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Simple Summary: Our previous study showed that low protein (LP) diets can save protein sources
and reduce nitrogen excretion without significantly impacting the growth performance of growing-
finishing pigs. In the current study, sodium dichloroacetate (DCA) was used to explore whether it
could work like a metabolic modulator to improve glucose and lipid oxidation in pigs fed with an LP
diet, whilst glucose (GLUC) was used to evaluate if it could act as pyruvate, which is a metabolic
fuel. In particular, we investigated the effects of LP diets supplemented with DCA and GLUC on
metabolic responses and intestinal microbiota of finishing pigs. Our findings showed that DCA and
GLUC supplementation improved the hepatic lipid metabolism but had limited effects on improving
colonic microbiota profile of finishing pigs.

Abstract: The objective of this study was to evaluate the effects of low-protein (LP) diets supple-
mented with sodium dichloroacetate (DCA) and glucose (GLUC) on metabolic markers and intestinal
microbiota of finishing pigs. A total of 80 crossbred growing barrows were allocated randomly to
one of the five treatments, including the normal protein level diet (CON), the LP diets, LP with
120 mg/kg DCA (LP + DCA) or 1.8% glucose (LP + GLUC), and LP with 120 mg/kg DCA and 1.8%
glucose (LP + DCA + GLUC). The LP diet increased the plasma HDL, triglyceride, and cholesterol
concentrations and reduced the bile acid, urea nitrogen, albumin, and total protein concentrations
compared to the CON diet (p < 0.05). The LP + DCA + GLUC diet reduced the plasma VLDL,
triglyceride, and cholesterol concentrations and increased the bile acid concentration compared with
the LP diet (p < 0.05). Pigs fed the LP + DCA and LP + GLUC diets showed reduced 3-Hydroxy-
3-Methylglutaryl-CoA Reductase content and increased Cytochrome P450 Family 7 Subfamily A
Member 1 activity of liver compared that of the CON diet (p < 0.05). Moreover, the LP diets with or
without DCA and GLUC supplementation increased the relative abundance of colonic microbiota
related to carbohydrate fermentation in finishing pigs. In conclusion, 120 mg/kg DCA or 1.8% GLUC
supplementation in an LP diet modulated the hepatic lipid metabolism of pigs, while the DCA along
with GLUC supplementation likely improved the lipid metabolism by stimulating bile acid secretion.

Keywords: low-protein diet; sodium dichloroacetate; metabolic markers; intestinal microbiota; pigs

1. Introduction

Dietary protein is the basic source of amino acids for livestock; however, increased
dietary protein levels and imbalance of amino acid composition result in low utilization
rate of proteins and nitrogen pollution [1,2]. The excess dietary protein and amino acids
contribute to the proliferation of pathogenic bacteria in the large intestine and leads to the
production of harmful metabolites, which can influence the immunity and inflammatory
responses in animals [3,4]. Importantly, a previous study found that a moderate reduction
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of dietary protein levels (13%) improved the microbial community structure in the ileal
and colonic segments of adult pigs [5]. Thus, low protein (LP) diets have become more and
more popular, especially in the growing-finishing pigs due to their advantages in saving
protein sources, reducing nitrogen excretion and improving gut health without significantly
affecting growth performance of animals [6,7].

Some researchers have found that LP diets changed protein and energy metabolic
response of muscle in growing pigs [1,8]. The LP diet decreased the amount of deamination
and transamination of amino acids due to the imbalance of non-essential amino acids and
induced a low utilization rate of amino acid for nitrogen retention in pigs [1,9]. Furthermore,
it is possible that supplementation with large amounts of crystalline amino acids in the
LP diets might negatively affect energy metabolism especially suppress glucose (GLUC)
oxidation [1,10]. Therefore, there is a need to explore if there is any energy modulator
added into an LP diet to improve the utilization rate of amino acid and the oxidation
of GLUC.

Sodium dichloroacetate (DCA) is non-toxic and generally used to treat cancer and
lactic acidosis by reactivating aerobic metabolism and inhibiting pyruvate kinase, which is
a key enzyme in glycolysis [11–13]. Our previous study demonstrated that DCA decreased
amino acid metabolism for urea and increased GLUC consumption by modulating the
expression of metabolic enzymes in the intestinal epithelial cells of pigs [14]. Moreover, we
found 120 mg/kg DCA supplementation in an LP diet improved the growth performance
of growing-finishing pigs [7]. Nonetheless, limited data are available concerning the effects
of LP diets supplemented with DCA or GLUC on the metabolic biomarkers and intestinal
microbiota profile in finishing pigs. Therefore, the objective of the present study was to
explore the effects of supplementing DCA or GLUC to an LP diet on the biomarkers of
nutrient metabolism and intestinal microbiota profile in finishing pigs.

2. Materials and Methods

The experimental diets, animal housing, and experimental design have been described
in detail in our previous paper presenting the effects of DCA and GLUC on growth
performance and meat quality of growing-finishing pigs [7].

2.1. Experimental Diets

Experimental diets in the three growing phases were formulated based on the body
weight of pigs, namely, 25–45, 45–65, and 65–95 kg. The five experimental diets were
a control diet (CON) wherein the dietary protein levels were 18%, 16.5%, and 15.5% in
the three phases, respectively; a low protein diet (LP) with decreased dietary protein
levels by 4.5% compared to the CON; an LP diet supplemented with an extra 120 mg/kg
DCA (LP + DCA); an LP diet supplemented with 1.8% glucose (LP + GLUC); an LP diet
supplemented with both the 120 mg/kg DCA and 1.8% glucose (LP + DCA + GLUC).
The doses of DCA and GLUC were chosen based on our previous studies [15]. The diets
were based on corn-soybean meal and Lys, Met, Thr, and Trp were supplemented to the
LP diets to balance the limiting amino acids and meet the nutrient requirements for pigs
(NRC, 2012). The ingredients and nutrient levels of five experimental diets are shown in
Tables S1–S3.

2.2. Animals and Experimental Design

All procedures used in the animal study were approved by the Institutional Animal
Care and Use Committee of Southwest University (Chongqing, China). Pigs fed DCA were
handled following the Experimental Animal Handling Procedure of Southwest University
(Chongqing, China).

A total of 80 crossbred barrows (Duroc × Landrace × Large White, 70 ± 2 days of age)
with initial body weight (BW) 27 ± 0.5 kg were used in the experiment. Sixteen repetitions
of one pig each were included in each dietary treatment. The animal handling was described
in detail previously. The experimental period lasted for 12 weeks and pigs were housed
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in individual stainless-steel metabolic cages (1.8 m length × 0.75 m width × 1.2 m height)
with a plastic floor. Pigs were provided feed ad libitum and had free access to drink
throughout the experiment. The room temperature was controlled by heaters and exhaust
fans at 23–28 ◦C.

2.3. Sample Collection

At the end of the experiment, all pigs were fasted overnight and six pigs per treat-
ment were randomly selected to collect blood samples (5 mL) via anterior vena cava into
10 mL heparinized vacutainer tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes,
NJ, USA). Samples were centrifuged 3000 × g for 10 min at 4 ◦C (Biofuge 22R; Heraeus,
Hanau, Germany), and the plasma was kept at −80 ◦C until analysis. The euthanasia
procedures were performed to collect samples as described previously [7]. The pigs were
humanely killed by exsanguination after electrical stunning, then the thoracic cavity and
abdominal cavity were opened by a midline incision and segments (1 cm in length) of
the mid-ileum (without digesta) were fixed in 10% neutral buffered formalin for subse-
quent histological measurement. The liver tissues and colonic digesta were collected in
sterilized vials, immediately immersed in liquid nitrogen and then stored at −80 ◦C for
subsequent analysis.

2.4. Analytical Methods
2.4.1. Metabolic Markers and Hormonal Index in Plasma

Concentrations of high-density lipoprotein (HDL, ml092659), low-density lipopro-
tein (LDL, ml092641), very low-density lipoprotein (VLDL, ml026119), triacylglycerol (TG,
ml092655), total cholesterol (TC, ml092733), glucose (GLUC, ml092722), total bile acids
(TBA, ml092739), blood urea nitrogen (BUN, ml092694), albumin (ALB, ml092880), total pro-
tein (TP, ml093077), direct bilirubin (DBil, ml092731), total bilirubin (TBil, ml016910), lactate
dehydrogenase (LDH, ml092996), pyruvate dehydrogenase (PDH, ml076572), glutamate
dehydrogenase (GDH, ml076495), adenosine deaminase (ADA, ml093026), cholinesterase
(ChE, ml092914), γ-glutamyl transferase (GGT, ml092630), alkaline phosphatase (ALP,
ml092963), alanine transaminase (ALT, ml092635), aspartate transaminase (AST, ml077324),
IgA (ml092680), IgG (ml092681), and IgM (ml092683) in plasma of pigs were measured
by biochemical reagent test kits from Shanghai ELISA Biotechnology Co., Ltd. (Shanghai,
China). Plasma insulin was determined using a commercially available porcine-specific
ELISA kit (m002341) and the plasma free triiodothyronine (T3) and thyroxine (T4) were
measured with ELISA kit (ml002375) according to the manufacturer’s instructions (Shang-
hai ELISA Biotechnology Co., Ltd., Shanghai, China). Measurement of growth hormone
(ml002349), glucagon (ml022730), leptin (ml002355) and melanin (ml002425) was conducted
by using ELISA kits (Shanghai ELISA Biotechnology Co., Ltd., Shanghai, China). Of note,
the intra- and inter-assay CVs for these ELISA kits were ≤10%.

2.4.2. Hepatic HMGCR and CYP7A1 Activities

Liver samples were frozen immediately in liquid nitrogen. The liver microsomes were
prepared by homogenization and centrifugation as described by [16,17]. After that, the
supernatant was taken to determine the HMGCR activity by using the Pig HMGCR ELISA
Kit (E10451p, EIAAB SCIENCE INC, Wuhan, China) according to the manufacturer’s
instruction. The CYP7A1 activities in the liver of pigs were assessed by the Pig CYP7A1
ELISA Kit (E1053p, EIAAB SCIENCE INC, Wuhan, China).

2.4.3. Intestinal Morphology

After 48 h fixation in 10% neutral buffered formalin, the histological samples of ileum
were washed, excised, dehydrated, and embedded in the paraffin wax. About five non-
successive sections of each histological tissue were sliced 5 µm thick, installed on glass
slides, and dyed with hematoxylin and eosin. Villus height and crypt depth were measured
by an observer under a light microscope (CK-40, Olympus, Tokyo, Japan) at 40× the



Animals 2022, 12, 2522 4 of 14

objective magnification and analyzed with an Image Analyzer (Lucia Software. Lucia,
ZaDrahou, Czechoslovakia). About 10 orientated villi and their adjoining crypts of each
slice were randomly selected for the calculation of the average villus height, crypt depth,
and the ratio of villus height to crypt depth. The same villus was used to determine the
number of intraepithelial lymphocytes and goblet cells, which were counted in the same
crypts of ileal sections [18].

2.4.4. Intestinal Microbiota Analysis

The bacterial genomic DNA of colonic digesta was extracted by a Stool DNA Kit
(Omega Bio-TEK, Norcross, GA, USA). The sequencing process was conducted as pre-
viously described [19]. DNA sequence analysis was carried out by using the pipeline
Quantitative Insights Into Microbial Ecology (QIIME) software. Demultiplexing was per-
formed after extracting barcodes from the reads. The Greengenes 13_8 99% operational
taxonomic unit (OTU) database was used as the reference database for open-reference
OUT picking.

2.5. Statistical Analysis

Each pig was considered an experimental unit and all data were analyzed in a random-
ized complete block design using the Generalized Linear Model procedure of SAS (SAS
Institute Inc., Cary, NC, USA). The data were subjected to one-way analysis of variance
with post hoc Tukey’s significant difference test. Linear Discriminant Analysis Effect Size
(LEfSe) was performed on the BMKCloud platform (www.biocloud.net, accessed on 1 June
2022) with p < 0.05 and LDA > 3.0. Values are presented as the least squares means with
standard error of the mean (SEM). Significant differences were reported at p ≤ 0.05 and
trends were noted at 0.05 < p ≤ 0.10.

3. Results
3.1. Plasma Metabolic and Immunological Biomarkers

As shown in Table 1, the plasma HDL contents in the LP, LP + DCA, LP + GLUC and
LP + DCA + GLUC groups were higher than in the CON group (p < 0.05), and DCA or GLUC
supplementation did not significantly change the plasma HDL contents compared with the
LP diet (p > 0.10). Compared with the CON, the LP diet did not significantly affect the VLDL
contents (p > 0.10), while DCA along with or without GLUC supplementation induced
lower VLDL contents in the plasma of finishing pigs (p < 0.05). The LP diet increased the
TG concentrations in the plasma of pigs compared with the CON diet (p < 0.05), whilst
LP + GLUC and LP + DCA + GLUC diets induced lower TG concentrations than the LP
diet (p < 0.05). The TC concentrations in the plasma of pigs fed with the LP diet were
higher than the CON (p < 0.05); moreover, pigs fed with the LP + DCA + GLUC diet
had lower plasma TC concentrations compared with the LP diet (p < 0.05). The LP diet
induced a lower TBA concentration in plasma of pigs than the CON diet (p < 0.05), and
the LP + DCA + GLUC diet elevated the TBA concentration compared with the LP diet
(p < 0.05). Compared with the CON diet, the LP diet resulted in lower BUN concentrations
in the plasma of pigs (p < 0.05), and pigs fed with the LP + DCA diet showed higher BUN
concentrations than that of the LP diet (p < 0.05). The ALB and TP contents in the plasma
of pigs were reduced with the LP diet that that of the CON diet (p < 0.05), whereas the
LP + DCA and LP + GLUC diets increased the ALB content and LP + GLUC diet increased
the TP contents compared with the LP diet (p < 0.05). The DBil concentrations in the plasma
of pigs were higher in the LP group than the CON group (p < 0.05) and were lower in the
LP + GLUC and LP + DCA + GLUC groups compared with the LP group (p < 0.05). The LP
diet did not significantly affect the LDH and GGT activities compared with the CON diet
(p > 0.10), and the DCA or DCA addition did not show significant change in LDH or GGT
activities compared with the LP diet (p < 0.10). Compared with the CON diet, the LP diet
increased the plasma ALP activities, and LP + DCA diet showed a lower ALP activity than
the LP diet (p < 0.05). The IgG contents in the plasma of finishing pigs were lower in the
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LP group than the CON group (p < 0.05) and were higher in the LP + GLUC group when
compared with the LP group (p > 0.10). However, there were no significant changes in LDL,
GLUC, TBil, PDH, GDH, ADA, ChE, ALT, AST, IgA, and IgM indices between the CON,
LP, LP + GLUC, and LP + DCA + GLUC groups (p > 0.10).

Table 1. Effects of supplementing low protein (LP) diets with sodium dichloroacetate (DCA) and
glucose (GLUC) on the plasma metabolic and immunological biomarkers of growing-finishing pigs.

Item
Treatments

SEM p-Value
CON LP LP + DCA LP + GLUC LP + DCA +

GLUC

HDL (mg/mL) 0.98 b 1.34 a 1.31 a 1.25 a 1.20 a 0.05 <0.001
LDL (mg/mL) 0.47 0.47 0.56 0.52 0.52 0.03 0.104

VLDL (mg/mL) 6.97 ab 10.42 a 4.95 b 6.95 ab 4.33 b 1.30 0.026
TG (mmol/L) 1.48 b 1.88 a 1.97 a 1.51 b 1.15 c 0.07 <0.001
TC (mmol/L) 4.20 d 6.28 ab 6.49 a 5.42 bc 5.18 c 0.30 <0.001

GLUC (mmol/L) 17.9 19.0 20.0 23.9 18.1 2.36 0.388
TBA (µmol/L) 37.3 b 27.7 c 32.6 bc 27.8 c 42.5 a 1.73 <0.001
BUN (mmol/L) 5.33 a 3.97 b 4.88 a 3.51 b 3.53 b 0.29 <0.001

ALB (g/L) 39.2 a 37.1 b 40.0 a 39.3 a 38.9 ab 0.49 0.017
TP (mg/mL) 95.4 a 78.1 b 90.2 ab 95.4 a 77.5 b 3.95 0.004

DBil (µmol/L) 1.93 b 2.72 a 2.69 a 0.89 c 1.31 bc 0.21 <0.001
TBil (µmol/L) 13.1 13.3 10.6 14.7 11.3 1.33 0.226

LDH (U/L) 491 a 467 ab 393 b 460 ab 450 ab 20.7 0.032
PDH (U/L) 16.4 34.3 19.7 25.1 16.0 3.33 0.194
GDH (U/L) 2.49 2.93 2.27 2.35 2.26 0.32 0.564
ADA (U/L) 1.79 1.56 2.31 1.85 1.78 0.25 0.323
ChE (U/L) 305 333 238 276 316 36.3 0.398
GGT (U/L) 28.1 b 30.5 ab 36.2 a 27.0 b 32.5 ab 1.76 0.008
ALP (U/L) 12.8 c 19.8 a 16.6 b 17.2 ab 18.6 ab 0.77 <0.001
ALT (U/L) 13.7 12.3 14.7 15.0 12.7 1.38 0.550
AST (U/L) 10.7 10.7 9.45 12.7 11.6 1.19 0.420

IgA (µg/mL) 403 385 381 383 433 63.0 0.973
IgG (µg/mL) 9.35 a 4.85 b 7.79 ab 9.86 a 7.38 ab 0.85 0.003
IgM (µg/mL) 5.94 6.05 6.29 5.21 6.38 1.36 0.976

Data are presented as means (n = 6). a,b,c,d Values within a row with different superscripts differ significantly
(p < 0.05). Abbreviations: ADA, adenosine deaminase; ALB, albumin; ALP, alkaline phosphatase; ALT, alkaline
phosphatase; AST, aspartate transaminase; BUN, blood urea nitrogen; ChE, cholinesterase; CON, control group;
DBil, direct bilirubin; DCA, sodium dichloroacetate; GDH, glutamate dehydrogenase; GGT, γ-glutamyltransferase;
GLUC, glucose; HDL, high-density lipoprotein; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, im-
munoglobulin M; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; PDH, pyruvate dehydrogenase;
TBA, total bile acids; TBil, total bilirubin; TC, total cholesterol; TG, triacylglycerol; TP, total protein; VLDL, very
low-density lipoprotein.

3.2. Hormone Concentrations in Plasma

As shown in Table 2, pigs fed with the LP diet had higher T3 concentrations in the
plasma than that of the CON diet, whereas LP + DCA, LP + GLUC, and LP + DCA + GLUC
diets significantly increased the T3 concentrations compared with the LP diet (p < 0.05).
The T4, insulin, and glucagon concentrations in the plasma of the pigs were higher
with the LP diet than the CON diet; moreover, the LP + DCA and LP + GLUC, but
not LP + DCA + GLUC diets induced higher T4, insulin, and glucagon concentrations com-
pared to the LP diet (p < 0.05). The growth hormone concentrations in the plasma of pigs
were increased with the LP diet, while LP + DCA, LP + GLUC, and LP + DCA + GLUC
diets showed higher growth hormone concentrations compared with the LP diet (p < 0.05).
Compared with the CON diet, the LP diet showed higher leptin concentrations (p < 0.05),
and LP + DCA diet increased leptin concentrations compared with the LP diet (p < 0.05).
The melanin concentration was lower in the plasma of pigs fed with the LP diet than
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the CON diet, whereas it was higher with the LP + GLUC and LP + DCA + GLUC diets
compared with the LP diet (p < 0.05).

Table 2. Effects of supplementing low protein (LP) diets with sodium dichloroacetate (DCA) and
glucose (GLUC) on the plasma hormone concentrations in growing-finishing pigs.

Item
Treatments

SEM p-Value
CON LP LP + DCA LP + GLUC LP + DCA +

GLUC

T3 (pmol/L) 1.93 c 2.81 b 3.93 a 4.14 a 3.95 a 0.19 <0.001
T4 (pmol/L) 3.01 c 5.68 b 7.96 a 7.49 a 5.74 b 0.47 <0.001

Growth hormone
(ng/mL) 2.26 d 4.68 c 7.18 a 7.65 a 5.95 b 0.36 <0.001

Insulin (mIU/L) 2.71 c 4.67 b 8.38 a 7.81 a 4.79 b 0.21 <0.001
Glucagon (pg/mL) 30.6 c 51.4 b 76.4 a 69.3 a 45.5 b 2.88 <0.001

Leptin (ng/mL) 2.03 c 2.61 b 3.18 a 2.94 ab 2.72 b 0.10 <0.001
Melanin (pg/mL) 119 a 66.7 b 68.0 b 114 a 100 a 6.02 <0.001

Data are presented as means (n = 6). a,b,c,d Values within a row with different superscripts differ significantly
(p < 0.05). Abbreviations: CON, control group.

3.3. HMGCR and CYP7A1 in Liver

The enzyme activities involved in cholesterol synthesis in the liver tissue of the fin-
ishing pigs are shown in Table 3. The LP diet did not significantly affect the HMGCR
content or CYP7A1 activity compared with the CON diet (p > 0.10). However, the
LP + DCA, LP + GLUC, and LP + DCA + GLUC diets reduced the HMGCR contents
in the liver tissues of pigs compared with the LP diet (p < 0.05), and the LP + DCA and LP +
GLUC diets induced higher CYP7A1 activities than the LP diet (p < 0.05).

Table 3. Effects of supplementing low protein (LP) diets with sodium dichloroacetate (DCA) and
glucose (GLUC) on the enzyme activities in liver tissue of growing-finishing pigs.

Items
Treatments

SEM p-Value
CON LP LP + DCA LP + GLUC LP + DCA +

GLUC

HMGCR (ng/mL) 238 a 230 a 161 b 173 b 198 b 10.4 <0.001
CYP7A1 (U/L) 0.02 d 0.03 cd 0.05 a 0.04 b 0.03 bc 0.001 <0.001

Data are presented as means (n = 6). a,b,c,d Values within a row with different superscripts differ significantly
(p < 0.05). Abbreviations: CON, control group.

3.4. Ileal Histology

Table 4 shows the ileal histology of finishing pigs. The villus height, crypt depth, ratios
of villus height to crypt depth, lymphocytes amount, and goblet cells per crypt were not
significantly changed by dietary treatments (p > 0.05, Table 4).

Table 4. Effects of supplementing low protein (LP) diets with sodium dichloroacetate (DCA) and
glucose (GLUC) on the ileum histology of growing-finishing pigs.

Item

Treatments

SEM p-ValueCON LP LP + DCA LP + GLUC LP + DCA +
GLUC

Villus height (µm) 495 509 409 447 353 47.2 0.164
Crypt depth (µm) 302 318 289 289 257 27.6 0.623

Villus height/Crypt depth 1.64 1.63 1.54 1.60 1.41 0.19 0.911
Lymphocytes amount per villus 72.6 61.8 56.8 79.2 97.8 19.2 0.600

Goblet cells per crypt 10.2 10.4 13.4 5.2 3.2 2.47 0.051

Data are presented as means (n = 6). Abbreviations: CON, control group.
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3.5. Colonic Microbial Diversity and Composition

Figure 1 shows the alpha diversity of colonic microbiota in the finishing pigs. Al-
though the Chao1, Shannon, and Simpson indices were not significantly affected by the
dietary treatments (p > 0.10), a lower ACE index of the colonic microbiota was shown in
the LP + GLUC + DCA group compared with the LP, LP + DCA, and LP + GLUC groups
(p < 0.05). The analysis of similarities showed that the structure of the colonic microbiota
did not significantly differ among dietary treatments (p > 0.05, Figure 2a) and PCoA of the
weighted Unifrac distance metric revealed no distinct differences in colonic microbiota among
groups (Figure 2b). As shown in Figure 3a, the composition of abundant bacteria (Top 10)
is provided at genus level in the colon digesta of finishing pigs. The colonic microbiota
composition including Streptococcus, Lactobacillus, Lachnospiraceae_XPB1014_group and Prevotel-
laceae_NK3B31_group, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group,
Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, and Prevotellaceae_UCG-001 at genus
level was not affected by dietary treatments (p > 0.10, Table 5). However, the Ruminococ-
caceae_UCG_005 was reduced in pigs fed with the LP + DCA + GLUC diet compared with
the LP diet (p < 0.05). LEfSe analysis was also performed to assess the enrichment of taxa
in the four dietary groups (Figure 3b). The consumption of CON diet enriched the F082,
Peptococcaceae, and Peptococcus; LP diet led to high relative abundance of Ruminococcaceae,
Ruminococcaceae_UCG_005, Terrisporobacter, Ruminococcus_2, and Family_XII_UCG_001;
LP + DCA diet induced high relative abundance of Lachnospiraceae_UCG_004 and Ru-
minococcaceae_UCG_008; LP + GLUC diet was associated with enriched Oscillospira, Eubac-
terium_coprostanoligenes_group, and Eubacterium_nodatum_group; and LP + DCA + GLUC
diet showed high relative abundance of Lachnospiraceae_XPB1014_group, Paludibacteraceae,
Candidatus_Saccharimonas, Saccharimonadia, Patescibacteria, and Saccharimonadales.

Table 5. Effects of supplementing low protein (LP) diets with sodium dichloroacetate (DCA) and
glucose (GLUC) on colonic microbiota composition at genus level (Top 10) in growing-finishing pigs.

Item
Treatments

SEM p-Value
CON LP LP + DCA LP + GLUC LP + DCA +

GLUC

Streptococcus 0.19 0.11 0.14 0.19 0.13 0.08 0.370
Lactobacillus 0.08 0.11 0.08 0.12 0.11 0.05 0.697

Lachnospiraceae_XPB1014_group 0.06 0.04 0.06 0.16 0.11 0.04 0.127
Prevotellaceae_NK3B31_group 0.02 0.02 0.03 0.02 0.02 0.007 0.072

uncultured_bacterium_f_Muribaculaceae 0.05 0.04 0.05 0.06 0.04 0.03 0.721
Lachnospiraceae_NK4A136_group 0.03 0.05 0.05 0.04 0.05 0.02 0.228

Ruminococcaceae_UCG-005 0.04 ab 0.05 a 0.04 ab 0.04 ab 0.03 b 0.01 0.048
Rikenellaceae_RC9_gut_group 0.03 0.03 0.02 0.03 0.03 0.01 0.693

Prevotellaceae_UCG-003 0.02 0.02 0.03 0.02 0.02 0.007 0.072
Prevotellaceae_UCG-001 0.05 0.03 0.02 0.02 0.03 0.02 0.264

Data are presented as means (n = 5). a,b Values within a row with different superscripts differ significantly
(p < 0.05). Abbreviations: CON, control group.
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Figure 1. Alpha diversity including Chao1 (a), Ace (b), Shannon (c), and Simpson (d) of the
colon communities of individual pigs after feeding control diet (A, CON), low protein diet (B, LP),
LP + sodium dichloroacetate diet (C, LP + DCA), LP + sodium dichloroacetate diet (D, LP + GLUC),
and LP + DCA + GLUC diet (E), respectively. n = 5.
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Figure 3. Microbiota composition at genus level (a) and linear discriminant analysis effect size
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showing the most differentially abundant taxa enriched in microbiota from pigs.
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4. Discussion

LP diets are commonly used in growing-finishing pigs during the swine production
for reducing the nitrogen excretion and saving protein sources. Some researchers have
investigated the effects of LP diets on growth performance, carcass traits, and meat quality,
while the influence of LP diets on the metabolic biomarkers and intestinal microbiota
remains unclear. In this study, DCA and GLUC were added in the LP diet to investigate if
they could function as metabolic modulators to increase the glucose or lipid oxidation and
reduce the amino acid catabolism, and whether there were changes in intestinal microbiota
in finishing pigs.

The present results showed that the LP diet increased the plasma HDL, TG, and TC
levels, which was also reported by previous study [20]. DCA supplementation in the LP
diet showed limited effects on the lipid profile in the plasma of pigs, whereas DCA along
with GLUC supplementation showed greater influence on reducing the VLDL, TG and
TC contents. In particular, we found higher TBA concentration in the LP + DCA + GLUC
group, which could explain the lower concentrations of VLDL, TG, and TC in the plasma
of pigs. We speculated that the higher plasma HDL, TG, and TC levels induced by the
LP diet could be associated with the intake of high dietary carbohydrate and fat content
in pigs and DCA along with GLUC supplementation might modulate the lipid profile in
the plasma of pigs by stimulating the bile acid secretion. Moreover, an LP diet reduced
the plasma total protein and urea nitrogen content of pigs. Similar with these findings,
some studies also found that an LP diet reduced the plasma total protein and urea nitrogen
contents in pigs [21–23], which was possibly associated the deficiency of non-essential
amino acids and reduced nitrogen excretion; therefore, the amount of deamination and
transamination of amino acids decreased in LP diet fed pigs [24]. Meanwhile, the decreased
ALB and TP concentrations in the plasma was seen in pigs fed with the LP diet compared
with that of the CON diet. This was reasonable since the contents of plasma ALB and TP
reflect the dietary protein levels and the degree of digestion, absorption, and utilization
of protein by the animals [24]. However, the DCA supplementation in the LP diet might
change amino acid metabolism since the increased plasma BUN and ALB content was
observed when compared with the LP diet. The activities of liver enzymes, such as ALT,
AST, ALP, DBil, or TBil, in plasma were markers of hepatocellular health. The current study
showed the DBil content and ALP activity were elevated in the plasma of pigs fed with
the LP diet. The DBil was regarded as antioxidant and protective agent against oxidative
reactions in liver damage, whilst the ALP is elevated with hepatocellular injuries and an
elevation in plasma DBil and ALP indicated the inhibition of bile excretion [25]. Therefore,
the increased DBil content and ALP activity in the LP group was possibly associated with
liver damage or higher fat accumulation in the liver of pigs, which was also reflected by the
decreased plasma TBA concentrations [26]. Furthermore, the lower ALP activity in the LP
diet supplemented with DCA might indicate the improvement of liver health by the DCA.

Thyroid hormones, including T3 and T4, play a crucial role in modulating the thermo-
genic response. Our study showed that the reduction of dietary protein levels increased
plasma T3 and T4 concentrations and DCA or GLUC supplementation increased the con-
centrations further. In the early studies, low-protein high-carbohydrate diets were shown to
increase serum T3 and T4 concentrations in pigs or rats [27,28]. The decreased energetic effi-
ciency observed in growing rats and pigs fed LP diets is often associated with a marked rise
in T3 and T4 concentrations, which is frequently interpreted as an adaptive diet-induced
thermogenesis [28]. In this study, the higher T3 and T4 concentrations could be the results
of long-term insufficient intake of non-essential amino acids which altered the thyroid
gland hormone secretion. Interestingly, the present study found the LP diets increased
growth hormone levels in the plasma of pigs which was contrary to previous findings that
diets high in protein increased growth hormone in humans [29]. The increased growth
hormone secretion can inhibit protein breakdown and stimulate protein synthesis in muscle
and other tissues and inhibit amino acid degradation in liver [29,30]. The elevated growth
hormone concentrations especially in the LP groups supplemented with DCA or GLUC
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were signs of improved protein metabolism in the liver and was also demonstrated by the
increased plasma ALB and TP concentrations. Moreover, inconsistent with the previous
findings [31], we found the insulin, glucagon, and leptin concentrations in the plasma
of finishing pigs were increased with the LP diet compared with the CON diet, which
could be the results of increased fat accumulation of pigs induced by a long-term intake
of high-carbohydrate and high-fat diet. It was possible that DCA and GLUC promoted
the glucose and lipid oxidation, therefore showing greater effects on increasing plasma
hormone concentrations [1,32].

In the liver, HMGCR and CYP7A1 are two pivotal enzymes controlling the mainte-
nance of cholesterol homeostasis, wherein the HMGCR is involved in cholesterol de novo
biosynthesis and CYP7A1 is involved in cholesterol catabolism [17]. In the present study,
DCA or GLUC supplementation in the LP diets reduced the HMGCR content in the liver
of pigs. Previous study found that the reduced HMGCR activity led to inhibited de novo
synthesis of cholesterol in the liver and, thus, reduced the serum cholesterol level [33].
Furthermore, leptin supplementation has been reported to suppress the mRNA levels of
HMGCR in the liver of mice [32]. Similarly, the reduced HMGCR activity in the DCA and
GLUC supplemented groups possibly meant the de novo synthesis of cholesterol in the liver
was reduced, which was in accordance with the change of plasma leptin concentrations
and supported our hypothesis that DCA and GLUC supplementation in an LP diet might
regulate the lipid metabolism of pigs. CYP7A1 is the rate-limiting enzyme in the classical
bile acid biosynthetic pathway [34], and our study showed that the activity of CYP7A1 in
the liver of pigs was increased in the LP diets with DCA or GLUC supplementation. Con-
sidering the increased CYP7A1 activity indicated promoted conversion rate of cholesterol
into bile acid, DCA or GLUC would be beneficial for increasing the total bile acid synthesis,
therefore, to reduce the cholesterol level in the liver [17].

Dietary protein source and composition play important roles in the composition and
function of gut microbiota and the LP diet with balanced AA displayed beneficial effects
on gut health by modulating the composition and diversity of gut microbiota [21]. The
reduction of dietary protein levels did not affect colonic microbial richness or diversity, as
shown by Chao1 and ACE species richness, and Shannon and Simpson indices, respec-
tively. Previous studies reported that dietary protein levels had no significant effects on
microbiota diversity but altered microbial composition in the hindgut of growing-finishing
pigs [5,35,36]. The CON diet showed enriched F082 and Peptococcaceae in the colon of pigs,
while previous study reported that the relative abundance of Peptococcaceae in the colon of
pigs was increased with the high protein diets [19]. The CON diet could induce a relative
lower nitrogen utilization efficiency, thus increasing the protein fermentation in the hindgut
and the abundance of protein fermentation microbiota such as Peptococcaceae [19,37]. How-
ever, the role of the Bacteroidetes unclassified family F082 is still unclear [38]. The LP diet
presented increased colonic abundances of Ruminococcaceae and Terrisporobacter, which was
similar with the findings in humans [39]. Both Ruminococcaceae and Terrisporobacter can de-
grade and ferment dietary fiber containing complex polysaccharides; therefore, the enriched
Ruminococcaceae and Terrisporobacter abundance could be the results of high carbohydrate
content in the LP diet. With the DCA supplementation, the LP diet enriched Lachnospiraceae
and Ruminococcaceae in the colon of pigs. Meanwhile, the GLUC supplementation in the LP
diet enriched the Oscillospira, Ruminococcaceae, and Eubacterium abundance in the colon of
pigs. This was also seen in a previous study [35,36], and a possible reason could be the high
content of corn in the LP diet since Lachnospiraceae and Ruminococcaceae and Oscillospira are
polysaccharide-degrading bacterium [40]. These enriched bacteria can produce SCFA by
fermenting carbohydrates, in particular, directly or indirectly exhibits positive regulatory
effects on obesity and chronic inflammation [41]. With DCA along with GLUC addition,
the relative abundance of Lachnospiraceae_XPB1014_group and Lachnospiraceae_UGG_004
was enriched. This was reported by a previous study which studied the effects of an LP
diet supplemented with alpha-ketoglutarate on cecal microbial community in growing
pigs [42]. Similar to alpha-ketoglutarate, DCA might also serve as a metabolic fuel for
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the gut in pigs fed an LP diet and improve the microbial fermentation. Furthermore, the
LP diet supplemented with DCA along with GLUC increased the relative abundance of
Paludibacteraceae. This was also seen in a previous study that the LP + BCAA diet showed
higher abundance of Paludibacteraceae in the feces of nursery pigs compared to the CON
diet [43]. The enriched Paludibacteraceae could be attributed to the high dietary carbohydrate
content which was used as a fermenting substrate by the bacteria [44]. However, it should
be noticed that the safety of DCA is very important for both pigs and human. DCA is a
medicine used to treat cancer in humans, but the effects of DCA on pigs were lesser known;
therefore, the safety in pig production still need further investigation. Moreover, it remains
important to identify more economic additives that function as DCA for pig industry.

5. Conclusions

In conclusion, an LP diet increases the concentrations of lipids and hormones related
to energy metabolism in the plasma of finishing pigs, but did not affect the intestinal
morphology and microbial diversity of pigs. The 120 mg/kg DCA or 1.8% GLUC supple-
mentation to an LP diet shows limited effects on the lipid profile in the plasma of pigs, but
modulates the hepatic cholesterol metabolism by showing a lower HMGCR content and
higher CYP7A1 activity. Moreover, the DCA along with GLUC supplementation mainly
improves the plasma lipid profile and stimulates the bile acid secretion. The reduction of
dietary protein level, and DCA and GLUC supplementation changed the colonic micro-
biota composition, mainly due to the high dietary carbohydrate content. Overall, these
findings suggest that DCA or GLUC supplementation in an LP diet can modulate the
lipid metabolism and increase the relative abundance of bacteria involved in carbohydrate
fermentation in finishing pigs.
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ingredients and nutrient levels of diets for pigs with body weight ranging from 45 to 65 kg (dry
matter basis, %); Table S3: The ingredients and nutrient levels of diets for pigs with body weight
ranging from 65 to 95 kg (dry matter basis, %).
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