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Introduction
Glycosylation is one of the most important and complex post-
translational modification of protein in eukaryotic cells.1,2; 
it is crucial to many molecular functions, such as structure, 
biological activity, and protein–protein interaction.2 More 
than 50% of the proteins are estimated to be glycosylated. 
O-glycosylation and N-glycosylation are the two main types 
of mammalian protein glycosylation. O-glycosylation is an 
enzyme-directed process that links a carbohydrate to the 
hydroxyl group of serine (S) and threonine (T) amino acid 
residues in proteins. Unlike N-glycosylation, the O-linked 
glycosylation is not yet identified to occur on any amino 
acid consensus sequence.3 Thus, computational prediction of 
O-glycosylation sites in mammalian proteins is challenging 
and has received considerable attention.

Several classifiers for predicting the O-glycosylation 
sites in proteins have been proposed,4 such as Ensem-
bleGly5, which used the ensembles of support vector 
machine (SVM) classifiers for predicting the O-glycosy-
lation sites and achieved an area under the receiver oper-
ating characteristic (ROC) curve (AUC) value of 0.91. 
CKSAAP_OGlySite,6 a SVM-based approach, employed 
a sequence-encoding scheme based on the composi-
tion of k-spaced amino acid pairs (CKSAAP) to predict 
O-linked glycosylation. GPP7 adopted the random forest 

(RF) method and integrated frequencies of amino acids 
surrounding modified residue and significant pairwise pat-
terns for predicting the glycosylation sites. NetOGlyc8 is 
a SVM classifier based on sequence context and surface 
accessibility. Recently, GlycoEP9 is a SVM-based tool that 
reported an accuracy of 86.9% for O-glycosylation sites 
prediction.

One challenge in training the classifiers is that the 
available datasets are highly imbalanced, which makes the 
classification accuracy for the minority class to become 
unsatisfactory. In our previous work,10 we have proposed an 
approach for predicting the O-glycosylation sites, which is 
based on particle swarm optimization (PSO) and RF; we call 
it PSO + RF. PSO was used as an evolutionary undersam-
pling technique for balancing the dataset, and RF was used 
as a classifier. We have chosen the PSO as an evolutionary 
undersampling technique over the random resampling or 
ensembles based techniques, because the evolutionary based 
techniques prove to achieve a good trade-off between data 
reduction and the accuracy of the classification. In addition, 
different classifiers were experimented to be trained on the 
PSO undersampled dataset; the RF classifier gave the best 
results among all.

In this study, we enhance our previous method by imple-
menting parameters optimization/tuning mechanism, for 
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optimizing the PSO parameters based on genetic algorithm 
(GA) in order to increase the classification accuracy. The 
results show that this GA-based approach significantly 
improved the prediction performance in terms of AUC com-
pared with our previous approach and with other existing 
prediction tools.

This paper is organized as follows: Methods section 
describes the protein sequence data and its encoding, then 
it reviews our previous PSO-based O-glycosylation predic-
tion technique; it also describes the basic GA concepts, and 
it discusses the proposed GA-based parameters optimization 
approach. In the Results and Discussion section, the results 
are presented and discussed. Finally, the conclusion and future 
work are given in the last section.

Methods
Protein sequence data and encoding. Similar to our 

previous study,10 the protein sequence data used in this paper 
come from O-GlycBase11 (Version 6.00), which contains 
experimentally verified glycosylation sites compiled from pro-
tein databases. O-GlycBase database has 242  glycoproteins 
from different spices. In our study, the sequences that do not 
have http-linked cross-reference to SWISS-PROT12 database 
were excluded, and only the sequences that have verified ser-
ine or threonine (S or T) glycosylation sites were used in our 
experiments.

The sequences were truncated by a sliding window (win-
dow size: W) into several subsequences in order to obtain 
the verified O-glycosylation sites (S/T) region windows. In 
this work, we used W = 15, so the target residue is located at 
position 8. This choice of window size was based on previ-
ous works.7,13 We represent the subsequence that has S or T 
residue at the center and experimentally verified to be glyco-
sylated as a positive instance. The subsequence that has S or T 
at the center and not annotated as being glycosylated is repre-
sented as negative instance. To prevent overestimation of the 
predictive performance, the positive and the negative datasets 
were further filtered by a 30% identity cut off similar to Li and 
Wang14 and Caragea et al.15 using CD-HIT,16 means two gly-
cosylated protein sequences with .30% identity were defined 
as homologous sequences. The nonhomologous negative data 
were generated using the same approach as the positive one. 
Considering the middle residue in each fragment is always the 
same (S/T), the central position is excluded when calculating 
the sequence identity. After filtration, we obtained a dataset of 
2118 positive and 11,266 negative instances, which has a class 
ratio of 0.188.

The protein sequences with a length of W − 1 are used 
for analysis (excluding S or T at the center; the sequence of 
the surrounded residues indicates whether the S or the T in 
the center is glycosylated or not). We used the sparse cod-
ing scheme for representing the protein sequence similar to 
Li et  al.17 and Cruz-Cano et  al.18 The 20 amino acids are 
coded by 20-D vectors composed of 0 and 1 (for example, 

the amino acid A is coded as 10000000000000000000 and 
C is coded as 01000000000000000000). Thus, the total 
length of coded sequence or dimension of sample vector is 
(W − 1) * 20.

RF classifier. RF classifier19 is an ensemble classifier 
that constructs multiple decision trees with randomly selected 
features. The final classification is obtained by combining the 
classification results from the individual decision trees. Com-
bining multiple trees produced in randomly selected subspaces 
can improve the generalization accuracy.

RF shows a significant performance improvement over 
the single tree classifiers. Owing to its averaging approach, RF 
classifier is robust to outliers and noise; it avoids over-fitting, 
is relatively fast and simple, and it performs well in many clas-
sification problems.

Ensemble methods, including RF, bagging, and boost-
ing, have been increasingly applied in bioinformatics. When 
compared to bagging and boosting ensemble methods, RF has 
a unique advantage of using multiple feature subsets, which 
is well suited for high-dimensional data as demonstrated by 
several bioinformatics studies.20,21

PSO for undersampling. In our previous study, binary 
particle swarm optimization (BPSO)22 has been used as a fre-
quency ranking procedure, to detect the most useful subset of 
samples from the majority class of imbalanced dataset, that 
can be combined with the samples from the minority class 
so that the subset could best represent the decision boundary 
between the two classes of the O-glycosylation classification 
problem.

For each sample from the majority class, a dimension in 
the particle space is assigned. For each dimension, an indica-
tor function takes value 1 when the corresponding sample is 
included to train a classifier. Similarly, a 0 denotes that the 
corresponding sample is excluded from training. The fitness of 
each particle is a function of classification accuracy in terms 
of the AUC.23

The subsets from the majority class that can create more 
accurate classification are favored and optimized in each PSO 
iteration. Samples from the last PSO iteration are ranked by 
their selection frequency in the optimization process. The 
samples from the majority class that are most frequently 
included in the optimized subsets are selected to match the 
number of minority samples to generate a balanced dataset. 
See Supplementary Files Imbalanced.arff and PsoUnder-
sampled.arff for imbalanced and PSO undersampled datasets, 
respectively. The balanced dataset has been used for training 
a RF.19 classifier implemented in WEKA,24 a widely used 
machine learning workbench in bioinformatics implemented 
in Java. Figure  1  summarizes the PSO for undersampling 
technique.

The PSO parameters used in our previous study are 
shown in Table  1. They were chosen according to similar 
problems, and they were found to give good results in our 
experiments. However, in this study, we optimize these 
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parameters using GA in order to even produce higher clas-
sification results.

Genetic algorithm. GA is a heuristic search and optimi-
zation technique based on the principles of natural selection 
and genetics in biological systems. The bases of GA were pro-
posed by Holland.25 GA has been used to solve a wide range 
of problems of significant complexity. It works with a set of 
candidate solutions called a population, and each potential 
solution in the population is known as chromosome.

Each chromosome is composed of a sequence of genes. 
These genes represent different aspects of the solution just like in 
individuals in the nature; each gene in the chromosome repre-
sents different aspects like hair color, eye color, etc. GA obtains 
the optimal solution after a series of iterative computations. 
GA generates successive populations of alternative solutions 
until acceptable results are obtained. GA can deal with large 
search spaces efficiently, and hence, it has less chance to get 
local optimal solution than other techniques.

Starting with an initial population that is generated by 
random individuals, the population is evolved for a number 
of generations while gradually improving the qualities of the 
individuals. A fitness function assesses the quality of a solution 
in the evaluation step. The crossover and mutation functions 
are the main operators that randomly affect the fitness value. 
Chromosomes are selected for reproduction by evaluating the 
fitness value. The fitter the chromosomes are, the higher the 
probability to be selected.

Figure 2 illustrates the GA evolutionary cycle. Crossover 
allows new solutions in the search space to be explored; it is a 
random mechanism for exchanging genes between two chro-
mosomes using the one-point crossover, two-point crossover, or 
homolog crossover. In mutation, the genes may occasionally be 
altered, ie, in binary code genes, changing genes code from 1 to 0 
or vice versa.26,27 Offspring replaces the old population using the 
elitism or diversity replacement strategy and forms a new popu-
lation in the next generation. The evolutionary process operates 
many generations until the termination condition is satisfied.

GA-based PSO optimization. In our previous study,10 
we used PSO for undersampling the O-glycosylation sites 
dataset by selecting the most important samples from the 
majority class. Proper setting for the PSO algorithm para
meters can improve the algorithm performance, and conse-
quently, the classification accuracy. In this paper, we use the 
GA for optimizing the parameters of the PSO. As shown 
in Figure  3, the PSO-based undersampling technique (the 
dashed part) is integrated with the GA. Each GA solution 
(chromosome) represents different alternatives for the values 
of the PSO parameters to be used in the sample selection 
from the majority class step. GA obtains the optimized PSO 
parameters after a series of iterative GA operations (crossover 
and mutation). Based on the balanced dataset, the classifica-
tion accuracy using the RF classifier is used for evaluating the 
fitness of each GA solution. The GA terminates after exceed-
ing the maximum number of generations.

The Java Genetic Algorithms Package (JGAP)28 was 
chosen as the programming platform for implementing 
the GA-based optimization approach; JGAP is a GA, and 
Genetic Programing open source framework is written in 
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Figure 1. PSO for undersampling.

Table 1. PSO parameters setting.

Parameter Value

Number of particles 20

Cognitive acceleration (C1) 1.43

Social acceleration (C2) 1.43

Inertia weight (W) 0.689

Replacement 

Mutation 

Crossover 

Selection 
Parents

Population 

Offspring 

Figure 2. GA evolutionary cycle.
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Java. It is designed to be flexible and modular. It is possible to 
create specific chromosomes, genetic operators, natural selec-
tion, and others. To support these possibilities, JGAP uses a 
configuration object. Setting the configuration object with all 
these new definitions, prior to running the genetic search is 
the first task. It is necessary to provide the following informa-
tion: how the chromosomes are set, what fitness function will 
be used, and how many chromosomes create a population. In 
our experiments, we used the Best Chromosome selection cri-
terion (retaining the fittest chromosome or configuration for 
next iteration) implemented in JGAP. We used a population 
of 60 individuals to be randomly generated in each generation. 
A maximum of 20  generations was configured. We applied 
the default crossover technique implemented in the JGAP 
tool, which is population size/2 (which means 0.5), and we 
employed 0.06 as the mutation rate.

Chromosome design. The PSO parameters: number of 
particles, inertia weight (W), cognitive acceleration constant 
(C1), and social acceleration constant (C2) should be optimized. 
Therefore, the chromosome comprises four genes as shown in 

Table 2. We set the range of each gene according to the values 
used in the literatures.

Fitness function. The classification accuracy in terms of 
AUC for the RF classifier, shown in Figure 3, is the criteria 
used to design a fitness function for the GA. Thus, the individ-
ual (chromosome) with high classification accuracy produces 
a high fitness value. The chromosome with high fitness value 
has high probability to be preserved to the next generation.

Results and Discussion
GA-tuned PSO + RF results and comparisons. In 

order to reduce the computation time, we used a subset of the 
O-glycosylation dataset that is described in Protein sequence 
data and encoding section, considering to have the same ratio 
of the minority class to the majority class (1:5), for applying 
the proposed GA-based PSO optimization technique. The 
resulted PSO optimized values are listed in Table 3. We used 
these parameters with the PSO for undersampling mecha-
nism that we have proposed in our previous study,10 in order to 
undersample the full dataset. See Supplementary File Tuned
PsoUndersampled.arff for the GA-tuned PSO undersampled 
dataset.

We built a predictor based on the RF classifier imple-
mented in WEKA and trained on the undersampled dataset 
after the PSO optimization; we call it GA-tuned PSO + RF. 
The predictor is implemented in Java and Perl; it is available 
in the Supplementary Files. We evaluated the performance 
of the predictor based on 10-fold stratified cross-validation.29 
The experiments were performed on Intel(R) Core(TM) 
i5–4200U CPU @ 1.60 GHz 2.30 GHz computer, with 4 GB 
of RAM.

We calculated four different measures for evaluating 
the GA-tuned PSO + RF classifier performance: sensitivity, 
specificity, accuracy, and Matthews correlation coefficient 
(MCC). Sensitivity assesses the effectiveness of classifying 
the positive samples. Specificity assesses the accuracy of clas-
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Figure 3. GA-based PSO optimization.

Table 2. Chromosome representation.

Gene Type Range

Num. of particles Integer 15–25

W Double 0.4–0.9

C1 Double 0.5–2.0

�C2 Double 0.5–2.0

Table 3. Optimized PSO parameters.

Gene Optimized Value

W 0.4

C1 0.75

C2 1.6

Number of particles 20
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sifying the negative samples. Accuracy assesses the effective-
ness of classifying both the positive and the negative samples. 
MCC is also a measure of accuracy designed to take into 
account the ability of a classifier to classify correctly both posi-
tive and negative instances. It produces a value between −1 
and 1, with 1 being a perfect prediction and −1 a completely 
incorrect prediction.

The four measurements are expressed in terms of true 
positive (TP), false negative (FN), true negative (TN), and 
false positive (FP) predictions. Each measurement is given as 
following:

	
Sensitivity TP

TP FN
=

+
	 (1)

	
Specificity TP

TP FP
=

+
	 (2)

	
Accuracy TP TN

TP FN FP TN
=

+
+ + +

	 (3)

And,

	
MCC TP TN FP FN

TP FN TP FP TN FP TN FN
=

∗ − ∗
+( ) +( ) +( ) +( )

	 (4)

The prediction accuracy was also measured by using the 
AUC. The ROC.30 curve is an effective method for evaluat-
ing the performance of the prediction system. It is commonly 
defined as a plot of sensitivity on the Y-axis versus the FP rate 
on the X-axis. The bigger the AUC is, the better the overall 
prediction system performance is.

We compared the results of the GA-tuned PSO + RF 
classifier with our previous PSO + RF classifier after mak-
ing refinement for the PSO + RF classifier code, where some 
minor mistakes are corrected and sequence homology cutoff 
is applied. As shown in Table 4, the GA-tuned PSO + RF 
predictor has higher performance in terms of sensitivity, 
specificity, accuracy, MCC, and AUC. We performed sta-
tistical significance tests between the two classifiers using 
the paired t-tests (corrected), provided by WEKA, and all 
the differences in accuracy were found to be statistically sig-
nificant at confidence level P = 0.95. Hence, this proves the 
superiority of the proposed approach compared with our pre-
vious one.

We also compared the prediction results of the pro-
posed approach with the results of EnsembleGly, GPP, and 
GlycoEP predictors reported by the tools and by the compari-
son reported by Chauhan et al.9

We have used the same dataset as that used in Ensemble
Gly and GPP for the training and the evaluation processes. 
GlycoEP is also comparable with our classifier as it also 
used sequence-based nonredundant dataset for training the 
classifier. As given in Table 4, the sensitivity and AUC have 
significantly improved using our proposed method. The other 
measures have slightly decreased, but this is reasonable as we 
decreased the number of negative samples from the dataset 
during the undersampling process.

In general, the AUC is a statistically consistent and more 
discriminating measure than accuracy for evaluating the binary 
datasets31; the accuracy rate of the predictive model is not a 
good indicator when there is imbalanced problem, as a result 
of the fact that it will be biased toward the majority class. Our 
approach reached AUC value of 0.942; based on this value, we 
can state that our approach is more efficient for the prediction 
of the O-glycosylation sites than the other approaches.

Case study. To further illustrate the performance of the 
GA-tuned PSO + RF predictor, we performed a case study 
of one protein extracted from UniProt32 benchmark database. 
The protein was glycophorin-A (GYPA, UniProt ID: P02724), 
a major intrinsic membrane protein with a high proportion of 
O-glycosylated residues in erythrocytes. It has 16 experimen-
tally verified O-linked glycosylation sites. Our predictor could 
predict all of those sites (labeled with P as shown in Fig. 4). 
These results suggest that GA-tuned PSO + RF predictor can 
be a useful tool for in silico glycosylation site prediction.

Conclusion and Future Work
This study proposes a GA-based approach for predicting the 
O-glycosylation sites in proteins. The O-glycosylation dataset 
is highly imbalanced which affects the classification accuracy. 
In our previous work, we used PSO as an evolutionary under-
sampling technique, in order to select the best possible sample 
subset from the majority class. Proper setting for the PSO 
algorithm parameters can improve the algorithm performance. 
In this study, we optimized the PSO parameters using GA in 
order to improve the PSO undersampling technique perfor-
mance and consequently the O-glycosylation sites classifica-
tion accuracy. We compared the proposed technique with our 

Table 4. Comparing performances of existing techniques with our technique.

Method Sensitivity Specificity Accuracy MCC AUC

EnsembleGly5 68.0% 64.0% 89.0% 0.59 0.91

GPP7 94.9% 90.7% 91.4% 0.83 0.897

GlycoEP9 89.37% 88.82% 91.89% 0.83 0.783

PSO+RF10 96.5% 73.4% 85.4% 0.73 0.94

GA-Tuned PSO+RF 97% 73.7% 85.7% 0.735 0.942
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previous one (before optimizing the PSO parameters), and we 
also compared it with other several existing techniques. The 
obtained results demonstrate that the proposed technique is 
more efficient. We achieved higher classification accuracy in 
terms of AUC with comparison to other techniques. In addi-
tion, we demonstrated that the proposed technique could 
identify O-glycosylation sites using a case study protein.

Some of the scopes of further enhancement are given 
below:

•	 In our study, we predict the amino acid residues that are likely 
to be glycosylated using the information derived from the 
target amino acid residue and its sequence neighbors. Other 
features such as the physical properties of amino acids can 
be combined with the sequence information for predicting 
the O-glycosylation sites. A future study is to consider other 
amino acid features while predicting the O-glycosylation 
sites in proteins based on the GA-tuned evolutionary 
undersampling approach that we have proposed.

•	 Another future study is to analyze the effect of other pro-
tein sequence coding techniques such as five letter cod-
ing, hydropathy coding, and physical properties based 
coding, in combination with our proposed GA-tuned 
PSO + RF approach.
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