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Abstract
Purpose: The purpose of this study was to compare the dose– volume parame-
ters and regression scatter plots of the iteratively improved RapidPlan (RP) mod-
els, specific knowledge- based planning (KBP) models, in volumetric- modulated 
arc therapy (VMAT) for prostate cancer over three periods.
Methods: A RP1 model was created from 47 clinical intensity- modulated radia-
tion therapy (IMRT)/VMAT plans. A RP2 model was created to exceed dosimet-
ric goals which set as the mean values +1SD of the dose– volume parameters of 
RP1 (50 consecutive new clinical VMAT plans). A RP3 model was created with 
more strict dose constraints for organs at risks (OARs) than RP1 and RP2 mod-
els (50 consecutive anew clinical VMAT plans). Each RP model was validated 
against 30 validation plans (RP1, RP2, and RP3) that were not used for model 
configuration, and the dose– volume parameters were compared. The Cook's 
distances of regression scatterplots of each model were also evaluated.
Results: Significant differences (p < 0.05) between RP1 and RP2 were found in 
Dmean (101.5% vs. 101.9%), homogeneity index (3.90 vs. 4.44), 95% isodose con-
formity index (1.22 vs. 1.20) for the target, V40Gy (47.3% vs. 45.7%), V60Gy (27.9% 
vs. 27.1%), V70Gy (16.4% vs. 15.2%), and V78Gy (0.4% vs. 0.2%) for the rectal wall, 
and V40Gy (43.8% vs. 41.8%) and V70Gy (21.3% vs. 20.5%) for the bladder wall, 
whereas only V70Gy (15.2% vs. 15.8%) of the rectal wall differed significantly 
between RP2 and RP3. The proportions of cases with a Cook's distance of <1.0 
(RP1, RP2, and RP3 models) were 55%, 78%, and 84% for the rectal wall, and 
77%, 68%, and 76% for the bladder wall, respectively.
Conclusions: The iteratively improved RP models, reflecting the clear dosimet-
ric goals based on the RP feedback (dose– volume parameters) and more strict 
dose constraints for the OARs, generated superior dose– volume parameters 
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1 |  INTRODUCTION

Compared with the conventional forward planning 
approach, inverse planning can improve coverage of 
the target and sparing of normal tissue in intensity- 
modulated radiation therapy (IMRT) and volumetric- 
modulated arc therapy (VMAT).1 However, coverage of 
the target and sparing of the organs at risks (OARs) 
with inverse planning depends on the planner's or in-
stitution's experience and protocol compliance, and 
can therefore compromise the gains of high- precision 
radiotherapy.2– 5 RapidPlan (RP) which is integrated in 
the Eclipse treatment planning system (TPS) (Varian 
Medical Systems, Palo Alto, CA, USA) is a specific 
knowledge- based planning (KBP) solution that can 
reduce the variation of dose– volume parameters and 
ensure planning consistency between planners and in-
stitutions.6- 11 Many studies reported that RP using a 
single optimization of dose– volume parameters and 
dose distributions can produce IMRT/VMAT plans su-
perior or comparable to clinically accepted plans for 
various treatment sites.12- 25

The RP model performance, such as sparing of 
OARs, depends on the training plans included in the 
model library; therefore, the registration of better plans 
is useful to update the model and enhance its perfor-
mance.26,27 Wang et al. investigated the performance 
of a RP model updated using a closed- loop technique 
and showed significant improvement in the sparing of 
OARs from first to second RP models.28 However, the 
problem of over- fitting is of concern with this closed- 
loop model updating technique.28,29 Therefore, the 
registration of the other plans superior to the plans 
included in the model library can improve the perfor-
mance of a RP model without causing over- fitting.29 
In this study, we established an original RP model 
and created two individual RP models by registration 
of the updated clinical manual plans (CMPs) for the 
training with two different goals. These goals were 
applied to improve the clinical plan's quality in a step-
wise manner. Moreover, the variability of the included 
plans in each RP model was also evaluated as a de-
terminant of model performance; this procedure has 
not been performed in past reports. The purpose of 
this study was to compare the dose– volume param-
eters and regression scatter plots of RP models cre-
ated with an original optimizing method over different 
periods.

2 |  MATERIALS AND METHODS

2.1 | Clinical manual plans and the 
model configuration process at each 
period

T1– T2c stage prostate cancer was examined in this 
study. Our institutional ethics committee approved this 
study. The clinical target volume (CTV) was defined 
as the prostate and seminal vesicle (at most 2/3 of the 
whole seminal vesicle) and was delineated by experi-
enced radiation oncologists. The planning target vol-
ume (PTV) was defined with a 6- mm posterior margin 
and a 10- mm margin added to the CTV in all other di-
rections. The OARs were rectal wall and bladder wall, 
which were delineated 4.0 mm inside the outer surface 
of the rectum and bladder. The prescribed dose was 
78 Gy (39 fractions) to 95% of the volume of the PTV 
minus the rectum (PTV- R).30

Figure 1 presents a flowchart of the stepwise up-
dating approach for the RP models over three periods. 
First, we established one original model (RP1 model) 
and then created two individual models (RP2 and 
RP3 models) using the updated different CMPs. The 
RP1 model was created by selecting 47 clinical IMRT/
VMAT plans delivered from July 2014 to May 2017. The 
RP2 model was created with 50 consecutive new clini-
cal VMAT plans delivered from April 2017 to May 2018. 
The CMPs for the first update were created by the 
planners who received feedback from the RP1 model. 
The feedback was the superior dose– volume param-
eters of target and OARs of RP1, and the preferable 
dosimetric goals were set as the mean values +1SD of 
RP1. The RP3 model was created from 50 consecu-
tive new clinical VMAT plans delivered from May 2018 
to April 2019. The CMPs for the second update used 
more strict dose constraints for the OARs than the RP1 
and RP2 models by looking at past plans, as shown in 
Table 1.30 All CMPs were optimized to achieve the dose 
constraints and/or dosimetric goals by physicians and 
medical physicists, with no upper limit on the number of 
optimization rounds. All plans were checked by a single 
expert radiation oncologist.

Table 2 lists the anatomical characteristics and 
numbers of outliers for the registered CMPs in each 
model library. Outliers were defined according to 
the model configuration statistical information using 
Eclipse TPS version 15.3 in the statistical analysis of 

and the regression scatterplots in the model converged. This approach could be 
used to standardize the inverse planning strategies.

K E Y W O R D S
knowledge- based planning, model update, RapidPlan, standardization



   | 115NAKAMURA et Al.

the model for the rectal and bladder walls; however, 
outliers were not excluded from any of the models 
because we aimed to compare the quality and varia-
tions between the models without subjectivity.6,17,31,32 
All RPs (RP1, RP2, and RP3) were calculated with 
Eclipse version 15.3. All plans were optimized and 
calculated using photon optimizer (PO) and the Varian 
analytic anisotropic algorithm (AAA) to eliminate the 
dependency of the optimizer version. The validation 
plans were randomly selected from second and third 
periods and calculated with the AAA. In the RP model 
optimization, only line objectives were used for the 
OARs to eliminate any subjectivity, and the upper and 
lower objectives for the PTV- R were set at 102% and 

99%, respectively. All priorities were generated auto-
matically, and the target was prioritized in the overlap 
region between the target and OARs. The optimiza-
tion with the RP model and the calculation of the dose 
distributions were performed with PO and AAA ver-
sion 15.3, respectively.

2.2 | RP VMAT plan validation

RP VMAT plans (RP1, RP2, and RP3) were created 
with a single optimization for 30 CMP validations (T1- 
T2c prostate cancer) that were randomly selected from 
the second and third periods and not included in any 

F I G U R E  1  Flowchart describing the creation of RPs from the library models in a stepwise updating process over three periods. An 
original RP model (RP1 model) was established, and two individual RP models (RP2 and RP3 models) were created by registration of the 
updated different clinical manual plans for the training with the two different goals. The RP1 model was created by selecting 47 clinical 
IMRT/VMAT plans validated over the first period. The RP2 model was created from 50 consecutive new clinical VMAT plans created 
over the second period by planners who received feedback from RP1. The feedback was the superior dose– volume parameters of target 
and OARs of RP1, and the preferable dosimetric goals were set as the mean values +1SD of RP1. The RP3 model was created from 50 
consecutive anew clinical VMAT plans validated over the third period, with the planning involving more strict dose constraints for the OARs 
than RP1 and 2. RP1, RP2, and RP3 were created with a single optimization using each model for the other 30 validated clinical manual 
plans (CMPs) that were not used for model configuration

Structure Parameter

Dose constraints (preferable dosimetric goals)

First period 
plan

Second period 
plan

Third period  
plan

PTV- R Dmax <110% <110% <110%

Dmean 99%– 103% 99%– 103% 99%– 103%

Rectal wall V40 Gy <60% <60% (<51%) <40%– 50%

V60 Gy <35% <35% (<32%) <25%– 30%

V70 Gy <25% <25% (<19%) <15%– 20%

V78 Gy <1% <1% <1%

Bladder wall V40 Gy <60% <60% (<57%) <50%

V70 Gy <35% <35% (<28%) <30%

TA B L E  1  Dose constraints and 
preferable dosimetric goals of each 
structure in the three different periods. 
In the second period, the preferable 
dosimetric goals were set as the mean 
values +1SD of the dose– volume 
parameters of RP1
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of the model libraries (open- loop validation), as shown 
in Figure 1. All VMAT plans used two full arcs (181°– 
179°, clockwise and counterclockwise, with collimator 
angles of 30° and 330°) and 10 MV photon beam. The 
following dose– volume parameters were compared:

1. Maximum (Dmax), minimum (Dmin), and mean 
(Dmean) doses to the PTV- R volume (D95 = 100%).

2. Homogeneity index (HI) = 100 × (D2%−D98%)/D50%, 
where D98%, D2%, and D50% are doses received by 
98%, 2%, and 50% of the PTV- R, respectively.15,33

3. The 95% isodose conformity index (CI95) = V95%/
Vtarget, where V95% is the volume covered by 95% 
of the prescribed dose, and Vtarget is the PTV- R 
volume.6

4. Dose– volume parameters of the rectal wall: V40 Gy, 
V60 Gy, V70 Gy, and V78 Gy.

5. Dose– volume parameters of the bladder wall: V40 Gy 
and V70 Gy.

The differences in dose– volume parameters for each 
patient were compared between the models (RP1– RP2 
or RP2– RP3). Table 3 shows the dose– volume param-
eters of the registered CMPs in each RP model.

2.3 | Variation in the regression 
scatterplots of each model

RP performs principal component analysis of the actual 
dose– volume histogram (DVH) and geometry- based 
expected dose– volume histogram (GEDVH), and the 
resulting correlation is used for the dose prediction of 
the OARs.34 We analyzed the correlations of the first 

TA B L E  2  Anatomical characteristics and numbers of outliers for the registered clinical manual plans in each model library

RP1 model RP2 model RP3 model
Validation 
plans

PTV- R volume (cm3)

Mean ± SD 95.9 ± 30.8 107.4 ± 37.3 117.0 ± 30.3 111.3 ± 32.4

Maximum 205.6 218.5 235.4 193.0

Minimum 57.7 63.5 78.4 70.0

Rectal wall (cm3)

Mean ± SD 20.3 ± 4.9 22.5 ± 4.6 23.0 ± 5.2 23.1 ± 4.9

Maximum 36.8 34.0 34.3 34.3

Minimum 13.4 14.3 11.0 11.0

Bladder wall (cm3)

Mean ± SD 64.1 ± 29.1 52.5 ± 13.9 56.7 ± 16.1 53.0 ± 15.8

Maximum 185.8 78.6 90.8 82.9

Minimum 34.2 24.2 26.2 26.0

PTV and rectum overlap (cm3)

Mean ± SD 3.4 ± 1.5 2.7 ± 1.3 3.6 ± 1.6 3.4 ± 2.0

Maximum 8.0 7.9 8.3 8.3

Minimum 1.6 0.5 0.0 0.5

Number of outliers

Rectal wall Geometric outliers 7 4 4 — 

Dosimetric outliers 1 0 1 — 

Bladder wall Geometric outliers 23 8 3 — 

Dosimetric outliers 0 1 0 — 

TA B L E  3  Mean values of dose– volume parameters for the 
registered clinical manual plans in each RP model library

Mean ± SD

RP1 model RP2 model RP3 model

PTV- R

Dmin (%) 88.1 ± 3.4 91.8 ± 2.4 90.6 ± 2.5

Dmax (%) 106.7 ± 1.5 106.3 ± 1.0 106.9 ± 1.2

Dmean (%) 102.8 ± 0.5 102.3 ± 0.5 102.4 ± 0.6

HI 6.40 ± 0.96 5.30 ± 1.02 5.61 ± 1.11

CI95% 1.36 ± 0.09 1.25 ± 0.08 1.24 ± 0.05

Rectal wall

V40 Gy (%) 47.5 ± 4.4 46.6 ± 6.8 47.3 ± 5.3

V60 Gy (%) 27.3 ± 3.4 26.7 ± 4.6 28.6 ± 3.5

V70 Gy (%) 15.8 ± 2.5 16.3 ± 4.2 18.3 ± 3.0

V78 Gy (%) 0.2 ± 0.4 0.1 ± 0.2 0.2 ± 0.3

Bladder wall

V40 Gy (%) 40.0 ± 11.0 42.8 ± 12.2 43.1 ± 9.8

V70 Gy (%) 20.9 ± 5.2 20.6 ± 6.0 22.4 ± 5.4
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principal component scores (PCSs1) between the DVH 
and GEDVH for the three models based on the model 
analytics tool. The resulting scatterplots and regres-
sion equations were evaluated, and variations in the 
scatterplots of each model were compared using R2, 
Cook's distance and mean squared error (MSE).34- 36 
R2 represents the coefficient for the determination of 
regression model parameters.35 Cook's distance is cal-
culated by removing one plan data from the model and 
recalculating the regression. It summarizes how much 
all of the values in the regression model change when 
its plan data are removed. Cook's distance indicates 
the influential data points in a regression model, and 
a high Cook's distance value can have a significant 
negative effect on the dose prediction according to the 
regression line.34 The MSE is defined as the expected 
value of the square of the difference between the origi-
nal and the estimated data.37 The MSE describes the 
capability of model estimation for the original DVH in a 
training plan, and scores closer to zero indicate a bet-
ter estimation of the model for plans that are not part of 
the library.35

2.4 | Statistical analysis

Significant differences in dose– volume parameters for 
comparisons of the CMPs versus each RP, RP1 versus 
RP2, and RP2 versus RP3, were evaluated using the 
Wilcoxon signed- rank test. All statistical analyses were 
performed using R version 3.4.2 (The R Foundation for 
Statistical Computing), and p < 0.05 was considered to 
indicate statistical significance.

3 |  RESULTS

3.1 | RP VMAT plan verification

Table 4 lists the average dose– volume parameters of 
the CMPs and RPs over the three periods. Comparison 
of the dose– volume parameters between each 
RP reveals that the conformities of the PTV- R and 
dose– volume parameters of all OARs in RP2 were 
significantly superior to those in RP1, although the ho-
mogeneity of the PTV- R in RP2 was inferior to that in 
RP1. On the other hand, there was significant differ-
ence in only the V70 Gy of the rectal wall between RP2 
and RP3. At all periods, in comparison with the CMPs, 
the dose– volume parameters of the RPs were supe-
rior for the PTV- Rs and superior or comparable for the 
OARs, except for the V78 Gy of the rectal wall.

Figure 2 shows histograms of the differences 
(RP1– RP2) of dose– volume parameters for the rectal 
and bladder walls. The rectal and bladder walls in RP2 
dose– volume parameters were lower than those of 
RP1 in more than 60% and 70% of cases, respectively. T
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3.2 | Variation of regression 
scatterplots in each model

Figure 3 shows scatterplots and regression lines for 
comparisons of PCSs1 between DVHs and GEDVHs 
in the rectal and bladder walls, and Figure 4 shows 
histograms of the Cook's distances for the scatterplots 
in Figure 3. The R2 in the RP1, RP2, and RP3 mod-
els were 0.208, 0.550, and 0.375 for the rectal wall, 
and 0.841, 0.779, and 0.797 for the bladder wall, re-
spectively. The MSEs in the RP1, RP2, and RP3 mod-
els were 0.092, 0.191, and 0.103 for the rectal wall, 
and 0.042, 0.079, and 0.064 for the bladder wall, re-
spectively (Figure 3). The proportions of cases with a 
Cook's distance of <1.0 in models of RP1, RP2, and 
RP3 were 55% (26/47), 78% (39/50), and 84% (42/50) 
for the rectal wall, and 77% (36/47), 68% (34/50), 

and 76% (38/50) for the bladder wall, respectively 
(Figure 4).

4 |  DISCUSSION

In this study, three RP models were updated in a step-
wise manner using manually optimized clinical plans 
that were not duplicated for each model to avoid over- 
fitting. Our original updating approach involving the reg-
istered training plans with feedback from the RPs and 
more strict dose constraints improved the RP quality 
in respect to both better sparing of OARs maintaining 
the target coverage as shown by the values in Table 4 
and the low variation in the regression scatterplots with 
an increase in the proportion with a Cook's distance of 
<1.0 and low MSE as shown in Figures 3 and 4.

F I G U R E  2  Histograms of the 
differences from RP1 to RP2 for the V40 Gy 
(a), V60 Gy (b), V70 Gy (c), and V78 Gy (d) of the  
rectal wall and V40 Gy (e) and V70 Gy (f) of 
the bladder wall
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For the registered plans, the homogeneity and con-
formity of the PTV- R and the sparing of OARs in mod-
els RP2 and RP3 were superior or comparable to those 
in RP1, respectively, as shown in Table 3. On the other 
hand, all dose– volume parameters except for the ho-
mogeneity of the PTV- R were significantly superior in 
RP2 and RP3 than in RP1. It is believed that the rea-
sons why the homogeneity of the PTV- R was improved 
in the RP1 model was to prioritize the manual upper and 
lower objectives for PTV- R in the optimization process, 
and it caused lower sparing of the OARs due to the 
trade- offs between the target and OARs compared with 
RP2 and RP3 models. The dose– volume parameters 
of the RP tend to be better when the registered plans 
are better,18,26 and our previous report revealed that the 
RP’s feedback led to refinement of the quality of the 
registered plans by multi- institution study.27 However, 
the sparing of OARs by the model update might have 
an upper bound for improvement, as shown by com-
parison of the dose– volume parameters between RP2 
and RP3 in Table 4. The dose reduction of the OARs is 
difficult where the overlap volume between the target 

and OARs is large, as described by Moore et al.38 The 
anatomical characteristics of the training plans in the 
RP3 model, such as the large overlap volume between 
the target and rectum compared with the RP2 model in 
Table 2, may make it difficult for the RP3 model to re-
duce the dose of the OARs, as shown in Table 3. It can 
generate the lower line objectives for OARs estimated 
by the RP2 model than the RP3 model.

Wang et al. compared dose– volume parameters be-
tween first, second, and third RP models that were up-
dated using a closed- loop technique.28 In their study, the 
manual plans that were used to configure the first model 
were reoptimized with the model (first closed- loop) and 
a second model was created from these reoptimized 
plans. Then, these new plans were reoptimized again 
with the second model (second closed- loop) and a third 
model was created. They showed that sparing of the 
OARs was significantly improved from the first to sec-
ond models, but that there was no difference from the 
second to third models (as in our results) because the 
improvement rate of the plan quality decreased and the 
multiple OARs were not simultaneously improved due 

F I G U R E  3  Scatterplots and 
regression lines of the first principal 
component scores (PCSs 1) of the dose– 
volume histogram (DVH) and geometry- 
based expected dose– volume histogram 
(GEDVH) for the rectal wall and bladder 
wall in the RP1 (a, b), RP2 (c, d), and 
RP3 models (e, f)
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to trade- offs in dose between each OAR.28 Additionally, 
their model updating approach with a closed- loop tech-
nique can cause an over- fitting problem.28,29 Because 
of patient- specific adjustments in the objectives, the 
dose– volume parameters in an open- loop validation 
were not drastically different from the first to second 
models compared with the differences in closed- loop 
validations.28 In our study, the dose– volume param-
eters were significantly improved by the updated RP 
models from the first to second or third models in an 
open- loop validation, which indicates that over- fitting 
can be avoided. Each updated model in our study had 
sufficient stability and robustness like some studies 
adopted the open- loop validation,6,11,31 because the 
quality of the plans generated for new patients (which 
strongly depends on the quality and robustness of the 
plans in the library) was superior to the quality of the 
clinical manual plans.6

The proportion of the plans with a high Cook's dis-
tance value in the regression scatterplots can indicate 

large variations in dose prediction with the RP model, 
leading to large variability in the RP quality. Therefore, 
the uncertainty of dose prediction can be reduced by 
increasing the number of plans with a relatively low 
Cook's distance. In the rectal wall, the proportion with a 
Cook's distance of <1.0 gradually increased from RP1 
to RP3, as shown in Figure 4, indicating a reduction in 
the influential data points and reducing the uncertainty 
of the dose prediction. Moreover, the MSEs in the RP1, 
RP2, and RP3 models were 0.092, 0.191, and 0.103 for 
the rectal wall, respectively. The RP3 model had many 
registered plans with a low Cook's distance and a lower 
or comparable MSE for the regression model com-
pared with the prior two models. Thus, the influential 
data points and variation of the RP3 regression scatter 
plots were reduced. Therefore, compared with the RP1 
and RP2 models, the RP3 model could make better es-
timation of the DVH in the model for plans that were not 
part of the training set. A function of the RP as a training 
tool for the planners27 and more strict dose constraints 

F I G U R E  4  Histograms of Cook's 
distance for the regression line in the 
rectal wall and bladder wall in the RP1 
(a, b), RP2 (c, d), and RP3 models (e, f)
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could standardize the planners’ strategies in the optimi-
zation process. This convergence of the plan quality in 
the model can improve the RP prediction accuracy and 
reproducibility of the registered plans39, also reducing 
the intra- center variability in the RP quality.

5 |  CONCLUSION

The RP models, which were optimized in a stepwise 
manner by the clinical manual plans reflecting clear 
dosimetric goals based on the RP feedback (dose– 
volume parameters) and more strict dose constraints 
for the OARs, generated superior dose– volume param-
eters for both the target and OARs to those in previ-
ous model and the regression scatterplots in the model 
converged. This approach could be used to standard-
ize the inverse planning strategies.
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