.2 \pm 6$ Campanula lasiocarpa $14.0 \pm 2.0^{a} + 45.7 \pm 5$ Primura cuneifolia $15.1 \pm 2.8^{a} + 25.6 \pm 3$ Potentilla miyabei $15.2 \pm 2.9^{a} + 16^{a}$ Anemone narcissiflora var. sachalinensis $15.2 \pm 3.2^{a} - 16^{a}$ Cirsium babanum var. otayae $15.3 \pm 2.2^{a} - 16^{a}$ Saxifraga fusca var. kikubuki $16.3 \pm 2.6^{a} + 64.0 \pm 7$ Saussurea nikoensis var. sessiliflora $17.4 \pm 3.0^{a} - 16^{a}$ Artemisia pedunculosa $18.8 \pm 5.6^{a} - 16^{a}$ Polygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0^{a}$ Anamone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 87.5 \pm 2$ Aquilegia flabellata var. numila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. minor $23.0 \pm 7.9^{d} - 16^{a}$ Ixeris dentata var. alpicola $23.4 \pm 6.9^{a} - 16^{a}$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - 16^{a}$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - 16^{a}$ Artemisia sinanensis $29.0 \pm 9.2^{a} - 16^{a}$ Artemisia monophylla $30.9 \pm 14.2^{a} + 16^{a}$ Artemisia monophylla $30.9 \pm 14.2^{a} - 75.0^{a}$	pe(s) .4 pe(w) .0 pe(s) .7 pe(s) pe(s) an .0 an an	ud ^f ud ^f ud ^f ud ^f ud ^f	Ch Ch	/	O1-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$.4 pe(w) .0 pe(s) .7 pe(s) pe(s) pe(s) an .0 an an	ud ^f ud ^f ud ^f ud ^f	Ch	1 000	Ok	1992
Campanula lasiocarpa $14.0 \pm 2.0^{a} + 45.7 \pm 5$ Primura cuneifolia $15.1 \pm 2.8^{a} + 25.6 \pm 3$ Potentilla miyabei $15.2 \pm 2.9^{a} + nf$ Anemone narcissiflora var. sachalinensis $15.2 \pm 3.2^{a} - nf$ Cirsium babanum var. otayae $15.3 \pm 2.2^{a} - nf$ Saxifraga fusca var. kikubuki $16.3 \pm 2.6^{a} + 64.0 \pm 7$ Sausurea nikoensis var. sessiliflora $17.4 \pm 3.0^{a} - nf$ Stellaria pterosperma $17.6 \pm 0.8^{a} + 77.0$ Artemisia pedunculosa $18.8 \pm 5.6^{a} - nf$ Polygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0$ Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Aruemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 87.5 \pm 2$ Sausurea triptera var. ninor $23.0 \pm 7.9^{d} - nf$ Isseilaria rista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 5.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $34.0 \pm 12.2^{a} - 75.0$.0 pe(s) .7 pe(s) pe(s) pe(s) an .0 an an	ud ^f ud ^f ud ^f		1,890	Ku	1992
Primura cuneifolia $15.1 \pm 2.8^{a} + 25.6 \pm 3$ Potentilla miyabei $15.2 \pm 2.9^{a} + nf$ Anemone narcissiflora var. sachalinensis $15.2 \pm 3.2^{a} - nf$ Cirsium babanum var. otayae $15.3 \pm 2.2^{a} - nf$ Saxifraga fusca var. kikubuki $16.3 \pm 2.6^{a} + 64.0 \pm 7$ Saussurea nikoensis var. sessiliflora $17.4 \pm 3.0^{a} - nf$ Stellaria pterosperma $17.6 \pm 0.8^{a} + nf$ Artemisia pedunculosa $18.8 \pm 5.6^{a} - nf$ Polygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0$ Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Anemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 87.5 \pm 2$ Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. minor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $24.3 \pm 3.0^{a} - nf$ Heloniopsis orientalis $24.3 \pm 3.0^{a} - nf$ Heloniopsis orientalis $24.9 \pm 9.0^{a} + nf$ Contopodium japonicum $27.8 \pm 5.7^{a} - nf$ Arrica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $28.0 \pm 8.0^{a} - 75.0$.7 pe(s) pe(s) pe(s) an 1.0 an an	ud ^f ud ^f	('h	3,000	Se	1992
Potentilla miyabei $15.2 \pm 2.9^{a} + nf$ Anemone narcissiflora var. sachalinensis $15.2 \pm 3.2^{a} - nf$ Cirsium babanum var. otayae $15.3 \pm 2.2^{a} - nf$ Saxifraga fusca var. kikubuki $16.3 \pm 2.6^{a} + 64.0 \pm 7$ Saussurea nikoensis var. sessiliflora $17.4 \pm 3.0^{a} - nf$ Stellaria pterosperma $17.6 \pm 0.8^{a} + nf$ Artemisia pedunculosa $18.8 \pm 5.6^{a} - nf$ Polygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0$ Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Anemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 59.2 \pm 5$ Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. ninor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $24.3 \pm 3.0^{a} - nf$ Heloniopsis orientalis $24.3 \pm 3.0^{a} - nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Artiensia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $34.0 \pm 12.2^{a} - 75.0$	pe(s) pe(s) an .0 an an	udf		2,850	Se	1991
Anemone narcissiflora var. sachalinensis 15.2 ± 3.2^{a} -nfCirsium babanum var. otayae 15.3 ± 2.2^{a} -nfSaxifraga fusca var. kikubuki 16.3 ± 2.6^{a} + 64.0 ± 7 Saussurea nikoensis var. sessiliflora 17.4 ± 3.0^{a} -nfStellaria pterosperma 17.6 ± 0.8^{a} +nfArtemisia pedunculosa 18.8 ± 5.6^{a} -nfPolygonum weyrichii var. alpinum 20.9 ± 2.1^{b} + 77.0 Arabis tanakana 21.4 ± 4.7^{a} + 45.0 ± 4 Gentiana algida 22.0 ± 1.0^{a} -nfAnemone narcissiflora var. nipponica 22.2 ± 2.9^{a} + 59.2 ± 5 Aquilegia flabellata var. pumila 22.9 ± 2.5^{a} + 87.5 ± 2 Saussurea triptera var. minor 23.0 ± 7.9^{d} -nfIxeris dentata var. alpicola 24.3 ± 3.0^{a} -nfLeontopodium japonicum 24.9 ± 9.0^{a} +nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfLilium medeoloides 28.0 ± 8.0^{a} -nf	pe(s) an .0 an an		H Ch	1,900 1,890	Ku Ku	1992 1992
Cirsium babanum var. otayae 15.3 ± 2.2^{a} -nfSaxifraga fusca var. kikubuki 16.3 ± 2.6^{a} + 64.0 ± 7 Saussurea nikoensis var. sessiliflora 17.4 ± 3.0^{a} -nfStellaria pterosperma 17.6 ± 0.8^{a} +nfArtemisia pedunculosa 18.8 ± 5.6^{a} -nfPolygonum weyrichii var. alpinum 20.9 ± 2.1^{b} + 77.0 Arabis tanakana 21.4 ± 4.7^{a} + 45.0 ± 4 Gentiana algida 22.0 ± 1.0^{a} -nfAnemone narcissiflora var. nipponica 22.2 ± 2.9^{a} + 59.2 ± 5 Aquilegia flabellata var. pumila 22.9 ± 2.5^{a} + 87.5 ± 2 Saussurea triptera var. minor 23.0 ± 7.9^{d} -nfIxeris dentata var. alpicola 24.3 ± 3.0^{a} -nfHeloniopsis orientalis 24.9 ± 9.0^{a} +nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfIf Geum calthaefolium var. nipponicum 29.0 ± 9.2^{a} -nfIf Geum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfIf Geum calthaefolium var. nipponicum 29.0 ± 9.2^{a} -nfIf Geum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfIf Geum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfIf Geum calthaefolium var. nipponicum 29.0 ± 9.2^{a} -nfIf Geum calthae	an .0 an an	ud ^f	H	1,890	Ku	1992
Saxifraga fusca var. kikubuki $16.3 \pm 2.6^{a} + 64.0 \pm 7$ Saussurea nikoensis var. sessiliflora $17.4 \pm 3.0^{a} - nf$ Stellaria pterosperma $17.6 \pm 0.8^{a} + nf$ Artemisia pedunculosa $18.8 \pm 5.6^{a} - nf$ Polygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0$ Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Anemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 59.2 \pm 5$ Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. minor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $24.3 \pm 3.0^{a} - nf$ Heloniopsis orientalis $24.3 \pm 3.0^{a} - nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 5.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $28.0 \pm 8.0^{a} - 75.0$.0 an an	d ^f	H	2,550	Ok	1992
Saussurea nikoensis var. sessiliflora 17.4 ± 3.0^{a} nfStellaria pterosperma 17.6 ± 0.8^{a} nfArtemisia pedunculosa 18.8 ± 5.6^{a} nfPolygonum weyrichii var. alpinum 20.9 ± 2.1^{b} +Arabis tanakana 21.4 ± 4.7^{a} +Gentiana algida 22.0 ± 1.0^{a} nfAnemone narcissiflora var. nipponica 22.2 ± 2.9^{a} +Aquilegia flabellata var. pumila 22.9 ± 2.5^{a} +Saussurea triptera var. minor 23.0 ± 7.9^{d} nfIxeris dentata var. alpicola 24.3 ± 3.0^{a} nfFauria crista-galli subsp. japonica 24.3 ± 3.0^{a} nfLeontopodium japonicum 24.9 ± 9.0^{a} nfArnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} nfArtemisia sinanensis 29.0 ± 9.2^{a} nfLilium medeoloides 28.0 ± 8.0^{a} nf	an	d ^f	Ch	2,640	Se	1992
Stellaria pterosperma $17.6 \pm 0.8^{a} + $ nfArtemisia pedunculosa $18.8 \pm 5.6^{a} - $ nfPolygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + $ 77.0 Arabis tanakana $21.4 \pm 4.7^{a} + $ 45.0 ± 4 Gentiana algida $22.0 \pm 1.0^{a} - $ nfAnemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + $ 59.2 ± 5 Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + $ 87.5 ± 2 Saussurea triptera var. minor $23.0 \pm 7.9^{d} - $ nfIxeris dentata var. alpicola $24.3 \pm 3.0^{a} - $ nfFauria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - $ nfLeontopodium japonicum $24.9 \pm 9.0^{a} + $ nfGenu calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - $ nfGenu calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - $ nfLilium medeoloides $28.0 \pm 8.0^{a} - $ nf		d ^f	Н	2,730	Se	1992
Artemisia peduculosa 18.8 ± 5.6^{a} -nfPolygonum weyrichii var. alpinum 20.9 ± 2.1^{b} + 77.0 Arabis tanakana 21.4 ± 4.7^{a} + 45.0 ± 4 Gentiana algida 22.0 ± 1.0^{a} -nfAnemone narcissiflora var. nipponica 22.2 ± 2.9^{a} + 59.2 ± 5 Aquilegia flabellata var. pumila 22.9 ± 2.5^{a} + 87.5 ± 2 Saussurea triptera var. minor 23.0 ± 7.9^{d} -nfIxeris dentata var. alpicola 23.4 ± 6.9^{a} -nfFauria crista-galli subsp. japonica 24.3 ± 3.0^{a} -nfLeontopodium japonicum 24.9 ± 9.0^{a} +nfGeum calthaefolium var. nipponicum 25.8 ± 7.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfArtemisia inanensis 29.0 ± 9.2^{a} -nfLilium medeoloides 28.0 ± 8.0^{a} -nfLilium medeoloides 34.0 ± 12.2^{a} -75.0	pe(w)	ud ^f	Ch	1,900	Ku	1992
Polygonum weyrichii var. alpinum $20.9 \pm 2.1^{b} + 77.0$ Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Anemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 59.2 \pm 5$ Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. ninor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $23.4 \pm 6.9^{a} - nf$ Fauria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Leontopodium japonicum $24.9 \pm 9.0^{a} + nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Geum calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $34.0 \pm 12.2^{a} - 75.0$	pe(s)	d^{f}	Ch	2,730	Se	1991
Arabis tanakana $21.4 \pm 4.7^{a} + 45.0 \pm 4$ Gentiana algida $22.0 \pm 1.0^{a} - nf$ Anemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 59.2 \pm 5$ Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. minor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $23.4 \pm 6.9^{a} - nf$ Fauria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Icontopodium japonicum $24.9 \pm 9.0^{a} + nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Geum calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $34.0 \pm 12.2^{a} - 75.0$	an	d^{f}	Н	2,550	Ok	1991
Anemone narcissiflora var. nipponica $22.2 \pm 2.9^{a} + 59.2 \pm 5$ Aquilegia flabellata var. pumila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. minor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $23.4 \pm 6.9^{a} - nf$ Fauria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Leontopodium japonicum $24.9 \pm 9.0^{a} + nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Geum calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia monophylla $30.9 \pm 14.2^{a} + nf$ Lilium medeoloides $34.0 \pm 12.2^{a} - 75.0$.1 pe(w)	ud	Ch	3,000	Se	1992
Aquilegia flabellata var. punila $22.9 \pm 2.5^{a} + 87.5 \pm 2$ Saussurea triptera var. minor $23.0 \pm 7.9^{d} - nf$ Ixeris dentata var. alpicola $23.4 \pm 6.9^{a} - nf$ Fauria crista-galli subsp. japonica $24.3 \pm 3.0^{a} - nf$ Heloniopsis orientalis $24.3 \pm 3.0^{a} - nf$ Leontopodium japonicum $24.9 \pm 9.0^{a} + nf$ Arnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - nf$ Geum calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Artemisia sinanensis $29.0 \pm 9.2^{a} - nf$ Lilium medeoloides $34.0 \pm 12.2^{a} - 75.0$	pe(s)	udf	Н	2,460	Ok	1991
Saussurea triptera var. minor 23.0 ± 7.9^{d} -nfIxeris dentata var. alpicola 23.4 ± 6.9^{a} -nfFauria crista-galli subsp. japonica 24.3 ± 3.0^{a} -nfHeloniopsis orientalis 24.3 ± 3.0^{a} -nfLeontopodium japonicum 24.9 ± 9.0^{a} +nf(17.0 $\pm 3.0^{a}$)-nfArnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} -nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfLilium medeoloides 28.0 ± 8.0^{a} -nfLilium medeoloides 34.0 ± 12.2^{a} -75.0		udt	Н	2,700	Se	1991
Ixeris dentata var. alpicola 23.4 ± 6.9^{a} nfFauria crista-galli subsp. japonica 24.3 ± 3.0^{a} nfHeloniopsis orientalis 24.3 ± 3.0^{a} nfLeontopodium japonicum 24.9 ± 9.0^{a} nfArnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} nfArtemisia sinanensis 29.0 ± 9.2^{a} nfArtemisia monophylla 30.9 ± 14.2^{a} nfLilium medeoloides 34.0 ± 12.2^{a} nf	.5 pe(s)	df	Н	2,950	Se	1992
Fauria crista-galli subsp. japonica 24.3 ± 3.0^{a} -nfHeloniopsis orientalis 24.3 ± 3.0^{a} -nfLeontopodium japonicum 24.9 ± 9.0^{a} +nf (17.0 ± 3.0^{a}) (17.0 ± 3.0^{a}) -nfArnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} -nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfArtemisia monophylla 30.9 ± 14.2^{a} +nfLilium medeoloides 28.0 ± 8.0^{a} -41.0 \pm 5Lilium medeoloides 34.0 ± 12.2^{a} -75.0	an	d ^f	Н	2,730	Se	1991
Heloniopsis orientalis 24.3 ± 3.0^{a} -nfLeontopodium japonicum 24.9 ± 9.0^{a} +nf (17.0 ± 3.0^{a}) (17.0 \pm 3.0^{a})-nfArnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} -nfPedicularis resupinata var. caespitosa 26.0 ± 4.9^{d} +nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfLilium medeoloides 28.0 ± 8.0^{a} -41.0 \pm 5Lilium medeoloides 34.0 ± 12.2^{a} -75.0	pe(s)	udf	Н	2,950	Se	1992
Leontopodium japonicum $24.9 \pm 9.0^{a} + 10^{a} + 10^{a}$ nfArnica unalaschkensis var. tschonoskyi $25.8 \pm 7.7^{a} - 10^{a} + 10^{a}$ nfPedicularis resupinata var. caespitosa $26.0 \pm 4.9^{d} + 10^{a} + 10^{a} + 10^{a}$ nfGeum calthaefolium var. nipponicum $27.8 \pm 5.7^{a} - 10^{a} - 10^{a} + 10^{a} $	pe(s)	d ^f d ^f	G	2,480	Ok	1992 1992
1^{-1} 3^{-1} (17.0 ± 3.0^{a}) Arnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} $-$ nfPedicularis resupinata var. caespitosa 26.0 ± 4.9^{d} $+$ nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} $-$ nfArtemisia sinanensis 29.0 ± 9.2^{a} $-$ nfLilium medeoloides 28.0 ± 8.0^{a} $ 41.0 \pm 5$ Lilium medeoloides 34.0 ± 12.2^{a} $ 75.0$	pe(w)	d d ^f	Ch H	2,450 2,750	Ok Se	1992
Arnica unalaschkensis var. tschonoskyi 25.8 ± 7.7^{a} -nfPedicularis resupinata var. caespitosa 26.0 ± 4.9^{d} +nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfArtemisia monophylla 30.9 ± 14.2^{a} +nfLilium medeoloides 28.0 ± 8.0^{a} - 41.0 ± 5	an	u	п	2,730	36	1992
Pedicularis resupinata var. caespitosa 26.0 ± 4.9^{d} +nfGeum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfArtemisia monophylla 30.9 ± 14.2^{a} +nfLilium medeoloides 28.0 ± 8.0^{a} - 41.0 ± 5 Lilium medeoloides 34.0 ± 12.2^{a} -75.0	an	d^{f}	Н	2,850	Se	1991
Geum calthaefolium var. nipponicum 27.8 ± 5.7^{a} -nfArtemisia sinanensis 29.0 ± 9.2^{a} -nfArtemisia monophylla 30.9 ± 14.2^{a} +nfLilium medeoloides 28.0 ± 8.0^{a} - 41.0 ± 5 Lilium medeoloides 34.0 ± 12.2^{a} -75.0	an	df	H^{g}	2,800	Se	1991
Artemisia sinanensis 29.0 ± 9.2^{a} nfArtemisia monophylla 30.9 ± 14.2^{a} nfLilium medeoloides 28.0 ± 8.0^{a} 41.0 ± 5 Lilium medeoloides 34.0 ± 12.2^{a} $-$	pe(s)	d^{f}	Ch	2,500	Ok	1991
Lilium medeoloides 28.0 ± 8.0^{a} $ 41.0 \pm 5$ Lilium medeoloides 34.0 ± 12.2^{a} $ 75.0$	pe(s)	d^{f}	Н	2,700	Se	1991
<i>Lilium medeoloides</i> $34.0 \pm 12.2^{a} - 75.0$	an	d^{f}	Н	2,450	Ok	1992
	.0 an	d	G	2,550	Ok	1991
Saussurea yanagisawae $32.0 \pm 6.0^{\circ}$ – nf	an	df	G	2,550	Ok	1992
	an	df	H	1,880	Ku	1992
Hedysarum vicioides $33.4 \pm 10.4^{a} + 62.0$	an	d ^f	Ch	2,950	Se	1991
Conioselinum filicinum $33.5 \pm 6.6^{\text{b}} - 109.0$	an	d d ^f	H	2,800	Se	1991
Solidago virga-aurea subsp. leiocarpa 28.5 ± 7.5^{c} nfSolidago virga-aurea subsp. leiocarpa 39.3 ± 16.2^{b} nf	an	d d	H H	2,500 2,500	Ok Ok	1991 1992
Astragalus membranaceus var. obtusus 34.4 ± 12.2^{a} – nf	an an	d d ^f	H	2,950	Se	1992
Pedicularis chamissonis var. japonica 35.3 ± 14.5^{a} – nf	an	d ^f	H	2,950	Ok	1991
Schizocodon soldanelloides 35.5 ± 8.0^{a} - nf	pe(w)	d ^f	Ch	2,500	Ok	1992
Gentiana triflora var. montana $38.6 \pm 16.4^{a} - 88.5 \pm 1$		d ^f	Н	1,850	Ku	1992
Patrinia sibirica $38.7 \pm 17.4^{\rm a}$ — nf	an	d^{f}	Н	1,890	Ku	1992
Pennelianthus frutescens $38.8 \pm 13.8^{b} + nf$	an	df	Н	1,890	Ku	1992
Aletris foliata 40.3 ± 13.1^{a} – nf	an	d^{f}	Н	2,500	Ok	1992
<i>Tilingia ajanensis</i> $44.0 \pm 10.7^{d} + nf$	an	d	H^g	2,450	Ok	1992
<i>Viola biflora</i> 46.0 ± 19.6^{a} – nf	an	df	Η	1,800	Ku	1992
Artemisia arctica var. sachalinensis 47.5 ± 21.0^{a} – nf	an	df	Н	1,880	Ku	1992
Sanguisorba canadensis subsp. latifolia 53.1 ± 28.4^{a} – nf	an	d ^f	H	1,870	Ku	1992
Veronica stelleri var. longistyla $54.5 \pm 25.6^{a} + nf$	an	d ^f	Н	1,890	Ku	1992
(10.0 ± 1.2^{d})	25	d^{f}	U	2 600	S -	1000
Nepeta subsessilis $54.8 \pm 18.2^{a} + 87.3 \pm 6$ Tilingia tachiroei $57.0 \pm 22.9^{a} - nf$		d ^f	H H	2,600 2,700	Se Se	1992 1991
Tilingia tachiroei $57.0 \pm 22.9^{\circ}$ -nfSedum rosea $57.0 \pm 26.0^{\circ}$ - 27.3 ± 5	an .1 an	d d ^f	п Н	2,700	Se	1991
Sedum rosea $57.0 \pm 20.0 = 27.5 \pm 5$ Sedum rosea $58.0 \pm 19.2^{a} = 75.0$		d d ^f	п Н	2,980	Se	1991
Securit rose 56.0 ± 17.2 75.0 Trollius riederianus var. japonicus $58.0 \pm 11.4^{\circ}$ nf		d ^f	H	2,690	Se	1991
Trollius riederianus var. riederianus $58.3 \pm 17.5^{\circ}$ – nf	an an	d^{f}	Н	1,750		1992

Table 2 (Contd.)

Species	Days to growth initiation	Elongation of stem	Days to flowering initiation	Shoot habit	Differentiation of bud scale	Life form	Altitude (m)	Site	Year
Coptis trifolia	63.4 ± 22.7^{a}	+	45.5 ± 12.5	pe(w)	d^{f}	Ch	2,500	Ok	1992
Schizpcodon ilicifolius	64.0 ± 26.9^{a}	_	nf	pe(w)	d	Ch	2,500	Ok	1991
Gentiana makinoi	57.5 ± 25.5^{a}	_	58.0	an	df	Η	2,460	Ok	1992
Gentiana makinoi	71.5 ± 18.1^{a}	_	nf	an	d	Η	2,700	Se	1991
Veratrum stamineum	126.5 ± 28.5^{b}	_	nf	an	df	G	2,690	Se	1991
Maianthemum dilatatum	250 ^e	_	nf	an	d	G	2,450	Ok	1992
Dicentra peregrina	250 ^e	_	nf	an	df	G	1,880	Ku	1992
Streptopus amplexifolius var. papillatus	250 ^e	_	nf	an	df	G	2,690	Se	1992
Saussurea riederi var. yezoensis	250 ^e	_	nf	an	df	Н	1,750	Ku	1992
Smilacina yesoensis	250 ^e	_	nf	an	df	G	2,690	Se	1991
Smilacina yesoensis	250 ^e	_	nf	an	d	G	2,450	Ok	1992
Diphylleia grayi	250 ^e	_	nf	an	df	G	2,690	Se	1991
Aconitum senanense	250 ^e	_	nf	an	d^{f}	G	2,710	Se	1991
Streptopus streptopides	250 ^e	_	nf	an	d	G	2,450	Ok	1992

+ Stem elongated, - no stem elongated or some stems elongated but lengths were less than one sixth of the minimum length recorded in the natural habitats (Shimizu 1982, 1983)

nf No flowering, pe(w) Perennial shoot-axis with wintergreen leaves, pe(s) perennial shoot-axis with summergreen leaves, *an* annual shoot-axis, *ud* bud without any differentiated scale, *d* bud with differentiated scales, *Ch* chamaephytes, *H* hemicryptophytes, *G* geophytes, *Ok* Mt. Okudainichidake, *Ku* Mt. Kurodake, *Se* Mt. Senjogadake

^a Over 81% of buds initiated growth

^b 61-80% of buds initiated growth

^c 41-60% of buds initiated growth

^d 21–40% of buds initiated growth

^e No buds initiated growth within 250 days; numbers in parenthesis, growth initiation from current annual-shoot axes

^f Data are taken from Yoshie (1998)

^g Data are taken from Shimizu (1982). Nomenclature follows Shimizu (1982, 1983)

References

- Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438
- Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259
- Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260
- Friend AD, Woodward FI (1990) Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Adv Ecol Res 20:59–124
- Käinmüller Ch (1975) Temperaturresistenz von Hochgebirgspflanzen. Anz Math Naturwiss Kl Österr Akad Wiss (Wien) 7:67–75
- Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin Heidelberg New York
- Körner C, Larcher W (1988) Plant life in cold climates. In: Long SP, Woodward FI (eds) Plants and temperature. The Company of Biologists, Cambridge, UK
- Kudo G (1992) Effect of snow-free duration on leaf life-span of four alpine plant species. Can J Bot 70:1684–1688
- Larcher W (1977) Ergebnisse des IBP-Projekts. Zwergstrauchheide Patscherkofel. Sitzungsber Österr Akad Wiss Math Naturwiss K1 186:301–371
- Larcher W (1980) Physiological plant ecology. Springer, Berlin Heidelberg New York
- Larcher W, Wagner J (1983) Ökologischer Zeigerwert und physiologische Konstitution von Sempervivum montanum. Verh Ges Ökol 11:253–264
- Pisek A, Larcher W, Unterholzner R (1967) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der blätter verschiedener Spermatophyten. I. Temperaturminimum der Nettoassimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora Abt B 157:239–264

Raunkiaer C (1934) The life forms of plants and statistical plant geography. Clarendon, Oxford, UK

- Rübel E (1925) Alpine und arktische Flora und Vegetation. I, Alpenmatten—Überwinterungsstadien. Veröffentlichungen Geobot Inst Bd 3 (Schröter Festschrift), Zürich 3:37–53
- Sakai A, Larcher W (1987) Frost survival of plants. Ecological Studies 62. Springer, Berlin Heidelberg New York
- Sakai A, Otsuka K (1970) Freezing resistance of alpine plants. Ecology 51:665–671
- Scott D, Billings WD (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecol Monogr 34:243–270
- Shimizu T (1982) The new alpine flora of Japan in color, vol I. Hoikusha, Osaka, Japan
- Shimizu T (1983) The new alpine flora of Japan in color, vol II. Hoikusha, Osaka, Japan
- Sørensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. Meddelelser om Grønland 125:1–304
- Till O (1956) Über die Frosthärte von Pflanzen summergrüner Laubwälder. Flora 143:499–542
- Yoshie F (1998) Observation of wintering forms and winter bud structures of alpine perennial forbs. Bull Assoc Nat Sci Senshu Uni 29:29–52
- Yoshie F, Sakai A (1981) Freezing resistance of plants in relation to their life-form and habitats (in Japanese with an English summary). Jpn J Ecol 31:395–404
- Yoshie F, Yoshida S (1989) Wintering forms of perennial herbs in the cool temperate regions of Japan. Can J Bot 67:3563– 3569