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Purpose: We evaluate the relationship between Bruch’s membrane opening
minimum rim width (BMO-MRW) and peripapillary retinal nerve fiber layer thickness
(pRNFLT) and develop a new parameter combining BMO-MRW and pRNFLT using a
neural network to maximize their compensatory values.

Methods: A total of 402 subjects were divided into two groups: 273 (validation group)
and 129 (neural net training) subjects. Linear quadratic and broken-stick regression
models were used to explore the relationship between BMO-MRW and pRNFLT. A
multilayer neural network was used to create a combined parameter, and diagnostic
performances were compared using area under the receiver operating characteristic
curves (AUROCs).

Results: Regression analyses between BMO-MRW and pRNFLT revealed that the
broken-stick model afforded the best fit. Globally, the tipping point was a BMO-MRW
of 226.5 lm. BMO-MRW and pRNFLT were correlated significantly with visual field.
When differentiating normal from glaucoma subjects, the neural network exhibited
the largest AUROC. When differentiating normal from early glaucoma subjects, the
overall diagnostic performance decreased, but the neural network still exhibited the
largest AUROC.

Conclusions: The optimal relationship between BMO-MRW and pRNFLT was revealed
using the broken-stick model. Considerable BMO-MRW thinning preceded pRNFLT
thinning. The neural network significantly improved diagnostic power by combining
BMO-MRW and pRNFLT.

Translational Relevance: A combined index featuring BMO-MRW and pRNFLT data
can aid clinical decision-making, particularly when individual parameters yield
confusing results. Our neural network effectively combines information from separate
parameters.

Introduction

Glaucoma is a progressive optic neuropathy and
the leading cause of irreversible blindness world-
wide.1,2 Identification of structural changes is partic-
ularly important when diagnosing, treating, and
monitoring early glaucoma. Changes in the structural
appearance of the optic nerve head (ONH) and
thickness of the retinal nerve fiber layer (RNFL)
usually precede development of standard achromatic

perimetry3–6 and blue-on-yellow visual field defects.7

Moreover, in many eyes, changes in RNFL and/or
ONH are the only signs of glaucoma.8–11

Optical coherence tomography (OCT) provides
reliable and quantitative measurements of RNFL
thickness. Peripapillary RNFL thickness (pRNFLT)
and macular thickness parameters are useful to
monitor disease progression particularly in advanced
glaucoma patients.12–14 However, particularly in
those with early-to-moderate glaucoma, quantitative
measurement of pRNFLT via OCT is no better than
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qualitative assessment of the ONH by an experienced
observer.15 Morphologic changes develop before
observable thinning of the RNFL thickness.16

Recently, another OCT parameter was developed;
this is the Bruch’s membrane opening-minimum rim
width (BMO-MRW), the minimum distance between
the BMO and the internal limiting membrane (ILM).
This new parameter affords better diagnostic accura-
cy and better structure–function relationship than the
conventional disc margin-based rim area.17–19 The
diagnostic performance is at least as good as that of
pRNFLT, although some regional BMO-MRW
measurements on the superotemporal and super-
onasal regions perform better than the pRNFLT.20

Gardiner et al.21 reported that BMO-MRW was more
sensitive in terms of early detection of glaucomatous
damage whereas pRNFLT was preferable for moni-
toring changes.

The relationship between pRNFLT and BMO-
MRW has not yet been thoroughly studied. No
satisfactory explanation for the performance differ-
ence between BMO-MRW and pRNFLT is available.
However, some possible reasons have been suggested.
Fortune et al.22 reported that the ONH may represent
neural loss more accurately; tissue remodeling after
neural loss may be different in pRNFLT. Burgoyne et
al.23 reported that the ONH was the earliest or only
site of damage. Leung et al.24 also reported that the
best feature for distinguishing early glaucoma was the
ONH, not the pRNFLT. We also assumed that the
ONH characteristic represented by the BMO-MRW is
more sensitive to early glaucomatous damage than
pRNFLT. However, as the disease progresses, the
ONH undergoes various changes. The neural canal
may become enlarged and elongated,25 and prelami-
nar neural tissues become thicker rather than thinner
in early glaucoma patients.26 pRNFLT usually is
measured distant from the ONH and may be less
affected by such changes.

Machine-learning algorithms have greatly im-
proved over time and have achieved excellent results
in various fields. It is important to note that machine-
learning does not require knowledge of the exact
mechanism in play when resolving a complicated
problem; rather, it develops its own model. If there
are adequate data, computing resources, and a strong
theoretic understanding of the problem, a full
numerical model may be the most desirable solution.
However, in many cases, as the complexity of a
problem increases, theoretic understanding decreases,
rendering mathematic modeling particularly difficult.
Neural networks are effective alternatives. Bowd et

al.27 compared the diagnostic performance of a neural
network and a mathematic method for diagnosing
glaucoma; the neural network was superior. Brigatti
et al.28 reported that a neural network diagnosed
glaucoma by combining visual field parameters with
structural data. A neural network models highly
nonlinear functions and can be trained to generalize
accurately.

We evaluated the relationship between pRNFLT
and BMO-MRW and their associations with visual
field loss. To use the probable compensatory diag-
nostic performances of pRNFLT and BMO-MRW,
we developed a new single parameter combining
pRNFLT and BMO-MRW in an artificial neural
network.

Methods

In this retrospective cross-sectional study, open-
angle glaucoma patients and normal subjects were
enrolled at the Glaucoma Clinic of Pusan National
University Hospital (Republic of Korea) between
August 1, 2015, and December 31, 2016. The study
was performed in accordance with the tenets of the
Declaration of Helsinki and was approved by the
institutional review board (IRB) of Pusan National
University Hospital. The IRB waived the need for
patient consent because this was a retrospective
anonymized study. When both eyes of a participant
were eligible, one eye was chosen randomly for
inclusion.

A total of 402 patients were enrolled and divided
into two major groups: a validation group (273
patients) and a neural net training group (129
patients). No definitive rules were used to allocate
patients to the groups,29 but we sought to include
patients with relatively better OCT signal-to-noise
ratios in the training group because a neural network
cannot be built correctly using poor examples. To
ensure sufficient numbers of patients in all groups, we
sought to balance the numbers of normal, early, and
advanced glaucoma subjects in the training group. We
also tried to match ages to avoid age bias.

All enrolled glaucoma patients and healthy sub-
jects underwent a complete ophthalmic examination
at the first visit to the glaucoma clinic, including
measurement of the best corrected visual acuity
(BCVA), slit-lamp examination, gonioscopy, fundus-
copy, biometry using the IOL Master (Carl Zeiss
Meditec, Dublin, CA), and standard automated
perimetry. The central corneal thickness was mea-
sured using ultrasonic pachymetry (Pachmate; DGH
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Technology, Exton, PA). Keratometry was performed
using an Auto Kerato-Refractometer (ARK-510A;
NIDEK, Hiroshi, Japan). All patients were examined
via red-free RNFL and optic disc stereoscopic
photography. Spectral-domain optical coherence to-
mography (SD-OCT; Spectralis; Heidelberg Engi-
neering, Heidelberg, Germany) was used to measure
BMO-MRW and pRNFLT.

The inclusion criteria were age . 18 years, clear
cornea, clear ocular media, BCVA � 20/40, refractive
error within 6 6.0 diopters (D), and astigmatism 6

3.0 D. Exclusion criteria included diabetes, uveitis,
secondary glaucoma, corneal abnormalities, nonglau-
comatous optic neuropathies, previous trauma, ocular
surgery or laser treatment, and/or any eye disease
except glaucoma. Eyes were classified as having open-
angle glaucoma if they had a glaucomatous optic disc
and two consecutive abnormal visual field test results
with open angles on gonioscopy. Preperimetric
glaucoma was excluded. Patients with diagnosed
glaucomatous optic neuropathy met one or more of
the following criteria: focal or diffuse neuroretinal rim
thinning, localized notching, cup-to-disc ratio asym-
metry � 0.2, or RNFL defects congruent with visual
field defects.30 Glaucoma patients were divided
further into two subgroups with early (mean deviation
[MD] � –6 dB) or moderate-to-advanced (MD , –6
dB) glaucoma based on the previously reported
work.31 Normal subjects were defined as those with
no history of ocular disease, intraocular pressure
(IOP) , 21 mm Hg, an absence of glaucomatous
optic disc appearance, and a normal visual field.

Spectral-Domain Optical Coherence
Tomography

SD-OCT was performed on the same day as the
visual field test to measure BMO-MRW and
pRNFLT. Scans were acquired by reference to
participant-specific fovea–BMO axes to minimize
geometrical errors,18 and data were sectored based
on these axes. The foveal location was detected
manually using a live B-scan, and then the BMO
center was defined. A radial pattern of 24 angular,
equidistant, high-resolution 158 B-scans centered on
the BMO was used to compute neuroretinal rim
parameters. Each B-scan was averaged from 1536 A-
scans per B-scan with a scanning speed of 40,000 A-
scans per second.32,33 The BMO points and ILM were
identified and marked in each B-scan using automat-
ed software (Glaucoma Module Premium Edition,
version 6.0; Heidelberg Engineering). After the radial

scans were completed, three consecutive circumpapil-
lary B-scans were performed automatically to mea-
sure pRNFLTs at diameters of 3.5, 4.1, and 4.7 mm.
A glaucoma specialist inspected all data and, if
necessary, manually corrected inaccurate radial scans.
For brevity, only the results of the standard ONH and
3.5 mm diameter pRNFLT scans are analyzed here.
Eyes with image quality scores , 20 were excluded.
BMO-MRW and pRNFLT were computed automat-
ically globally and sectorally by reference to Garway-
Heath distribution maps.34 The Spectralis OCT Tru-
Track system uses dual beam technology to compen-
sate for eye motion.32,33 One beam captures an image
of the retina and maps more than 1000 points to track
eye movement. Using this map as a reference, the
other beam is directed to the desired location, despite
eye movement.

Perimetric Tests

All visual field tests were performed at least twice
using an automated visual field analyzer (Humphrey
Field Analyzer; Carl Zeiss Meditec) running the 24–2
test pattern, a size III white stimulus, and the Swedish
interactive threshold algorithm (SITA). Adequate
reliability was defined as ,20% fixation loss, ,15%
false-positive rate, and ,33% false-negative rate.
Normal subjects had glaucoma hemifield test (GHT)
results within normal limits and a MD and pattern
standard deviation (PSD) within 95% of the normal
limit. An abnormal visual field was defined as P ,

0.05 for the PSD or a GHT outside of the normal
limits.

Total deviation (TD) values were recorded for all
52 test points except those in the blind spot, and
assigned to the corresponding visual field sector by
reference to Garway-Heath distribution maps.34 TD
values (in dB) were first converted into a linear scale
(1/Lambert, 1/L) using the formula 1/L¼ 10dB/10 and
then averaged globally and sectorally to obtain the
linear scale mean sensitivity (MS).35

Multilayer Neural Network

The multilayer neural network, a supervised
learning classifier, is one of the most frequently used
neural network techniques in medical research.36 The
structure of a neural network consists of an input
layer (global and sectoral BMO-MRW and pRNFLT
values in our study), one or more hidden layers that
extract useful information from the input layer, and
an output layer (glaucoma or not). Each neuron in a
layer is fully connected to each neuron in the next
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layer through weighted connections. Data presented
to the input layer propagate through the network to
the output layer (feed-forward propagation). The jth

neuron in the current layer processes the incoming
data (xi) by multiplying the weights (wij values) and
adding them, finally inserting a bias term (bj) to
obtain the weight sum (vj) as follows:

vj ¼
Xm

i¼1
xi 3wijþbj

The weighted sum (vj) is not directly delivered to
the next layer but rather is processed by the activation
function. Various transfer functions have been
introduced, including the conventional sigmoid and
hyperbolic tangent functions (used here) as follows:

tanh vj
� �
¼ 1� e�2vj

1þ e�2vj

In the output layer, we used a different activation
function, the softmax function, because we tested
many different neural network models, and the
output values included not only the binary classifica-
tion (glaucoma vs. normal) but also multiple classi-
fications (normal, early, and advanced glaucoma).
The softmax function considers all output values
together and adjusts the total sum of the output
values to 1. These output values were compared to the
desired output set (training data). An error signal
(difference between the desired and current outputs)
was propagated in a backward manner (back-
propagation algorithm), and the connection weights
were adjusted.

Finally, we used a neural network with one hidden
layer consisting of five neurons constructed in SPSS
for Windows, version 21.0 (SPSS, Chicago, IL). Input
nodes fed into a five-node hidden layer activated by
hyperbolic tangent functions. The outputs consisted
of two nodes with a softmax function for normal (0)
and glaucomatous (1) eyes. We evaluated neural
networks with different numbers of hidden layer units
and found that the five-unit neural network per-
formed best.

Statistical Analyses

The normality of data distribution was checked
using the Kolmogorov–Smirnov test. Clinical charac-
teristics were compared using 1-way analysis of
variance or the Kruskal–Wallis test for continuous
variables, and the v2 test for categorical variables. A
scatterplot of pRNFLT versus BMO-MRW revealed
a pRNFLT plateau at high BMO-MRW values and a

steep decrease at lower BMO-MRW values. To fit this
pattern, we used a nonlinear broken-stick statistical
model. The tipping point initially was estimated using
the Davies’ test,37 and then segmental regression
analyses were performed using this initial tipping
point as the starting value. Segmental regression
analyses were iteratively continued (to reduce errors)
until the final tipping point and the two slopes of the
broken-stick model (with the corresponding 95%
confidence intervals) were determined. Linear and
quadratic regression models also were used, with the
following equations: y¼ aþ bx (linear), y¼ aþ bxþ
cx2 (quadratic). To compare the fitness of the three
regression models, we used Akaike’s information
criterion (AIC) to estimate the quality of each model
relative to those of the other models. Of the various
candidate models, the best had the lowest AIC. To
compare diagnostic performances, we used the areas
under the receiver operating characteristic curves
(AUROCs). All statistical analyses were performed
using SPSS for Windows, version 21.0 (SPSS) and R
(available in the public domain at http://www.R-
project.org) with the segmented R library.38 P , 0.05
was considered to reflect statistical significance.

Results

A total of 273 participants were recruited for this
study: 141 healthy subjects, and 70 early and 62
advanced glaucoma patients. The demographic data
are summarized in Table 1. There were no significant
differences in sex, spherical equivalent refractive
error, axial length, or central corneal thickness among
the groups. Age and IOP became slightly higher as
glaucoma progressed. All visual field parameters,
such as MD, PSD, and the visual field index (VFI),
differed significantly among the three groups. The
OCT parameters are summarized in Table 2. Global
and all sectoral BMO-MRW and pRNFLT values
became significantly thinner as glaucoma progressed,
but BMO areas did not differ among the three groups.

Pearson’s correlations between BMO-MRW and
pRNFLT values are shown in Table 3. In all subjects
group, global and all sectors were significantly
correlated. In normal subjects, global and all sectors
except for nasal and superonasal sectors were
significantly correlated, and correlation coefficients
generally were lower than those of the all subjects
group. The early glaucoma group exhibited signifi-
cant correlations globally and for all sectors except
the nasal sector; all correlation coefficients were
higher than those of the normal group except for
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the inferonasal sector. In the advanced glaucoma
group, significant correlations were evident in global
and all sectors, including the nasal sector. The
correlation coefficients were higher than those of the
early glaucoma group. Together, the results indicated
that the correlations between BMO-MRW and
pRNFLT became stronger as glaucoma progressed.

Various regression analyses of BMO-MRW and
pRNFLT are summarized in Table 4, and scatterplots

are shown in Figure 1. In general, the best-fitting
statistical model (with the lowest AIC) was the
broken-stick model in the global and most sectors,
except for the temporal and superonasal sectors. The
worst fitting model was the linear regression model in
all sectors. Globally, the tipping point was located at
226.5 lm of BMO-MRW; this was highly significant
according to Davies’ tests (P , 0.001). The slope
above the tipping point was 0.024 (close to zero) and

Table 2. Summary of Average BMO-MRW and Peripapillary RNFL Thicknesses

Normal (n ¼ 141)

Glaucoma

P ValueaEarly (n ¼ 70) Advanced (n ¼ 62)

BMO-MRW, lm
Global mean 255.2 6 50.2 198.6 6 50.6 158.5 6 51.1 ,0.001
Temporal sector 182.8 6 44.3 151.0 6 48.7 127.0 6 46.3 ,0.001
Superotemporal sector 251.7 6 56.3 195.3 6 64.2 150.7 6 63.6 ,0.001
Inferotemporal sector 284.9 6 55.5 199.2 6 69.7 120.7 6 73.6 ,0.001
Nasal sector 271.1 6 63.9 216.3 6 57.7 184.7 6 64.1 ,0.001
Superonasal sector 293.7 6 66.8 230.4 6 61.4 187.6 6 68.7 ,0.001
Inferonasal sector 308.1 6 63.0 227.4 6 66.1 173.9 6 70.5 ,0.001

BMO area, mm2 2.17 6 0.48 2.26 6 0.45 2.08 6 0.41 0.087
Peripapillary RNFL thickness, lm

Global mean 96.5 6 9.8 83.0 6 12.5 63.7 6 15.4 ,0.001
Temporal sector 74.8 6 12.6 65.1 6 14.5 52.9 6 13.8 ,0.001
Superotemporal sector 127.2 6 22.7 106.0 6 28.8 80.9 6 31.2 ,0.001
Inferotemporal sector 148.2 6 19.4 108.6 6 34.4 66.0 6 32.5 ,0.001
Nasal sector 74.2 6 13.7 69.2 6 14.5 58.0 6 15.5 ,0.001
Superonasal sector 115.2 6 25.7 103.3 6 20.6 81.2 6 26.2 ,0.001
Inferonasal sector 106.7 6 21.5 92.9 6 20.9 67.3 6 22.1 ,0.001
a One-way ANOVA test.

Table 1. Characteristics of the Validation Group

Normal (n ¼ 141)

Glaucoma

P ValueEarly (n ¼ 70) Advanced (n ¼ 62)

Age, years 55.2 6 12.8 58.1 6 12.9 62.5 6 13.0 0.001a

Female/male, number 78/63 40/30 26/36 0.148b

Spherical equivalent, Diopters –0.92 6 2.45 –1.01 6 2.49 –1.07 6 2.39 0.721c

Goldmann applanation tonometry, mm Hg 14.7 6 3.3 14.8 6 3.6 16.3 6 6.2 0.035a

Axial length, mm 23.72 6 1.27 23.90 6 1.63 24.00 6 1.40 0.411a

Central corneal thickness, lm 551.4 6 35.8 549.2 6 40.3 539.7 6 36.2 0.114a

Visual field
MD, dB –1.56 6 2.63 –2.72 6 1.58 –12.09 6 5.44 ,0.001c

PSD, dB 2.00 6 1.47 3.19 6 1.99 9.55 6 3.31 ,0.001c

VFI, % 97.8 6 6.4 95.2 6 3.7 66.4 6 18.9 ,0.001c

a One-way ANOVA test.
b v2 test.
c Kruskal-Wallis test.
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not statistically significant (P ¼ 0.270). However,

when the BMO-MRW became thinner than the

tipping point, the slope below the tipping point

increased sharply to 0.370 and was statistically

significant (P , 0.001). These results indicated that

the pRNFLT remained almost unchanged until

BMO-MRW thinning attained the tipping point,

and once BMO-MRW became thinner than the

tipping point, pRNFLT began to lose thickness along

with BMO-MRW. The temporal sectors generally

were better correlated than the nasal sectors (thus,

with a larger r2 value); the best-correlated sector was

Table 3. Pearson’s Correlation Coefficients Between BMO-MRW and Peripapillary RNFL Thickness

All Subjects (n ¼ 273) Normal (n ¼ 141)

Glaucoma

Early (n ¼ 70) Advanced (n ¼ 62)

r P Value r P Value r P Value r P Value

Global 0.720 ,0.001 0.275 0.001 0.601 ,0.001 0.781 ,0.001
Temporal sector 0.623 ,0.001 0.376 ,0.001 0.544 ,0.001 0.719 ,0.001
Superotemporal sector 0.747 ,0.001 0.461 ,0.001 0.705 ,0.001 0.788 ,0.001
Inferotemporal sector 0.848 ,0.001 0.463 ,0.001 0.757 ,0.001 0.765 ,0.001
Nasal sector 0.341 ,0.001 –0.004 0.965 0.193 0.110 0.564 ,0.001
Superonasal sector 0.584 ,0.001 0.317 0.462 0.522 ,0.001 0.665 ,0.001
Inferonasal sector 0.668 ,0.001 0.462 ,0.001 0.390 0.001 0.624 ,0.001

Table 4. Various Regression Analyses Between BMO-MRW and Peripapillary RNFL Thickness

Broken Stick Linear Regression Quadratic Regression

Tipping

Point

Davies’

Test

P Value*

Slope 1a

Slope 2b

4Slope

P

Value R 2 AICc Slope

P

Value R 2 AICc

Beta1

Beta2

P

Value R 2 AICc

Global 226.5 ,0.001 0.370

0.024

�0.346

,0.001

0.270

,0.001

0.663 2057 0.198 ,0.001 0.519 2150 210.7

�104.4

,0.001

,0.001

0.647 2068

Temporal

sector

192.5 ,0.001 0.272

0.030

�0.242

,0.001

0.551

,0.001

0.434 2142 0.194 ,0.001 0.388 2159 164.4

�61.0

,0.001

,0.001

0.441 2137

Superotemporal

sector

224.5 ,0.001 0.495

0.136

�0.359

,0.001

,0.001

,0.001

0.617 2418 0.331 ,0.001 0.558 2454 397.8

�120.0

,0.001

,0.001

0.609 2422

Inferotemporal

sector

256.6 ,0.001 0.525

0.126

�0.400

,0.001

0.002

,0.001

0.778 2425 0.394 ,0.001 0.719 2486 600.2

�50.2

,0.001

,0.001

0.764 2440

Nasal sector 232.7 ,0.001 0.239

�0.018

�0.257

,0.001

0.400

,0.001

0.235 2212 0.074 ,0.001 0.117 2248 88.2

�83.0

,0.001

,0.001

0.220 2216

Superonasal

sector

289.5 ,0.001 0.302

0.026

�0.276

,0.001

0.631

,0.001

0.388 2469 0.206 ,0.001 0.341 2485 269.6

�99.4

,0.001

,0.001

0.387 2467

Inferonasal

sector

273.1 ,0.001 0.300

0.079

�0.221

,0.001

0.029

,0.001

0.488 2391 0.206 ,0.001 0.446 2409 292.6

�78.3

,0.001

,0.001

0.478 2395

* Davies’ test P value: the probability of that the tipping point is not statistically significant.
a Slope below the tipping point.
b Slope above the tipping point.
c Akaike information criterion. A lower value indicates a better fit.
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the inferotemporal sector (r2 ¼ 0.778). Unlike the
superonasal and inferonasal sectors (for which the
slopes above the tipping point were 0.026 and 0.079,
respectively), the superotemporal and inferotemporal
sectors, which are the most vulnerable in glaucoma

patients, exhibited relatively larger and statistically
significant slopes above the tipping point (slope/P
value ¼ 0.136/ ,0.001 and 0.126/0.002, respectively).

Regression analyses of the BMO-MRW and visual
field data are summarized in Table 5, and scatterplots
are shown in Figures 2A to 2C. We compared three
different measures of the visual field: MD (VFMD),
VFI (VFVFI), and 1/L, linear, scaled mean sensitivity
(VFMS). The best-fitting regression model for BMO-
MRW and visual field data was the broken-stick
model, and the worst model was the linear model. The
locations of the tipping points were all significant and
similar, regardless of the scale of the visual field, being
195.6, 200.5, and 191.1 lm for VFMD, VFVFI, and
VFMS, respectively. The slopes above these tipping
points were all close to zero: 0.007, 0.012, and 0.000,
respectively; no slope was statistically significant.
However, the slopes below the tipping points
increased sharply to 0.019, 0.362, and 0.005, respec-
tively; all were statistically significant.

Regression analyses of pRNFLT and visual field
data also are summarized in Table 5, and scatterplots
are shown in Figures 2D to 2F. Although the broken-
stick model still was significant in this relationship,
but different from BMO-MRW, the best-fitting
model was the quadratic regression model followed
by the broken-stick model, except for VFMS, which
was best fit using the broken-stick model. The
differences in the AICs of the broken-stick and
quadratic models were almost negligible. The loca-
tions of the tipping points were 80.5, 80.2, and 94.0
lm for VFMD, VFVFI, and VFMS, respectively. The
tipping point increased significantly when the scale of
the visual field was changed from logarithmic (VFMD

and VFVFI) to linear (VFMS). It is noteworthy that the
tipping point of VFMS was 94.0 lm, which was
approximately 97.4% of the normal pRNFLT in our
study cohort. These results indicated that the signif-
icant tipping point existed in a linear scale (VFMS),
but most relationships (97.4%) between pRNFLT and
VFMS were simply linear.

To develop a single combination index using
BMO-MRW and pRNFLT, we used a multilayered
neural network algorithm. The characteristics of the
training dataset for this machine-learning algorithm
are summarized in Table 6. We used data from 56
normal subjects, and 38 early and 35 advanced
glaucoma patients. There were no significant differ-
ences in age, spherical equivalent refractive error,
axial length, or central corneal thickness among the
groups. All visual field parameters, BMO-MRW, and
pRNFLT differed significantly among the groups. We

Figure 1. Scatterplots between pRNFLT and BMO-MRW values
globally (top) and sectorally. Three regression lines are shown: black
line, broken-stick model; gray line, linear model; dotted line,
quadratic model. Circles represent normal subjects, dots are early
glaucoma patients, and triangles are advanced glaucoma patients.
Except for the temporal and superonasal sectors, the broken-stick
model afforded the best fit.
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tested many neural networks with different activation
functions, input layer parameters, and numbers of
hidden layers. Ultimately, we found an optimal
network, shown in Figure 3. All sectoral and global
BMO-MRWs and pRNFLT parameters, and BMO
areas served as the input; and five neurons were
contained in a single hidden layer. The activation
function was a hyperbolic tangent function, and the
output layer was a softmax function (Fig. 3).

We compared the diagnostic power of BMO-
MRW, pRNFLT, and the neural network by
measuring AUROCs. The outputs from the neural
network are plotted in Figure 4. Average outputs of
normal subjects, and those with early and advanced
glaucoma, were 0.839, 0.296, and 0.070, respectively.
The differences in average outputs between normal
and early glaucoma subjects and between early and
advanced glaucoma patients were statistically signif-
icant (all P , 0.001; Mann–Whitney U test). The
AUROCs are summarized in Table 7 and Figure 5. In
terms of differentiating normal from glaucoma
subjects, BMO-MRW performed significantly better

than pRNFLT in all nasal-side sectors (nasal, super-
onasal, and inferonasal sectors), but not globally or in
any temporal-side sector (temporal, superotemporal,
and inferotemporal sectors). However, the best
diagnostic power was afforded by the neural network,
which performed significantly better than the BMO-
MRW, with all P , 0.001, except for the inferotem-
poral sector (P ¼ 0.015). The neural network also
performed significantly better than pRNFLT, with all
P , 0.001. Overall diagnostic performance fell among
all three parameters when differentiating normal from
early glaucoma subjects, but the neural network still
afforded the best AUROCs. The neural network also
was significantly better than the all-sector pRNFLT
(P � 0.001) and the all-sector BMO-MRW (P �
0.001), except for the inferotemporal (P¼ 0.068) and
inferonasal (P¼ 0.017) sectors. However, even in the
inferotemporal sector, BMO-MRW (P ¼ 0.068)
approached significance. Compared to pRNFLT,
BMO-MRW afforded higher AUROCs for most
sectors, except the temporal sector. However, statis-
tical significance was attained only for the nasal side

Table 5. Various Regression Analyses Between Visual Field and OCT Parameters

Broken Stick Linear Regression Quadratic Regression

Tipping

Point

(% from

normal)

Davies’

Test

P Value*

Slope 1a

Slope 2b

4Slope

P

Value R 2 AICc Slope

P

Value R 2 AICc

Beta1

Beta2

P

Value R 2 AICc

VFMD (dB) vs.

BMO-MRWG

195.6 (76.6%) ,0.001 0.119

0.007

�0.112

,0.001

0.333

,0.001

0.374 1577 0.042 ,0.001 0.251 1622 44.7

�29.1

,0.001

,0.001

0.357 1582

VFVFI (%) vs.

BMO-MRWG

200.5 (78.6%) ,0.001 0.362

0.012

�0.350

,0.001

0.586

,0.001

0.409 2169 0.132 ,0.001 0.269 2223 140.6

�93.7

,0.001

,0.001

0.388 2176

VFMS (1/L) vs.

BMO-MRWG

191.1 (74.9%) ,0.001 0.005

0.000

�0.005

,0.001

0.8684

,0.001

0.192 175.3 0.0021 ,0.001 0.137 192.5 2.239

�1.456

,0.001

,0.001

0.195 175.6

VFMD (dB) vs.

pRNFLTG

80.5 (83.4%) ,0.001 0.363

0.055

�0.308

,0.001

0.078

,0.001

0.535 1495 0.205 ,0.001 0.453 1536 60.0

�25.9

,0.001

,0.001

0.538 1492

VFVFI (%) vs.

pRNFLTG

80.2 (83.1%) ,0.001 1.147

0.164

�0.984

,0.001

0.075

,0.001

0.565 2085 0.639 ,0.001 0.474 2132 186.7

�83.6

,0.001

,0.001

0.569 2080

VFMS (1/L) vs.

pRNFLTG

94.0 (97.4%) 0.014 0.014

�0.002

�0.016

,0.001

0.630

0.002

0.268 148.4 0.010 ,0.001 0.244 156.4 2.988

�0.830

,0.001

0.009

0.262 151.5

* Davies’ test P value: the probability of that the tipping point is not statistically significant.
a Slope below the tipping point.
b Slope above the tipping point.
c Akaike information criterion. A lower value indicates a better fit.
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sectors (nasal, superonasal, and inferonasal sectors).
When differentiating normal from advanced glauco-
ma subjects, the neural network also exhibited the
largest AUROC; however, in the inferotemporal
sector, the AUROCs of BMO-MRW and pRNFLT
were comparable to that of the neural network (not
significantly different). We found no significant
differences in BMO-MRW and pRNFLT AUROCs
by sector.

Discussion

The BMO-MRW is a new neuroretinal rim
parameter affording better diagnostic accuracy and
revealing a more accurate structure–function rela-
tionship than the disc margin-based rim area.17,19,39

In our study, the relationships between BMO-MRW
and pRNFLT were not simply linear, being rather

closer to a broken-stick model. The BMO-MRW
exhibited considerable thinning beforre commence-
ment of pRNFLT thinning. This study is the first to
develop a combined index of BMO-MRW and
pRNFLT using an artificial neural network model,
and to perform correlation analyses. The neural
network afforded a significantly better diagnostic
performance than either the BMO-MRW or
pRNFLT, particularly in terms of discriminating
early glaucoma patients.

In terms of the structure–structure relationship
between BMO-MRW and pRNFLT, the best-fitting
regression model was the broken-stick model, reveal-
ing a very significant tipping point. Globally, the
slope above the tipping point was almost zero (0.024),
but when the BMO-MRW became thinner than the
tipping point (226.5 lm; 88.8% of the normal BMO-
MRW in our study cohort), the slope increased
sharply to 0.370 and BMO-MRW and pRNFLT

Figure 2. Scatterplots of visual field and OCT parameters. Three different visual field parameters (MD, VFI, and 1/L) were employed. (A–
C) are the scatterplots between visual field data and BMO-MRW. (D–F) are those between visual field data and pRNFLTs. Three regression
lines are shown: black line, broken stick model; gray line, linear model; dotted line, quadratic model. Circles represent normal subjects, dots
are early glaucoma patients, and triangles are advanced glaucoma patients. The locations of the tipping points between the visual field
and BMO-MRW data were similar regardless of the visual field scale used (76.6%, 78.6%, and 74.9% in [A]–[C], respectively). However,
when the visual field and pRNFLT data were compared, the tipping points differed by the visual field scale (83.4%, 83.1%, and 97.4% in
[D]–[F], respectively).
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began to thin simultaneously. Thus, the pRNFLT did
not change significantly until BMO-MRW thinning
attained the tipping point. In this early phase of
glaucoma, the BMO-MRW was most affected. These
results are consistent with clinical experience and the
findings of previous studies suggesting that many
patients may evidence optic disc damage as the first
sign of glaucoma progression. An ONH biomechan-
ical study23 reported that the ONH was the earliest or
only site of damage. Stress and strain caused by IOP
within the ONH affected not only nutrient delivery
but also the supply of blood to retinal ganglion cell
(RGC) axons in the presence or absence of laminar
deformation. Gardiner et al.21 also reported that
BMO-MRW was the best parameter for early
detection of glaucomatous damage, whereas
pRNFLT was the best parameter for monitoring
changes. This is because pRNFLT predominantly
measures neural tissue (RGC axon bundles) 1.7 mm
distant from the optic disc center, whereas BMO-
MRW measures the thickness of neuroretinal rim
tissue contained within the optic disc. This suggests
that BMO-MRW and pRNFLT might complement
each other, and if the two parameters were appropri-
ately combined, diagnostic power would be improved
for early and advanced glaucoma patients.

The structure–function relationships also differed
clearly between BMO-MRW and pRNFLT. The

model that best fitted the BMO-MRW data and the
visual field parameters was the broken-stick model;
very significant tipping points were found at similar
locations regardless of the scales of the visual field
parameters. The tipping points between BMO-MRW
and the visual field data were located at approxi-
mately 76.6%, 74.9%, and 76.6% for MD, VFI, and
VFMS, respectively, from the normal BMO-MRW in
our study cohort. The slopes above the tipping points
were almost zero (0.007, 0.012, and 0.000, respective-
ly), and the visual field did not change until BMO-
MRW thinning attained the tipping point. Rapid
visual field deterioration commenced after consider-
able BMO-MRW thinning.

The relationships between pRNFLT and visual
field parameters were similar but nonetheless differ-
ent. A significant tipping point also was found, but
the location differed depending on whether a loga-
rithmic (MD and VFI) or linear (VFMS) scale was
used. When using visual field MD and VFI data, the
tipping points were located at 83.4% and 83.1%,
respectively, from the normal pRNFLT in our study
cohort. A very similar finding was reported by
Wollstein et al.,40 who found that the pRNFLT and
visual field MD exhibited a broken-stick relationship,
with the tipping point located at approximately 76.7
lm (84.5% of the normal pRNFLT). However, when
using the VFMS, the tipping point increased to 97.4%,

Table 6. Demographic Data Used for Artificial Neural Network Training

Normal (n ¼ 56)

Glaucoma

P ValueEarly (n ¼ 38) Advanced (n ¼ 35)

Age, years 50.2 6 16.2 54.9 6 11.8 55.1 6 14.3 0.186a

Females/males, number 40/16 19/19 11/24 0.001b

Spherical equivalent, D �1.94 6 3.09 �2.21 6 3.01 �2.69 6 3.18 0.533c

Goldmann applanation tonometry, mm Hg 15.2 6 3.7 15.0 6 3.1 16.5 6 6.7 0.295a

Axial length, mm 24.36 6 1.65 24.20 6 1.45 24.70 6 1.90 0.460a

Central corneal thickness, lm 538.5 6 43.9 543.8 6 38.8 541.1 6 29.8 0.834a

Visual field
MD, dB �1.75 6 1.77 �2.72 6 1.29 �15.27 6 5.76 ,0.001c

PSD, dB 2.01 6 1.34 3.64 6 2.22 10.57 6 3.99 ,0.001c

VFI, % 97.6 6 3.5 95.0 6 3.5 59.74 6 20.4 ,0.001c

SD-OCT
BMO area, mm2 2.25 6 0.53 2.20 6 0.57 2.23 6 0.79 0.917a

Global BMO-MRW, lm 259.7 6 62.1 209.8 6 45.9 178.1 6 53.8 ,0.001a

Global pRNFLT, lm 96.3 6 9.7 78.7 6 13.0 63.0 6 16.6 ,0.001a

a One-way ANOVA test.
b v2 test.
c Kruskal-Wallis test.
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which indicates that the relationship between
pRNFLT and VFMS usually is simply linear. The
AICs of the broken-stick and linear regression models
were similar (148.4 and 156.4, respectively). This
suggested that the BMO-MRW and visual field data

exhibited a robust broken-stick relationship, whereas
the relationships between pRNFLT and visual field
data were more affected by the scale. Previous studies
support these findings. Schlottmann et al.41 correlated
visual field mean sensitivity on the decibel scale with
pRNFLT and found a logarithmic relationship that
became linear when decibels were converted into a
linear scale. Several investigators have suggested that
use of the decibel scale creates artifacts when
analyzing structure–function relationships.35,42 We
suggested that the strong broken-stick relationship,
regardless of the visual field scale, constitutes further
evidence that BMO-MRW is more responsive to early
glaucomatous change than is pRNFLT.

We found that the AUROCs of BMO-MRW and
pRNFLT generally did not differ significantly.
However, for the nasal side sectors (nasal, super-
onasal, and inferonasal sectors), BMO-MRW yielded
significantly higher AUROCs than pRNFLT, because
nasal-side pRNFLT was measured using a beam with
a high entry angle. The reflectance of the RNFL is
highly directional and depends strongly on the angle
of illumination,43 probably reducing the reproducibil-
ity and diagnostic power of pRNFLT measurements
on nasal side sectors. Previous studies have yielded
consistent findings. Budenz et al.44 reported that nasal
pRNFLT quadrant data were the least reproducible
of four quadrants. Blumenthal et al.45 also reported
that such data were the least reproducible, and
temporal quadrant data were the most reproducible.
However, BMO-MRW data were presumably more
reliable in the nasal quadrant because the beam angle
at the ONH was not as high as that at the RNFL. We
also found that, in terms of discriminating normal
from early glaucoma subjects, the global and tempo-
ral side (temporal, superotemporal, and inferotempo-
ral sectors) AUROCs of BMO-MRW tended to be
higher than those of pRNFLT, although the opposite
was observed when discriminating normal from
advanced glaucoma subjects. Although the AUROC
difference was not statistically significant, given the
structure–structure relationships in our study, we
assumed that this is because BMO-MRW is more
susceptible to early glaucomatous change.

We used a neural network to combine BMO-
MRW and pRNFLT data; this was not the first
attempt to combine these two parameters. Gmeiner et
al.46 reported a combined BMO-MRW and peripap-
illary pRNFLT. They created combined parameters
by mathematically adding BMO-MRW to pRNFLT
as follows:

Figure 3. The artificial neural network. BMO-MRW (global and
sectoral data), BMO areas, and pRNFLT (global and sectoral data)
served as input layers. The activation function is a hyperbolic
tangent function and the output layer activation function is a
softmax function.
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Combined parameter ¼ BMO�MRWþ pRNFLT

3
BMO�MRWnormal

pRNFLTnormal

To ensure that BMO-MRW and pRNFLT contrib-

uted equally to the combined parameter, pRNFLT

was multiplied by a factor based on the ratio of mean

BMO-MRW to pRNFLT in healthy controls. The
largest AUROC among those of BMO-MRW,
pRNFLT, and the combined parameter was that of
the combined parameter, but the improvement was
minor (not statistically significant). Medeiros et al.47

also reported improved performance when pRNFLT
and ONH data were combined. The largest pRNFLT
AUROC was 0.91 in the inferior sector, and the ONH

Figure 4. The output values of the artificial neural network for the validation group. Output values close to 1.0 are more likely to be
normal than those close to 0, which indicate glaucoma. Circles are normal subjects, triangles are early glaucoma patients, and rectangles
are advanced glaucoma patients. The solid horizontal line is the average output value of normal subjects, the dashed horizontal line is that
of early glaucoma patients, and the dotted horizontal line is the average output of advanced glaucoma patients. The average output
values were 0.839, 0.296, 0.070 (normal, early glaucoma, advanced glaucoma subjects, respectively). The difference in the average output
between normal and early glaucoma and early and advanced glaucoma subjects were all statistically significant (all P , 0.001, Mann-
Whitney U test).
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Table 7. Comparison of the AUROCs of BMO-MRW, Peripapillary RNFL Thickness, and the Neural Network

BMO-MRW
AUROC

pRNFLT
AUROC

Neural Network
AUROC

PMRW-RNFL

Valuea
PMRW-NN

Valueb
PRNFL-NN

Valuec

Discriminating normal controls from glaucoma patients
Global mean 0.863 0.877 0.936 0.520 ,0.001 ,0.001
Temporal sector 0.754 0.793 0.169 ,0.001 ,0.001
Superotemporal sector 0.824 0.796 0.206 ,0.001 ,0.001
Inferotemporal sector 0.902 0.890 0.487 0.015 ,0.001
Nasal sector 0.801 0.686 0.002 ,0.001 ,0.001
Superonasal sector 0.812 0.734 0.007 ,0.001 ,0.001
Inferonasal sector 0.868 0.777 0.001 ,0.001 ,0.001

Discriminating normal controls from early glaucoma patients
Global mean 0.811 0.806 0.896 0.875 0.001 ,0.001
Temporal sector 0.697 0.717 0.633 ,0.001 ,0.001
Superotemporal sector 0.767 0.729 0.229 ,0.001 ,0.001
Inferotemporal sector 0.856 0.826 0.301 0.068 0.001
Nasal sector 0.756 0.597 0.002 ,0.001 ,0.001
Superonasal sector 0.763 0.652 0.004 ,0.001 ,0.001
Inferonasal sector 0.832 0.671 ,0.001 0.017 ,0.001

Discriminating normal controls from advanced glaucoma patients
Global mean 0.920 0.957 0.982 0.066 0.002 0.031
Temporal sector 0.819 0.879 0.041 ,0.001 ,0.001
Superotemporal sector 0.887 0.872 0.491 ,0.001 ,0.001
Inferotemporal sector 0.954 0.962 0.533 0.072 0.118
Nasal sector 0.853 0.787 0.087 ,0.001 ,0.001
Superonasal sector 0.866 0.827 0.170 ,0.001 ,0.001
Inferonasal sector 0.908 0.897 0.622 0.001 ,0.001
a P value for the comparison between the AUROCs of BMO-MRW and pRNFLT.
b P value for the comparison between the AUROCs of BMO-MRW and the artificial neural network.
c P value for the comparison between the AUROCs of pRNFLT and the artificial neural network.

Figure 5. ROC curve of neural network and best parameter of BMO-MRW (inferotemporal sector) and pRNFLT (inferotemporal sector).
(A) Normal and glaucoma. AUROC is 0.936, 0.902, 0.890 (neural network, BMO-MRW, pRNFLT respectively). (B) Normal and early
glaucoma. AUROC is 0.896, 0.856, 0.826 (neural network, BMO-MRW, pRNFLT respectively). (C) Normal and advanced glaucoma. AUROC is
0.982, 0.954, 0.962 (neural network, BMO-MRW, pRNFLT respectively).
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parameter with the largest AUROC was a cup-to-disc
ratio of 0.88. Their combined parameter exhibited a
significantly improved AUROC of 0.97, but this was
not significantly better than the AUROC of pRNFLT
(0.91). However, our artificial neural network im-
proved the AUROC very significantly compared to
those of the sectoral BMO-MRWs and pRNFLTs. It
is important to note that the improvement was not
confined to discriminating normal from glaucoma
subjects generally, but also normal from early
glaucoma subjects. Only the inferotemporal BMO-
MRW exhibited an AUROC (0.856) comparable to
that of the neural network (0.896), but the AUROC
of the neural network was higher and the difference
approached significance (P ¼ 0.068).

The neural network has shown a superior ability to
combine multiple parameters compared to mathe-
matic combinations of the same parameters. Bowd et
al.27 reported the diagnostic performance of a neural
network combining 83 optic disc parameters derived
via Heidelberg retinal tomography. This combined
index better discriminated glaucomatous from healthy
eyes than did an earlier linear discriminant function
(LDF). It was suggested that neural networks were at
least as useful as LDFs. Goldbaum et al.48 compared
three machine-learning algorithms, including a neural
network, in terms of standard automated perimetry
interpretation. The neural network performed better
than mathematic index combinations involving the
visual field MD, PSD, and LDF. A neural network
can classify complex variables even if the inputs are
heterogeneous. Brigatti et al.28 reported an improved
diagnostic performance of a neural network combin-
ing visual field parameters (mean deviation, corrected
loss variance, and short-term fluctuations) and
structural data (cup-to-disc ratio, rim area, cup
volume, and pRNFLT) derived via OCT. The neural
network better discriminated between normal and
early glaucoma subjects than analyses using only
structural data. Our neural network effectively and
complementarily combined the heterogeneous param-
eters BMO-MRW and pRNFLT to significantly
improve diagnostic power. The BMO areas did not
significantly differ among our groups. However,
Gmeiner et al.46 reported that the BMO area
influenced the diagnostic power of BMO-MRW and
pRNFLT; a larger BMO area significantly decreased
the AUROCs of BMO-MRW and pRNFLT. Con-
sistent with these results, addition of the BMO area to
the neural network improved performance.

A strength of our study is that we used data from a
relatively large number of patients: 402 divided into

validation (273) and neural net training (129) groups.
When preparing the training set, we were particularly
careful to match age and number between normal and
glaucoma subjects when selecting those whose OCT
data exhibited good signal-to-noise ratios. Overfitting
is a major problem when developing a neural network
and is even more severe during deep learning; neural
networks can have large numbers of layers containing
many neurons, up to millions. Performance variability
is reduced by increasing the size of the training set.49

There is no absolute rule indicating how much
training data are required. However, in previous
studies, relatively smaller training sets afforded better
performance. Brigatti et al.50 used data from 233
patients to develop and validate automated detection
of a glaucomatous visual field. Goldbaum et al.51

used data from 120 patients in a similar study. Uchida
et al.52 used data from 96 patients when exploring
whether confocal laser images revealed glaucomatous
structural damage. Another strength of our study is
that BMO-MRW and pRNFLT exhibited a comple-
mentary relationship and could be measured simulta-
neously. By combining these complementary
parameters, clinicians should be able to improve
diagnoses without the need to perform two different
examinations.

Our study had certain limitations. We found a
broken-stick relationship between BMO-MRW and
pRNFLT. However, in the normal group, the
correlation coefficient was lower than in the glaucoma
group. Thus, it is possible that the broken-stick
relationship could reflect different correlations in the
normal and glaucoma groups; further longitudinal
studies are necessary. Another limitation was that,
although we believed that our single combined index
might aid clinicians, further studies comparing the
performance of clinicians using the combined index to
that of clinicians using only individual parameters are
required.

In conclusion, the neural network significantly
improved diagnostic power by combining BMO-
MRW and pRNFLT data. This single unified index
performed better than either BMO-MRW or
pRNFLT data alone, and should help clinicians make
faster and more reliable decisions, particularly when
the predictions of multiple parameters disagree. We
believed that our neural network might find applica-
tions in ophthalmic research. The diagnostic power
can be improved by simply adding new parameters to
the input layer. We also found that the relationship
between BMO-MRW and pRNFLT was well-repre-
sented by the broken-stick model. Before the

14 TVST j 2018 j Vol. 7 j No. 4 j Article 14

Park, Kim, and Lee



pRNFLT began to thin, considerable BMO-MRW
thinning was evident, which suggested that the BMO-
MRW is more sensitive than RNFL to early
glaucomatous changes.
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