
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18914  | https://doi.org/10.1038/s41598-022-23484-3

www.nature.com/scientificreports

Research On Maize Disease 
Identification Methods In Complex 
Environments Based On Cascade 
Networks And Two‑Stage Transfer 
Learning
Hongxin Liu, Haichen Lv, Jiajun Li, Yongshuo Liu & Limiao Deng*

Achieving accurate and reliable maize disease identification in complex environments is a huge 
challenge. This is because disease images obtained from natural environments are often in complex 
contexts that may contain elements similar to disease characteristics or symptoms. Based on cascade 
network and two‑stage transformation learning, the new method is proposed in this paper and applied 
the improved method to the task of identification and classification of four maize leaf types in a 
complex environment. The proposed method has a cascade structure which consists of a Faster R‑CNN 
leaf detector (denoted as LS‑RCNN) and a CNN disease classifier, named CENet(Complex Environment 
Network). The LS‑RCNN detector with an attention mechanism was used to detect maize leaves from 
the image, and the CENet model further classified the leaf images detected in the first stage into four 
categories: Cercospora leaf spot, Common rust, Northern Leaf Blight, and Healthy, which allowed 
image features to be extracted more efficiently. The subsequent use of a two‑stage transfer learning 
strategy to train CENet models of disease images in complex contexts allows for faster training of the 
models while ensuring accuracy. The experimental results show that the proposed method is used to 
identify four types of maize leaves with an F1‑score of 99.70%, which is better than some popular CNN 
models and others’ methods, and has a more obvious advantage in terms of training speed. The model 
proposed in this experiment has a positive significance for exploring other Crop variety identification 
and classification under complex backgrounds.

Maize is a major crop in China, with the largest planting area and yield, and also plays an important role in light 
industry, animal husbandry, and the national economy. Maize diseases not only reduce the maize yield but also 
affect the development of related industries and economies. At present, the manual method is the main method 
to identify maize diseases in China. The labor process of using manpower to identify maize diseases is not only 
inefficient, but also easy to be disturbed by subjective factors such as fatigue and emotion, and can only be 
identified when the obvious symptoms  appear1. Therefore, how recognizing disease of maize leaves quickly and 
accurately and taking appropriate control measures is of great significance to ensure maize production.

The research on crop image disease recognition abroad began in the 1980s. Researchers have extensively used 
a variety of traditional machine learning methods to study the image recognition technology of agricultural 
diseases, including the support vector machine classifier  method2, PNN  method3, K-nearest neighbor classifica-
tion  method4, BP network  method5, and so on, which has played a positive role in promoting the application of 
information technology in agricultural disease image recognition research. However, the traditional machine 
learning method has some shortcomings, such as limited learning and expression ability, manual extraction of 
features, and unsuitable for processing large amounts of data.

The deep learning method can effectively solve the problem of big data learning and modeling. In recent 
years, researchers have carried out a lot of research work in agricultural disease image recognition based on 
deep learning. Chen et al.6 proposed a new network called SE-MobileNet, which achieved an average accuracy 
of 99.78% and showed the feasibility and effectiveness of the deep learning network. Hammad Saleem et al.7 
proposed an image-based deep learning meta-structure model to identify plant diseases. Long et al.8 proposed a 
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recognition method based on a convolutional neural network and transfer learning for Camellia oleifera disease 
image recognition, and the average recognition accuracy reached 96.53%. Based on the characteristics of maize 
foliar diseases, Zhao et al.9 applied the threshold method, area marker method, and Freeman link code method 
to diagnose five major diseases of maize foliage with an accuracy of more than 80%. Liu et al.10 applied the Triplet 
loss double convolution neural network structure to study the features of corn images and then used the SIFT 
algorithm to extract texture features, and the classification accuracy was above 90%. Zeng and  Li11 proposed the 
Self-Attention Convolutional Neural Network (SACNN) to identify crop diseases, and extensive experimental 
results showed that the recognition accuracy of SACNN on AES-CD9214 and MK-D2 was 95.33% and 98.0%, 
respectively. Chen, et al.12 proposed a new method to automatically detect and classify plant leaf diseases based 
on image processing techniques, which could effectively identify whether a plant was a pest or disease plant. 
Compared with the traditional machine learning methods, a deep learning framework can automatically learn the 
features contained in the image data. When the data set reaches a certain size, it can achieve better accuracy and 
robustness in the agricultural disease image recognition task. However, the application of deep learning in agri-
cultural disease image recognition still has some problems, such as large training data set, over-reliance on data 
annotation, limited generalization ability of the model, and high requirements on hardware computing power.

Deep transfer learning method can use the learned knowledge in the field of big data to assist in the building 
data model in the field of smaller goals, directly reducing the size of the target domain modeling for data require-
ments, which includes the research field of agricultural disease image recognition. Researchers have carried out 
some related research  work13–15, which used some existing large image datasets to assist in establishing the image 
recognition model of target disease with small sample data, and achieved certain results. Chen, Zhang, et al.16,17 
proposed models generated by transfer learning for identifying plants and showed good results, demonstrating 
that the models trained on the public dataset still had good detection performance in complex environments. 
Moreover, the use of transfer learning in experiments can also reduce the data size requirement for modeling.

Although deep learning models for agricultural disease recognition are becoming more and more mature and 
some research results have been achieved, however, most of the research is based on disease images collected in 
the laboratory environment, and few studies focused on disease recognition in the actual farmland environment. 
When these methods are applied to the actual farmland environment, the detection and recognition results are 
easily affected by the complex environment and the image shooting environment. The recognition accuracy will 
be greatly reduced, and the applicability is poor with limitations. How to accurately recognize maize diseases in 
complex environments is still a great challenge. To solve this issue, the main contributions and novelty of this 
paper are as follows:

We proposed an effective cascade network for maize disease identification in complex environments, which 
were composed of a Faster R-CNN leaf detector (denoted as LS-RCNN) and a CNN disease classifier (denoted 
as CENet).
Two-stage transfer learning strategy was proposed to successfully train the disease classifier CENet, which 
allowed the model to converge faster, and be more suitable for disease recognition in the natural environment.
Due to the lack of public data sets available on maize diseases in the natural environment, we constructed a 
maize disease dataset which contained 3842 laboratory images from Plant Village and 3380 natural images 
taken in field conditions.

The rest of this paper is organized as follows. In “Materials and methods” section, we elaborate on the pro-
posed model and introduced the model structure in detail. “Results” section provides experimental results and 
analyses of our datasets. Then, discussions are given in “Discussion” section. Finally, we give conclusions and 
directions for future works in “Conclusion” section.

Materials and methods
Materials. Data collection. In this experiment, corresponding datasets were created for different types of 
maize leaves, which can be accessed at https:// github. com/ giter go/ Datas ets/. Images in the lab dataset were ob-
tained from Plant  Village18, an open-access repository containing pest and disease images of many crops that 
have been used by many scholars with good results. Therefore, we selected four types of maize leaf images from 
Plant Village to form the laboratory dataset, which has a relatively simple background and is easy to identify 
and can be contrasted with the complex images in the natural environment. Most of the images in the natural 
environment dataset were acquired through field photography in Qingdao. Due to the limited variety of maize 
leaves available from field photography, we downloaded some open-source data on the natural environment as a 
supplement. All experimental protocols complied with all relevant guidelines and regulations.

The four categories of corn leaves were Cercospora leaf spot, common rust, Northeast leaf blight, and Healthy. 
Table 1 shows the number of images collected for each category, the number for training, validation, and testing, 
and their total number.

Figure 1 shows some sample images of the natural environment dataset and the laboratory dataset, as well 
as the differences in their backgrounds.

Data augmentation. We performed data enhancement on the existing image data (especially the natural envi-
ronment) for data enhancement to achieve the purpose of increasing data volume, enriching data diversity, 
improving the generalization ability of the model, expanding the sample space, and reducing the influence of 
unbalanced data.

We used 15 data enhancement methods as shown in Fig. 2. These methods come from the OpenCV-based 
implementation of the Albumentations  library19, a fast and flexible open-source library for image enhancement 

https://github.com/gitergo/Datasets/
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that provides many various image conversion operations. In most image conversion operations, Albumentations 
enhancement is faster than other commonly used image enhancement tools.

The proposed method. The proposed disease method had a cascade structure which consisted of a Faster 
R-CNN maize leaf detector (LS-RCNN) and a CNN leaf disease classifier (CENet), as shown in Fig. 3. First, dis-
ease images in the natural environment were input to the LS-RCNN to detect and separate the maize leaf from 
the complex background. Then the separated maize leaf was input into the trained CENet model to perform 
disease identification. Due to the complexity of the whole model, we first give a brief overall structure of the 
proposed cascade networks (Fig. 3) and then divided it into two parts depicted in detail in Figs. 4 and 5, and the 
structure of ResNet50 is described in detail in Fig. 6.

Leaf segmentation model based on Faster R‑CNN (LS‑RCNN). Nanehkaran et al.20 proposed a detection method 
of image segmentation followed by image classification for plant disease leaves, and the detection results showed 
that most of the diseases were effectively detected under complex background conditions. To reduce the influ-
ence of complex background on recognition performance, we constructed the LS-RCNN model based on Faster 
R-CNN21 to extract the key regions of the maize leaf image from the background before they were fed into the 
CENet model for training and recognition. Figure 4 shows the model structure of LS-RCNN. Structurally, LS-
RCNN had integrated feature extraction, proposal extraction, bounding box regression, and classification all 
into one network, which made its comprehensive performance improved, especially in the detection speed.

First, the LS-RCNN model used a basic set of conv + relu + pooling layers to extract feature maps of maize 
images, which were shared with the subsequent RPN and fully-connected layers. Then, the RPN network gener-
ated region proposals for the maize leaves, which used softmax to determine whether the anchors were positive 
or negative, and then used the bounding box regression to correct the anchors, eliminated those that were too 
small and out of bounds, and obtained the exact proposals for the maize leaf region. Next, the Roi Pooling layer 
collected the input feature maps and proposals and extracted the proposal feature maps after synthesizing the 
information, which was sent to the subsequent fully connected layer to determine the target class. At last, the 
category of the proposal was calculated by using the proposal feature maps and the final position of the detec-
tion box was obtained by bounding box regression to generate a detection box for the maize leaves. Thus, a new 
image was generated, which contained the detected maize leaf from each detection box.

Table 1.  Details of the data set.

Datasets Category Training Validation Testing Total

Laboratory
Cercospora leaf spot
Common rust
Northern Leaf Blight
Healthy

360
834
691
817

103
235
187
219

51
118
105
122

514
1187
983
1158

Natural environment
Cercospora leaf spot
Common rust
Northern Leaf Blight
Healthy

171
1052
358
785

49
300
102
225

25
150
51
112

245
1502
511
1122

(d) Healthy

(a) Northern Leaf Blight

(c) Common rust

(b) Cercospora leaf spot

Figure 1.  Sample images from natural environment datasets and laboratory datasets.
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CENet model based on two‑stage transfer learning. To further solve the disease recognition problem in com-
plex backgrounds, a two-stage transfer learning strategy was proposed to train an effective CNN deep learning 
model for disease images in complex backgrounds. Figure 5 shows the architecture and the training process of 
the CENet model for complex environments.

Channel ShuffleOriginal picture Blur CLAHE

GaussNoise Flip RGB Shift Rotate

GaussianBlur PadIfNeeded RandomGridShuffle GridDistortion

RandomBrightness HueSaturationValue ElasticTransform OpticalDistortion

Figure 2.  Data enhancement methods.

Figure 3.  The proposed cascade networks.
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Since  Alexnet22, the CNN structure has been continuously deepened.  VGG23 and  GoogLeNet24 have 19 and 
22 convolution layers respectively. With the increase of network depth, the existence of gradient disappearance 
problems makes network training more difficult, and the convergence effect is poor, so ResNet is introduced. 
ResNet proposed by He et al.25 can effectively solve the deep network degradation problem. So, the ResNet50 
model (Fig. 5) was used for transfer learning in this paper.

ResNet50 model was first pre-trained on the ImageNet dataset, and then the pre-trained model was trained 
by parameter transfer on the maize disease dataset obtained in the laboratory, which was the first stage of trans-
fer learning. In the first-stage transfer learning, we replaced the average-pooling-based GlobalPool layer with a 
max-pooling layer and replaced the fully connected (FC) layer and classification layer with a new FC layer and 

Figure 4.  Structure of LS-RCNN model.

Figure 5.  Architecture and training of CENet.
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classification layer. The new classification layer had four output nodes instead of 1000. Then the trained model 
was further transferred to the domain of natural images, which was the second stage of transfer learning. In the 
second-stage transfer learning, we replaced the FC layer and classification layer with a new FC layer and classi-
fication layer. Specifically, the region of interest was extracted by LS-RCNN to obtain the background simplified 
natural environment dataset and then was input into the ResNet50 model trained in the previous stage as training 
samples. In this way, the training process was completed and a well-trained CENet was obtained.

Results
Experimental setup. During training and testing, each image in the dataset is processed to fit the model, 
and the detailed image sizes are shown in Table 2. Hardware environment was CPU: Intel(R) Xeon(R) CPU 
E5-2678 v3 @ 2.50 GHz; GPU: NVIDIA GeForce RTX 2080 Ti; Number of floating point operations per second: 
13.13 TFLOPS; Graphics Memory:11 GB; Motherboard Model: X10DRG-O + -CPU; Software environment was 

Figure 6.  Resnet50 Architecture.

Table 2.  Training parameters of models/detector.

Model
/ Detector Training dataset Transfer learning Leaf detector Learning rate Momentum Weight decay Batch size Input size Step size

Epochs
/ Iters

[1]VGG16
[1]AlexNet
[1]GoogleNet
[1]ResNet18
[1]ResNet50
[1]Wide_ResNet50_
v2
[1]ResNet101

Laboratory
Laboratory
Laboratory
Laboratory
Laboratory
Laboratory
Laboratory

/
/
/
/
/
/
/

/
/
/
/
/
/
/

0.001
0.001
0.001
0.001
0.001
0.001
0.001

0.9
0.9
0.9
0.9
0.9
0.9
0.9

/
/
/
/
/
/
/

16
16
16
16
16
16
16

224 × 224
224 × 224
299 × 299
224 × 224
224 × 224
224 × 224
224 × 224

4
4
4
4
4
4
4

50
50
50
50
50
50
50

[2]ResNet50
[2]ResNet50

Laboratory
Laboratory

one-stage
two-stage

/
/

0.001
0.001

0.9
0.9

/
/

16
16

224 × 224
224 × 224

4
4

100
100

[3]ResNet50 Laboratory / / 0.001 0.9 / 16 224 × 224 4 50

[4]LS-RCNN
[4]ResNet50
[4]ResNet50

Nature
Nature
Nature

/
/
/

/
/
LS-RCNN

0.001
0.001
0.001

0.9
0.9
0.9

0.0005
/
/

256
16
16

375 × 500*
224 × 224
224 × 224

9000
4
4

15,000
100
100

[5]VGG16
[5]AlexNet
[5]GoogleNet
[5]GoogleNet*
[5]OurModel

Nature
Nature
Nature
Nature
Nature

/
/
/
one-stage
two-stage

/
/
/
/
LS-RCNN

0.001
0.001
0.001
0.001
0.001

0.9
0.9
0.9
/
0.9

/
/
/
1e-3
/

50
50
50
50
50

224 × 224
224 × 224
299 × 299
299 × 299
224 × 224

4
4
4
7
4

100
100
100
100
100
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Mirror:Pytorch 1.8.1-Horovod;Mirror Description:Python3.7,CUDA 11.1, cuDNN 8.0.5, Pytorch 1.8.1, Horo-
vod 0.22.1, Ubuntu 18.04, VNC, NVCC11.1, OpenMPI 4.0.0;

The experiment is divided into five parts. To ensure the fairness of the experiments, we used some hyperpa-
rameter settings in the comparison experiments. After many trials, we obtained the appropriate values of the 
model parameters. The hyperparameters of each part of the experiment are shown in Table 2, where [number] 
indicates which part of the experiment the model belongs to. In addition, 375 × 500* is the maximum input size 
supported by LS-RCNN, and GoogleNet* is the GoogleNet with the method proposed by Hu et al.26.

Recognition performance comparison of different convolutional networks. To verify whether 
the introduction of ResNet50 has a better recognition effect, we set up a control experiment and introduce other 
mainstream CNN network structures into the model. The deeper layers of  VGG1623 make the feature map wider 
and suitable for large datasets like the corn disease image dataset we built, while  GoogleNet24 can ensure that the 
perceptual domain of each layer remains the same. With the deepening of the network, the network becomes 
more accurate, and the weight of the network can also be effectively reduced by using this structure.  AlexNet22 
adds a normalized LRN layer, which makes the accuracy higher.  ResNet1827 is proposed to solve the problem 
of gradient disappearance or gradient explosion as the network becomes deeper and deeper. The experimental 
results of Wide_ResNet50 proposed by Zagoruyko &  Komodakis28 show that the performance of the network 
can be improved by increasing the width, and the training efficiency of Wide ResNet is higher than that of the 
ResNet family for the same order of magnitude of parameters.  ResNet10125 has a new residual unit, which makes 
training easier and improves generalization. By comparing ResNet50 with other CNN networks, the advantages 
and disadvantages of our corn disease recognition network can be effectively evaluated.

In the first part of the experiment, we continuously adjust the training hyperparameters, including learning 
rate, optimizer, and batch size, so that the model can obtain higher stability and complete the network training 
faster while obtaining higher accuracy, and the optimal hyperparameters are shown in Table 2. Finally, we identi-
fied ResNet50 as the optimal model and continued to optimize it so that it had better performance to recognize 
images with complex backgrounds. Detailed parameters are listed in Table 2 [1].

The comparison of the loss rate of the network models with the number of training rounds after trained 
50 epochs on the laboratory (public) dataset is shown in Fig. 7a and c, and the comparison of the recognition 
accuracy is shown in Fig. 7b and d.

Figure 7 shows that all the networks fit quickly in the first 2 epochs and the accuracy rate increases rapidly. 
Then the loss rate decreases slowly and the accuracy rate increases slowly in about 3–20 epochs, and then the 
loss rate tends to be stable and the accuracy rate also tends to be stable after 21 epochs, and the models begin to 
converge. Among the seven networks, Resnet50, wide_Resnet50_2, and Restnet101 have better recognition, excel-
lent performance, and rapid convergence, with the highest accuracy of 98.52%, 98.66%, and 99.19%, respectively. 
The following are Resnet18, Alexnet, and GoogleNet with the highest accuracy of 98.25%, 98.25%, and 98.39%, 
respectively. And the highest accuracy of vgg16 is only 96.37%.

The average training accuracy and consumed time after 50 epochs of training are shown in Fig. 8, in which 
the accuracy of each model is ranked in ascending order and the consumed time is also shown.

It can be found from Fig. 8 that the models with higher accuracy (e.g., Resnet50, Wide_Resnet50_2, Rest-
net101) usually take more time. Conversely, models with short time consumption do not have high recognition 
rates.

Therefore, making a tradeoff between the recognition accuracy and time spent during training, Resnet50 
network demonstrated the best performance and was used for further optimization on datasets with complex 
backgrounds.

Comparison between two‑stage transfer learning and traditional transfer learning. In the sec-
ond part of the experiment, we tested two-stage transfer learning against traditional transfer learning to demon-
strate the feasibility and superiority of two-stage transfer learning. Detailed parameters are listed in Table 2 [2].

Figure 9 shows the comparison of two-stage transfer learning with traditional transfer learning. Figure 9a is 
the loss curve, and Fig. 9b is the curve of recognition accuracy.

Figure 9 shows that both methods fit quickly in the first 4 epochs. Then the accuracy increases rapidly, and 
the loss rate slowly decreases and tends to be smooth in the subsequent epochs. Finally, the accuracy rate slowly 
increases and tends to be smooth, and the model converges. The accuracy of the two-stage transfer learning tech-
nique is higher, with the highest accuracy of 97.22% and the lowest loss rate of 0.1546; the accuracy of traditional 
transfer learning is relatively lower, with the highest accuracy of 93.06% and the lowest loss rate of 0.2501. The 
recognition effect of two-stage transfer learning is significantly better than that of traditional transfer learning.

Recognition effect of different numbers of amplified images. In the third part of the experiment, 
we examined the relationship between accuracy and the number of training images and tested the effect of image 
amplification on recognition performance. Detailed parameters are listed in Table 2 [3].

We conducted offline supervised data enhancement on the data set in the natural environment, and the 
accuracy change with the size of the amplified dataset is shown in Fig. 10.

Experimental results show that on the whole, the accuracy increases with the increase of the size of data sets, 
which indicates that the relationship between data size and accuracy is proportional, and the larger the data 
size, the higher the accuracy of the model is. However, when the data is amplified to 1 and 8 times, the accuracy 
does not increase, which indicates that data augmentation methods do not always have a positive impact on the 
accuracy. For example, some data augmentation methods such as CoarseDropout and RandomFog will reduce 
the accuracy of the model.
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Performance evaluation of LS‑RCNN model. In the fourth part of the experiment, we trained LS-
RCNN to remove the complex background of the leaves and obtained images of the natural environment with 
a simpler background. Meanwhile, we performed a control experiment to verify that this conjecture can indeed 
improve the recognition accuracy. Detailed parameters are listed in Table 2 [4].

a Loss curve

b Accuracy curve

c Loss curve

d Accuracy curve

Figure 7.  Comparison of recognition results among different convolutional networks.
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Comparing the laboratory dataset with the natural dataset, we found that the background of the laboratory 
data was single, however, the background of the data in the natural environment was more complex and had 
interference features. Therefore, we used the LS-RCNN model to perform semi-supervised learning on the leaf 
as the region of interest, so that the natural data can achieve the purpose of separating the leaves from the back-
ground and reducing the interference factors of the complex background, as illustrated in Fig. 11.

To evaluate the effect of leaf segmentation model LS-RCNN on the recognition performance, we performed 
experiments on two datasets: the original dataset with complex background and the dataset with complex back-
ground removed by LS-RCNN.100 epochs of training was performed on both datasets using the ResNet50 net-
work, and the training loss curve is shown in Fig. 12a, and corresponding accuracy curve is shown in Fig. 12b.

Experimental results show that the two datasets fit quickly in the first 9 epochs and the accuracy increases 
rapidly; the loss rate decreases slowly and the accuracy increases slowly in about 10 to 26 epochs; after 27 epochs 
the loss rate leveled off and the accuracy leveled off, and the model converged. The accuracy of the dataset with 
complex background removed using LS-RCNN is higher, with the highest accuracy of 100% and the lowest loss 

Figure 8.  Time of training the model and the accuracy of the model.

a Loss curve

b Accuracy curve

Figure 9.  Comparison between traditional transfer learning and two-stage transfer learning.
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rate of 0.06297; the accuracy of the original dataset is relatively lower, with the highest accuracy of 94.44% and 
the lowest loss rate of 0.2285.

Performance evaluation of our method. In the fifth part of the experiment, to evaluate the perfor-
mance of our proposed method, we conducted some experiments on the natural datasets. As there is no related 
research using the same data set, we tried to compare our method with some popular CNN models and some 
related methods 26(denoted as GoogleNet*) on our data set for a fair comparison. Figure 13 shows the compari-
son of our model with some related CNN models. Detailed parameters are listed in Table 25.

As shown in Fig. 13, the loss curve of our model has converged to smooth after 20 iterations. The convergence 
trend of other models is not obvious, the fluctuation is larger and the loss value is higher within 100 iterations. 
Throughout the process, the accuracy of our model is higher than that of other models, and the fluctuation is 
smaller, which indicates that our model has higher detection performance and stable operation compared with 
the other models.

To further verify the recognition performance of the model, we performed testing experiments on the test 
set using the above five modes and plotted the classification confusion matrix based on the experimental results. 
as shown in Fig. 14.

Then, we calculated the accuracy, precision, recall rate, F1 score, Maro-F1, and Weighted-F1 of each category 
to evaluate the model performance, which is defined as follows:

(1)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(2)Precision =
TP

TP+ FP

Figure 10.  Change of accuracy when natural data sets are expanded exponentially by 2.

Figure 11.  The effect of background segmentation using LS-RCNN.
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where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false nega-
tives, respectively, as defined in Table 3.

Table 4 shows the model evaluation metrics of VGG16, AlexNet, GoogleNet, GoogleNet*, and Our Model for 
the maize leaf recognition tasks in complex environments. Table 4 shows that (since the recognition of VGG16 
is not ideal and some values are not calculated, the models involved in the comparison are AlexNet, GoogleNet, 
GoogleNet*, and Our Model only) the average accuracy of our model is 99.70%, which is 6.21–16.86% higher 
than the other models. The average precision of our model is 99.83%, which is 9.43–27.82% higher than other 
models. The average recall of our model is 99.00%, which is 7.91–30.84% higher than other models. The average 
F1 score of our model is 99.41%, which is 8.87–30.06% higher than other models. The Weight-F1 of our model is 
99.70%, which is 6.24–18.05% higher than other models. Our model showed excellent identification performance 
and outperformed the other models on all performance metrics. Table 5 shows that our model takes only a little 
more time than AlexNet, and has the highest recognition accuracy. This shows that under the same conditions, 
our model can perform image recognition in complex environments quickly, efficiently, and accurately.

(3)Recall =
TP

TP+ FN

(4)F1 =
2× Precision × Recall

Precision + Recall

(5)F1Macro = 2 ·
Precision Macro · Recall Macro

Precision Macro + Recall Macro

(6)FWeighted =

n∑

i−1

w(i)F(i)

a Loss curve

b Accuracy curve

Figure 12.  Recognition performance of LS-RCNN.
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Discussion
Solutions to low accuracy in complex environments. Two‑stage transfer learning. The term transfer 
was first cited by Lorien Pratt in the field of machine learning. Pratt et al.29 proposed a new algorithm called Dis-
criminability-Based Transfer (DBT), where the target network initialized by DBT learns significantly faster than 
the network initialized randomly. Chuong B Do and Andrew  Ng30 explored the application of transfer learning 
in text classification. Schölkopf et al.31 proposed a method for learning a low-dimensional representation that is 
shared across a set of multiple related tasks. The proposed approach greatly improves the performance compared 
to learning each task independently. The application of transfer learning to Bayesian networks is discussed by 
Niculescu-Mizil and  Caruana32 through transfer learning, the trained network model parameters are saved and 
reapplied in the new task, which makes the feature parameters of the original network model effectively used 
and increases the portability.

For the problem of low accuracy in natural scenes that occurs in the experiment, we proposed a two-stage 
transfer learning method to attempt to solve the problem of recognition accuracy caused by insufficient features 
of natural data and prevent overfitting problems.

We used the ResNet50 network as the base CNN architecture, set the first sample parameters as trained 
parameters on the ImageNet dataset, set the second sample parameters as trained parameters on a self-con-
structed natural environment dataset with a complex background, and used the two-stage transfer learning 
method to train the maize leaf disease image dataset. Experimental results demonstrated that the accuracy of 
two-stage transfer learning improved by 4.16% over traditional transfer learning, and had good performance in 
recognizing images with complex backgrounds in natural environments, which is an effective method to solve 
the low recognition rate of complex backgrounds.

Image segmentation based on Faster R‑CNN. Faster R-CNN was used in the LS-RCNN model to separate maize 
leave from complex backgrounds for several main reasons: in recent years, Faster R-CNN has been widely used 
for image target recognition in  agriculture33 because of its ability to automatically learn image features, and the 
Faster R-CNN is one of the most mature target detection algorithms; Faster R-CNN performs well on multiple 
datasets and is easy to transfer, and changes to the target classes in the dataset can be made to improve the detec-
tion speed. Faster R-CNN can integrate feature extraction, candidate region extraction, border regression, and 
classification into a single network, and use shared convolutional layers to improve detection speed.

For disease recognition in complex background, Li et al.34 improved Faster R-CNN for leaf disease detection 
in bitter melon in the field. Zeng and  Li11 proposed a Self-Attention Convolutional Neural Network (SACNN), 

a Loss curve

b Accuracy curve

Figure 13.  Comparison of recognition results of different convolutional networks for complex environment 
images.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18914  | https://doi.org/10.1038/s41598-022-23484-3

www.nature.com/scientificreports/

(a) Vgg16  (b) AlexNet 

(c) GoogleNet (d) GoogleNet*  

(e) Our Model  

Figure 14.  Confusion matrixes of the five models on the test dataset.

Table 3.  Definition of TP \TN \FP\FN.

Positive Negative

True True Positive(TP) True Negative(TN)

False False Positive(FP) False Negative(FN)
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which extracts effective features of crop disease spots to identify crop diseases. Zhou et al.35 proposed a vegetable 
disease recognition model for complex backgrounds based on region proposal and progressive learning (PRP-
Net). This model achieves an average recognition accuracy of 98.26%, which is 4.46 percentage points higher 
than that of the original region proposal network framework. So, we attempted to construct an LS-RCNN model 
based on Faster R-CNN to detect the regions of interest in natural images. LS-RCNN proved very effective for 
separating corn leaves from the complex environment and was very helpful to solve the problem of corn leaf 
disease identification in a complex environment.

Limited number of images in complex environments. We found that recognition accuracy would 
be greatly affected by too few images in complex natural environments during two-stage transfer learning. To 
prevent possible overfitting problems with the limited dataset, we expanded the natural environment dataset in 
the following two ways: one was to download as many pictures as possible from the Internet, and the other was 
to use the data augmentation method.

Data enhancement is a common technique to increase the size and diversity of labeled training sets by using 
input transformations that retain the corresponding output labels. In computer vision, image enhancement has 
become a common routine technique to combat over-adaptation in deep learning models and is widely used 
to improve performance. While most deep learning frameworks implemented basic image  transformations36,37, 
which were typically limited to certain variations of flipping, rotating, scaling, and cropping.

In addition, the speed of image processing in existing image enhancement libraries varies. In this paper, we 
used 15 data enhancement methods and amplified the dataset in complex environments by different orders of 
magnitude. Experimental results showed that, on the whole, data augmentation improved the recognition per-
formance of the model, and solved the problem of limited data sets to a certain extent, as demonstrated in the 

Table 4.  Comparison of our method with some related CNN models. GoogleNet* is the GoogleNet with the 
method proposed by Hu, R. et al.26.

Model Metric

Class Average overall 
classesCercospora leaf spot Common rust Northern leaf blight Healthy

VGG16

Accuracy (%) 68.05

Precision (%) – 68.45 40.00 79.17 –

Recall (%) 0.00 76.67 39.22 84.82 50.18

F1 score (%) – 72.33 39.60 81.90 –

Weighted-F1 (%) –

AlexNet

Accuracy (%) 82.84

Precision (%) 43.75 87.50 70.73 86.05 72.01

Recal l (%) 28.00 88.67 56.86 99.11 68.16

F1 score (%) 34.15 88.08 63.04 92.12 69.35

Weighted-F1 (%) 81.65

GoogleNet

Accuracy (%) 82.84

Precision (%) 100.00 96.00 50.62 89.26 83.97

Recall (%) 44.00 80.00 80.39 96.43 75.21

F1 score (%) 61.11 87.27 62.12 92.70 75.80

Weighted-F1 (%) 83.34

GoogleNet*26

Accuracy (%) 93.49

Precision (%) 79.31 94.81 91.11 96.36 90.40

Recall (%) 92.00 97.33 80.39 94.64 91.09

F1 score (%) 85.19 96.05 85.42 95.50 90.54

Weighted-F1 (%) 93.46

OurModel

Accuracy (%) 99.70

Precision (%) 100.00 99.34 100.00 100.00 99.83

Recall (%) 96.00 100.00 100.00 100.00 99.00

F1 score (%) 97.96 99.67 100.00 100.00 99.41

Weighted-F1 (%) 99.70

Table 5.  Comparison of completion time of the models.

Model OurModel VGG16 AlexNet GoogleNet GoogleNet*

Run Time (num_epoch = 100) 37m33s 53m6s 38m16s 58m32s 58m7s
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previous  research38. However, not all data enhancement methods are effective. Which method is more effective, 
or how much-amplified data is appropriate remains to be studied in the future.

Conclusion
In this paper, we propose a new method based on cascade networks and two-stage transfer learning to identify 
maize leaf diseases in natural environments. Using our proposed method, the proposed model achieved an aver-
age accuracy of 99.70%, which is higher than most human experts and conventional neural network models. The 
proposed method not only eliminates the unnecessary feature extraction process but also improves the accuracy 
of disease recognition in complex backgrounds. The average F1-score of our method is 8.87–30.06% higher than 
other models in complex backgrounds and exceeds the prevailing deep learning methods. The proposed method 
provides a new and effective approach for maize seed retention disease identification in complex environments.

In the future, we will conduct research in two directions. First, we will try to integrate multiple region atten-
tion to model more complex fine-grained categories. Second, we will try to use a technique that is designed to 
be used to get more features by removing the complex background rather than focusing on the local area.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.
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