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Introduction

Kinetic models for microbial survival during food pas-
teurization and sterilization processes are essential for 
design, assessment, optimization, and control of the pro-
cesses. Microbial survival mostly exhibits nonlinear be-
havior (Van Boekel 2002; Heldman and Newsome 2003) 
which has been described by different mathematical models 
including the Weibull model (Peleg and Cole 1998), the 
biphasic model (Lee et al. 2001), the log–logistic model 
(Cole et al. 1993), the modified Gompertz (Linton et al. 
1995), and the Geeraerd model (Geeraerd et al. 2000), 
among others. The selection of a suitable survival model 
is usually based on how well a model fits experimental 
survival data.

Parameters involved in a survival model depend on 
environmental conditions including presence of salt or 
acid, growth phase of the cells, the products or labora-
tory media used, and others because the heat resistance 
of a pathogen is influenced by these factors (Doyle et al. 
2001). These parameters must be accurately estimated in 
order to use the models to evaluate the efficacy of a 
thermal process. Traditionally, they were estimated from 
a series of static survival curves. Because a true static 
condition is impossible to create and there may be more 
than one combination of parameters that give identical 
results (Dolan 2003), great efforts have been made to 
identify them by simultaneously fitting a survival model 
to each set of dynamic survival data using either software 
packages or self- written computer programs (Peleg and 
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Abstract

Differential equations used to describe the original and modified Geeraerd models 
were, respectively, simplified into an explicit equation in which the integration 
of the specific inactivation rate with respect to time was numerically approxi-
mated using the Simpson’s rule. The explicit numerical solutions were then 
used to simulate microbial survival curves and fit nonisothermal survival data 
for identifying model parameters in Microsoft Excel. The results showed that 
the explicit numerical solutions provided an easy way to accurately simulate 
microbial survival and estimate model parameters from nonisothermal survival 
data using the Geeraerd models.
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Normand 2004; Valdramidis et al. 2008; Chen and 
Campanella 2012).

The Geeraerd model (Geeraerd et al. 2000) is frequently 
used to describe a type of non log- linear microbial survival 
curves that show a shoulder and/or a tailing and it en-
compasses the first- order inactivation when specific pa-
rameter values are selected. Under nonisothermal 
conditions, the model was formulated as a set of two 
coupled differential equations which could be solved using 
the Runge–Kutta method. The original Geeraerd model 
was also modified by incorporating a parameter expressed 
as a function of the heating rate to depict physiological 
adaptation induced by mild heat stress (Valdramidis et al. 
2007).

The objectives of this study were to derive explicit nu-
merical solutions of the original and modified Geeraerd 
models and to identify model parameters from nonisothermal 
microbial survival data using the numerical solutions in 
Microsoft Excel (Microsoft Corporation, Redmond, WA).

Materials and Methods

Microbial survival models

Under nonisothermal conditions, the Geeraerd model for 
microbial survival is expressed as the following equations 
(Geeraerd et al. 2000):
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resistance and therefore a factor k was incorporated into 
equation (1) to account for this physiological adaption 
(Valdramidis et al. 2007).

(4)

where

(5)

where k1 and k2 are constants and dT/dt is the applied 
constant heating rate to raise temperature to a target value. 
From equations (2) and (4), equation (6) was obtained 
(see Appendix S2). When k = 1, there is no detectable 
adaption of microbial cells to thermal stress and in this 
case equation (6) becomes equation (3).

(6)

Under nonisothermal conditions, a temperature profile 
can be represented by a series of discrete temperature points 
separated by sufficiently small time intervals Δt. In this 
case, based on the Simpson’s rule which approximates the 
value of a definite integral using quadratic polynomials, 
the integral term in equation (6) can be calculated by the 
following equation starting from ∫ t1=0

0
k

max
(T(t))dt=0.

(7)

where n is the number of temperature points (n ≥ 2) and 
Tn the temperature value at time tn. Incorporating the values 
of the integral corresponding to a given discrete temperature 
profile into equation (3) results in the growth curve.

The specific inactivation rate kmax can be described by 
the Bigelow model (Bigelow 1921):

(8)

where AsymDref (min−1) denotes the asymptotic decimal 
reduction time at a reference temperature Tref (°C) and 
z (°C) the temperature required for a 10- fold change 
in AsymDref value. Parameters AsymDref , z, Cc(0), and 
 log10Nres need to be determined. The value of log10N(0) 
for each survival test can be experimentally measured at 
time zero or determined by curve fitting.
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where N(t) (CFU mL−1) represents the microbial cell 
density at time t, Cc (−) is related to the physiological 
state of cells, Nres (CFU mL−1) denotes the residual 
population density, and kmax (min−1) the specific in-
activation rate which is temperature dependent. From 
equations (1) and (2), equation (3) was obtained (see 
Appendix S1).

(3)

where N(0) (CFU mL−1) is the initial cell density and 
N(t)/N(0) survival ratio usually denoted by S(t), and 
Nres/N(0) can be expressed as 10log10

Nres
N(0) when Nres ≠ 0.

It was reported that exposure of Escherichia coli K12 
to a mild thermal stress induced an increase in heat 
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Solving the differential equations using a 
MATLAB solver

The Geeraerd model (Geeraerd et al. 2000) under noni-
sothermal conditions was solved using the function ode45, 
a MATLAB’s (MathWorks, Natick, MA) standard solver 
which uses a variable step Runge–Kutta method to solve 
differential equations numerically. The results obtained 
were compared with those calculated using equation (3) 
in Microsoft Excel under the same conditions.

Microbial survival data

Equations (3), (7), and (8) and equations (5)–(8) were 
fitted to nonisothermal survival data for E. coli K12 re-
ported by Valdramidis et al. (2006, 2008), respectively, 
using the Microsoft Excel Solver. The data which were 
originally presented in plots were digitized by using the 
Digitizer Tool of Origin software (OriginLab Corporation, 
Northampton, MA) following the user guide.

Parameter estimation using the Microsoft 
Excel solver

The procedure consists of the following four steps. A 
demonstration of the similar procedure was reported by 
Zhu and Chen (2015).

(a) Enter guesses for the model parameters to be identi-
fied in consecutive cells in Excel.

(b) Generate each survival table: For a survival test, enter 
discrete temperature profile in two adjacent columns 
of an Excel spreadsheet, time points being separated 
by intervals Δt (min) (1/60 min for the present study). 
Then, calculate log10N(t) or log10S(t) at each time point 
by incorporating the guessed parameter values into 
equations (3), (7), and (8) or equations (5)–(8).

(c) Look up calculated values of log10N(t) or log10S(t) 
for each survival test in its survival table: For a sur-
vival test, enter survival data in two adjacent columns 
of an Excel spreadsheet. For any data point log10N(t) 
or log10S(t), its calculated value is located in the log10N 
column (assumed as X starting from row Y) of its 
growth table and row “=ROUND(t/Δt, 0)+Y”. The 
formula: =ROUND (t/Δt, 0) in Excel returns the near-
est integer of t/Δt. If the row number is contained 
in an assumed cell D#, then the formula: =INDIRECT 
(“X”&D#) returns the calculated log10N(t) or log10S(t).

(d) Minimize the overall sum of squared errors (SSE): 
Adding the SSE for each survival test yields the overall 
SSE, which is then minimized using the Excel Solver 
by changing the model parameter values. This opti-
mization process results in the best-fit of the model 
to the entire data sets.

The root mean squared error (RMSE) was used to evalu-
ate the goodness of fitting of the model to microbial 
growth data using a reported formula (Neter et al. 1996).

Results and Discussion

Validation of the explicit numerical 
solutions

Microbial survival curves under two nonisothermal condi-
tions were calculated by solving equations (1), (2), and (8) 
using the ode45 solver in MATLAB for given model pa-
rameters AsymD60 = 8 min, z = 5°C, log10(Nres /N(0)) = −7, 
and Cc(0) = 1. Under the same conditions, survival curves 
were also calculated using equations (3) and (7) 
(Δt = 1/60 min), and (8) in Excel. Survival curves obtained 
in these two methods are illustrated in Figure 1. Equation (3) 
was mathematically derived from equations (1) and (2). So 
they should be equivalent to each other. Such an equivalence 
was also visualized by Figure 1 which showed overlapped 

Figure 1. Survival curves calculated using equations (1), (2), and (8) 
(solid lines) and those using equations (3), (7), and (8) (filled symbols) 
under the same temperature conditions (dashed lines) (A) linear 
temperature profile, (B) sine temperature profile.
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survival curves obtained in the two methods under the same 
conditions. Obviously, the explicit equation (3) provided a 
simpler method for the calculation. The accuracy of equa-
tion (3) depends on the accuracy of equation (7) which 
was used to numerically estimate ∫ t

0
k

max
(T(t))dt. Theoretically, 

the error of the numerical approximation becomes negligible 
when time intervals are sufficiently small. Therefore, it is 
advised that temperature profiles are measured at small time 
intervals as possible. However, to reduce computation time, 
time intervals could be determined by gradually increasing 
it from a small value until the root mean squared difference 
between log10S(t) in two consecutive calculations is smaller 
than a specified error tolerance.

Identification of model parameters using 
the Microsoft Excel solver

Figure 2 shows the fitting of equations (3) (Nres = 0), 
(7), and (8) to survival data for E. coli K12 (Valdramidis 
et al. 2008) under heat treatments with varying heating 
rates using the Microsoft Excel Solver. In the calculation, 
each temperature profile was converted to a series of dis-
crete temperature points separated by constant time in-
tervals of 1/60 min. The obtained model parameters and 
RMSE for curve fitting are illustrated in Table 1. As shown 
in the table, the value of RMSE (0.214 log10 CFU mL−1) 
obtained was relatively low, indicating the model fits the 
data well and this was also shown by the good agreement 
between the data points and the fitted curves in Figure 2. 
When an optimization procedure is used for curve fitting, 
model parameters must be assigned initial values which 
should be sufficiently close to their “true” values in order 
to make the optimization process converge to the “true” 
values (Chen and Campanella 2012). So, it is necessary 
to try different sets of guesses for the model parameters 
to find one that results in a desirably small RMSE for 
curve fitting. Results obtained from the same data by 
Valdramidis et al. (2008) were also included in Table 1. 
The table showed that the RMSE (1.16 log10 CFU mL−1) 
was four times greater than that obtained in the present 
study. So, the present study provided a more accurate 
curve fitting. The reason might be because the value of 
Cc(0) was not accurately identified in that report.

Thermal stress may increase heat resistance of micro-
organisms (Valdramidis et al. 2007; Corradini and Peleg 
2009). To account for such effect, Valdramidis et al. 
(2007) proposed equations (4) and (5) to describe sur-
vival of E. coli K12 during heat treatment. Figure 3A–F 
illustrate nonisothermal survival curves of E. coli K12 
measured at varying heating rates which delivered dif-
ferent extents of thermal stress to the microorganism 
(Valdramidis et al. 2006). Physiological parameters k1 
and k2 in equation (5) were estimated by fitting equa-
tions (5)–(8) (Nres = 0) to the survival data. In the 
curve fitting, other model parameters including AsymDref, 
z, Cc(0), and N(0) were adapted from a previous report 
(Valdramidis et al. 2006) and fixed. The obtained values 
of k1, k2, and RMSE are listed in Table 2. The small 
RMSE indicated a good curve fitting. Because the mi-
crobial cells’ adaptation takes time, when the heating 
rate is sufficiently high, that is, dT/dt » k2, k should be 
equal to 1 which requires k1 = 1. This meant that k1 
is constantly equal to 1 and thus is redundant in equa-
tion (5). As shown in Table 2, k1 obtained in this study 
was equal to 0.967 which agreed with the theoretical 
analysis.

Figure 2. Published survival data for Escherichia coli K12 (filled symbols) 
(Valdramidis et al. 2008) under heat treatments (dashed lines) with a 
heating rate of 1.64°C min−1 (), 0.43°C min−1 (), and 0.15°C min−1 
(), respectively. Solid lines denote the fitted survival curves using 
equations (3), (7), and (8).
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Table 1. Values of model parameters and RMSE obtained by fitting equations (3), (7), and (8) (Nres = 0) to published survival data of Escherichia coli 
K12 (Valdramidis et al. 2008) and those reported by Valdramidis et al. (2008).

Method AsymD54.75 z Cc(0) log10N(0)1 log10N(0)2 log10N(0)3 RMSE

(min) (°C) (log10 CFU mL−1) (log10 CFU mL−1) (log10 CFU mL−1) (log10 CFU mL−1)

This study 10.35 4.97 70.13 9.48 9.23 9.32 0.214
Reported 10.05 5.02 1.92 9.41 9.23 9.30 1.16*

*The RMSE was calculated using the given model parameters.
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Parameters k1 and k2 were also identified from the 
same survival data by Valdramidis et al. (2007) using a 
two- step method. The reported results are also listed in 
Table 2. Because this RMSE for curve fitting was one 
time greater than that in the present study, simultaneously 

fitting the survival model to all data sets resulted in more 
accurate parameter estimation.

The Geeraerd model (Geeraerd et al. 2000) essentially 
describes microbial survival curves that follow the tradi-
tional log- linear model but have also a tailing and a 

Figure 3. Published survival data for Escherichia coli K12 (filled symbols) (Valdramidis et al. 2006) and the fitted curves (solid lines) using equations (5)–
(8). Dashed lines denote temperature profiles with a heating rate of 1.64 (A), 0.82 (B), 0.55 (C), 0.40 (D), 0.20 (E), and 0.15 (F) °C min−1, respectively.
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shoulder. Explicit numerical solutions of both the original 
and the modified Geeraerd models provide a convenient 
and accurate way to identify model parameters and predict 
survival curves that follow the model under practical 
nonisothermal conditions.

Conclusion

This study demonstrated that the two coupled differential 
equations used to describe the original or modified Geeraerd 
models could be simplified into an explicit equation. By 
numerically integrating the specific inactivation rate with 
respect to time involved in the equations, the obtained 
explicit numerical solutions could be conveniently used 
to accurately simulate microbial survival and estimate 
model parameters from nonisothermal survival data using 
only built- in functions in Microsoft Excel. Because there 
is no need to solve differential equations, the explicit 
equations simplify the calculation and thus should facilitate 
practical applications of the Geeraerd models.
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Supporting Information

Additional supporting information may be found in the 
online version of this article at:
Appendix S1. Derivation of equation (3).
Appendix S2. Derivation of equation (6).

Table 2. Values of k1, k2, and RMSE obtained by fitting equations  
(5)–(8) to published survival data of Escherichia coli K12 (Valdramidis 
et al. 2006) and those reported by Valdramidis et al. (2007).

Method k1 (−) k2 (°C min−1) RMSE (log10 CFU mL−1)

This study 0.969 0.060 0.368
Reported 0.696 0.042 0.787*

*The RMSE was calculated using the reported values of k1 and k2.


