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ABSTRACT

Background/Aims: Flagellin, which is abundant in gram-negative bacteria, including Pseudo-
monas, is reported to influence on inflammatory responses in various lung diseases. However, its
effect on airway epithelial cells in contribution to asthma pathogenesis is not elucidated yet. We
aimed to investigate the effect of TLR5 ligand flagellin on the transcriptomic profile of primary
human epithelial cells and to determine the markers of airway inflammation.

Methods: Normal human bronchial epithelial (NHBE) cells were grown and differentiated in air-
liquid interface (ALI) culture for 14–16 days. The cells were treated with flagellin in vitro at 10 and
100 ng/ml for 3 and 24 h. The conditioned media and cells were harvested to validate inflam-
matory markers involved in airway inflammation using ELISA, Western blot, and quantitative PCR
methods. RNA-sequencing was performed to investigate the transcriptional response to flagellin in
ALI-NHBE cells.

Results: Altered transcriptional responses to flagellin in differentiated bronchial epithelial cells
were determined, including genes encoding chemokines, matrix metalloproteinases, and antimi-
crobial biomolecules. Pathway analysis of the transcriptionally responsive genes revealed
enrichment of signaling pathways. Flagellin induced the mRNA expressions of proinflammatory
cytokines and chemokines, and secretion of GM-CSF, CXCL5, CCL5 and CXCL10. Flagellin
enhanced the protein expression of MMP-13 in TGF-b1 and TGF-b2 pretreated cell lysates and
Wnt/b-catenin signaling.

Conclusions: These findings suggest that flagellin could be a potent inducer of inflammatory
markers that may contribute to airway inflammation and remodeling.
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INTRODUCTION
The airway epithelium is at the interface be-
tween inhaled environment and the host respira-
tory system, and plays critical functions in host
defense mechanisms.1 The epithelial barrier
dysfunction is frequently observed in asthma and
increases the susceptibility of airways to
environmental irritants.2 Respiratory infection is
one of the common triggers in asthma and is
associated with the development of disease
onset, severity, and exacerbation.3

Microbes of the respiratory tract mediate
distinct inflammatory processes and may impact
the phenotypes and progression of the disease
differentially.4,5 Innate immune cells respond to
infection via members of structurally related
receptors termed toll-like receptors (TLRs), which
recognize highly conserved molecular structures
called pathogen-associated molecular patterns.
These transmembrane pattern recognition re-
ceptors are typically expressed on various immune
cells and airway epithelial cell in response to
invading pathogens and initiate innate and adap-
tive immune responses.6

Flagellin is commonly referred to by its contribu-
tion to the virulence of pathogenic bacteria
providing motility and adhesion to host surfaces.7

Flagellin activates innate immunity via TLR5 and is
produced in Gram-negative b-/g-proteobacteria
andgram-positive Firmicutesbacteria.8Microbiome
studies have shown that Proteobacteria, particularly
Pseudomonas, are more common in patients with
asthma and chronic obstructive pulmonary disease
and are associated with higher use of
corticosteroids and disease severity.5,9–11 Serum
flagellin-specific antibodies were reported higher
in subjects with asthma,12 and TLR5 deficiency was
associated with reduced response to flagellin and
lower symptom severity.13,14

In the previous studies, flagellin showed
controversial influence in terms of the develop-
ment of allergic diseases. In mice, flagellin stimu-
lated ovalbumin-induced T helper type 2 (Th2)
responses, and activation of TLR5 could promote
asthma by priming the allergic responses to indoor
allergens.12 In vitro, P. aeruginosa-derived flagellin
upregulated proinflammatory interleukin 6 (IL-6)
and IL-8 expression in the epithelial cell and
induced phosphorylation of mitogen-activated
protein kinases,15 which is critical signaling for
immune cell function and differentiation. In
contrast, some reports have addressed the
protective role of flagellin against allergic
responses through TLR5 which was derived from
different bacterial species.16,17 In vivo, intranasal
administration of flagellin induced mucosal
immunoglobulin A (IgA) production,16 and a
therapeutic dose of flagellin suppressed airway
eosinophilia and Th2-mediated immune re-
sponses in murine models of allergic asthma.17

Also, decreased expression of TLR5 and
downregulation of Th1 and anti-inflammatory cy-
tokines in peripheral blood cells in patients with
asthma supports another aspect of the potential
contribution of flagellin to airway diseases.18

Although previous studies to investigate the ef-
fect of bacterial flagellin represent its immunosti-
mulatory properties, models with closer
resemblance to human epithelium are needed to
better understand the role of flagellin in the
pathogenic mechanism of inflammatory airway
diseases. Current study aimed to investigate the
effect of TLR5 ligand flagellin on the primary hu-
man bronchial epithelial (NHBE) cells and the
expression of inflammatory markers related to
airway inflammation and remodeling. We utilized
primary NHBE cells cultured at an air-liquid
interface (ALI) which mimic in vivo airway
characteristics.19
METHODS

Primary bronchial epithelial cell cultures

NHBE cells (Lonza, USA) at passages 2–3 were
plated on 12-well transwell plates (Corning, USA)
coated with type 1 collagen (Corning, USA) as
previously described.20 When confluent (5–7
days), cells were exposed to air by removing
media from the apical surfaces of cells. NHBE
cells were fed a 1:1 mixture of bronchial
epithelial basal medium (BEBM, Lonza, USA) and
Dulbecco Modified Eagle’s Medium (DMEM,
Corning, USA), and differentiated in ALI culture
for 14–16 days.

The basal cell surface of an NHBE cell-ALI cul-
ture was treated with purified flagellin from Pseu-
domonas aeruginosa (InvivoGen, USA) at 10 and
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100 ng/ml for 3 and 24 h. In the experiments with
transforming growth factor beta (TGF-b), 10 ng/ml
of TGF-b1 or TGF-b2 (R&D Systems, South Korea)
were pretreated 1 h before 100 ng/ml flagellin
treatment.

Real-time PCR

Total RNA was extracted with an RNeasy mini kit
following the manufacturer’s instructions (QIAGEN,
Germany). Next, the cDNA was prepared by
AccuPower RocketScript RT-PCR PreMix (Bioneer,
South Korea) according to the manufacturer’s in-
structions. qPCR was performed with SYBR Green
qPCR Master Mix (Applied Biosystems, USA). The
following thermocycler parameters were used:
amplifications were performed followed by 45 cy-
cles at 95 �C for 40 s, 60 �C for 40 s, and 72 �C for
40 s. Data were normalized by the housekeeper
glyceraldehyde 3-phosphate dehydrogenase and
was determined by DD the cycle threshold method.
Primers used for qPCR are summarized in
Table S1.

RNA sequencing

ALI-NHBE cells were treated with 100 ng/ml
flagellin for 3 h and control cells were used for
transcriptome analysis. The sequencing procedure
of RNA-seq was conducted by Macrogen Inc
(Seoul, South Korea). The detailed protocol was
provided in Supplementary materials.

Enzyme-linked immunosorbent assay

ELISA was performed using conditioned media
from NHBE cells treated with flagellin for 24 h. The
concentrations of cytokines (GM-CSF, IL-8, IL-33)
and chemokines (CXCL5, CCL5, CXCL10, CXCL11)
in culture supernatants were measured with a
quantitative sandwich ELISA, according to the
manufacturer’s instructions. GM-CSF kit was pur-
chased from Koma Biotech, and other kits were
purchased from R&D Systems.

Western blot

Western blots were performed using protein
(10–30 mg) from treated cell lysates. Samples were
separated on 10% SDS-PAGE gels and then
transferred to polyvinylidene fluoride membranes.
The membrane was blocked with Tris-buffered
saline-Tween-20 buffer containing 5% skim milk
and incubated with the primary antibodies at 4 �C
on a shaker overnight. The primary antibodies
used in this experiment were: against MMP-9
(dilution 1:1000, Bioworld, USA), MMP-13 (dilu-
tion 1:1000, Bioworld, USA), pGSK3B (dilution
1:1000, Cell Signaling Technology, USA), and b-
catenin (dilution 1:1000, Cell Signaling Technol-
ogy, USA). It was then probed with the secondary
antibodies, goat anti-mouse IgG (dilution 1:3000,
Abcam, USA) or goat anti-rabbit IgG (dilution
1:3000, Abcam, USA), at room temperature for 2 h.
Transferrin (dilution 1:3000, Santa Cruz Biotech-
nology, USA) was used as a loading control for
Western blot analysis. Signals were detected via
Image ChemiDoc (Bio-Rad, USA).

Statistical analysis

All experimental data were expressed as the
mean � standard error of the mean (SEM). The
Shapiro-Wilk test was applied to assess the
normality of the data. The nonparametric Mann-
Whitney U test was used for statistical compari-
sons. Data were obtained from at least 3 inde-
pendent experiments unless otherwise specified.
Statistical analysis was performed using SPSS
software version 25.0 (IBM, USA). A p-value <0.05
was considered to indicate statistical significance.

RESULTS

RNA sequencing and analysis

Up- and downregulated flagellin-responsive
genes were screened using RNA-sequencing. The
genes encoding chemokines (CXCL5, CCL5,
CXCL10, CXCL11), matrix metalloproteinases
(MMP13, MMP9, MMP7), and antimicrobial bio-
molecules (DEFB4A, DEFB4B, MUC4) were
frequently observed among the upregulated
flagellin-responsive genes (Table 1 and Table S2),
while downregulated genes included keratin
genes (KRT16, KRT14, KRT13, KRT17), and
ribosomal protein L21 (RPL21), one of the top
genes elevated by Chlamydia pneumoniae
infection in previous study.21 The top 5 ranking
genes were TINAGL1, SERPINA3, IGFBP3, KRT17,
and KRT13 (Fig. S1).

Gene ontology (GO) was applied to identify
characteristic biological attributes of RNA
sequencing data. Separate GO enrichment anal-
ysis for up- and downregulated genes was



Gene ID Transcript ID Gene Gene description Fold
change

Upregulated

3627 NM_001565 CXCL10 chemokine (C-X-C motif) ligand
10

13.28

1592 NM_057157
NM_000783

CYP26A1 cytochrome P450, family 26,
subfamily A, polypeptide 1

11.84

374897 NM_001166035
NM_001166034
NM_198538

SBSN suprabasin 6.07

7018 NM_001063 TF transferrin 6.00

91543 NM_080657 RSAD2 radical S-adenosyl methionine
domain containing 2

5.30

6352 NM_002985
NM_001278736

CCL5 chemokine (C–C motif) ligand 5 5.09

84419 NM_197955 NM_032413 C15orf48 chromosome 15 open reading
frame 48

5.06

3429 NM_001130080a IFI27 interferon, alpha-inducible
protein 27

5.02

5653 NM_001012964
NM_001012965
NM_002774

KLK6 kallikrein-related peptidase 6 4.61

2537 NM_002038 NM_022872
NM_022873

IFI6 interferon, alpha-inducible
protein 6

4.28

Downregulated

6144 NM_000982 RPL21 ribosomal protein L21 �5.00

6876 NM_003186,
NM_001001522

TAGLN transgelin �3.98

362 NM_001651 AQP5 aquaporin 5 �3.73

3868 NM_005557 KRT16 keratin 16 �3.66

101927318 NR_110589, NR_110590,
NR_110591

LOC101927318 Not applicable �3.31

103344718 NM_001293171 HOTS H19 Opposite Tumor Suppressor �2.85

1580 NM_000779,
NM_001099772

CYP4B1 cytochrome P450, family 4,
subfamily B, polypeptide 1

�2.84

8581 NM_003695 LY6D lymphocyte antigen 6 complex,
locus D

�2.78

27063 NM_014391 ANKRD1 ankyrin repeat domain 1 (cardiac
muscle)

�2.76

728066 NR_034169 FAM133DP family with sequence similarity
133, member D, pseudogene

�2.71

Table 1. The top 10 up- and downregulated genes in differentiated NHBE cells.
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performed. Upregulated differentially expressed
genes (DEGs) were involved in processes
including GO terms cytokine-mediated signaling
pathway, response to cytokine, cellular response to
cytokine stimulus, type 1 interferon signaling
pathway, etc (Fig. S2A). While downregulated
transcripts were involved in biological processes
such as cornification, animal organ development,
and intermediate filament cytoskeleton
organization (Fig. S2B).

To estimate the number of DEGs contained at
different class of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, pathway enrichment
analysis was performed. KEGG pathway analysis
showed that upregulated DEGs were mainly
enriched in cytokine-cytokine receptor interaction
(9 DEGs), IL-17 signaling pathway (8 DEGs), influ-
enza A (7 DEGs), and TNF signaling pathway,
whereas downregulated DEGs were enriched in
pathways such as Staphylococcus aureus infection
(5 DEGs), estrogen signaling pathway (4 DEGs),
and biosynthesis of amino acids (3 DEGs) (Fig. S3).

Pro-inflammatory cytokines and chemokines are
induced by flagellin in NHBE cells

To verify the genes upregulated by flagellin in
the RNA-sequencing data, we examined gene
expression and protein secretion of chemokines
along with inflammatory cytokines involved in the
Fig. 1 The expression patterns of gene expression and protein productio
Relative mRNA expression levels of CSF2 (A), CXCL8 (B) and IL33 (C). D
PCR was performed using GAPDH gene as an internal control. The sam
stimulation. Data are presented as mean � standard error of the mean (
differences from control group.
pathogenesis of airway inflammation, particularly
asthma. Comparing to control cells, flagellin stim-
ulation enhanced the mRNA expressions of CSF2,
CXCL8 and IL33 (Fig. 1A–C) and TNF at 3 h
(Fig. S4A). Besides, the expression of TSLP was
elevated at lower dose followed by a decline at
higher dose stimulation (Fig. S4B).

The production of GM-CSF in conditional media
was enhanced significantly after stimulation for
24 h (Fig. 1D). However, IL-33 was undetectable in
the treated NHBE cells, and IL-8 did not differ
significantly compared to controls (Fig. 1E).

Next, we tested 4 chemokine genes that ap-
pears to have a role in mediating airway immune
response (Fig. 2). After 3 and 24 h of stimulation,
the mRNA expression of the CXCL5 (C-X-C motif
chemokine ligand 5), CCL5 (C–C motif
chemokine ligand 5), and CXCL10 (C-X-C motif
chemokine ligand 10) significantly increased by
stimulation comparing to control cells (Fig. 2A–
C). The protein level of the chemokines of
interest was then measured using ELISA assay.
The secretions of CXCL5, CCL5, and CXCL10
were significantly elevated in treated NHBE cells
(Fig. 2E–G). Th1 response-related chemokine,
CXCL11, did not differ significantly at mRNA level
(Fig. 2D), but the protein expression declined after
stimulation (Fig. 2H).
n of cytokines in differentiated NHBE cells stimulated with flagellin.
-E. Protein levels of GM-CSF and IL-8. Normalization for quantitative
pling time points were 3 h (open bar) and 24 h (closed bar) after
SEM) of 3 independent experiments. *p < 0.05 indicates significant



Fig. 2 The expression patterns of gene expression and protein production of chemokines in differentiated NHBE cells stimulated with
flagellin. Relative mRNA expression levels of CXCL5 (A), CCL5 (B), CXCL10 (C) and CXCL11 (D). E-H. Protein levels of chemokines.
Normalization for qPCR was performed using GAPDH gene as an internal control. The sampling time points were 3 h (open bar) and 24 h
(closed bar) after stimulation. Data are presented as mean � standard error of the mean (SEM) of 3 independent experiments. *p < 0.05
indicates significant differences from control group.

Fig. 3 Expression patterns of 2 representative genes involved in airway remodeling and Wnt/b-catenin signaling pathway. NHBE cells were
pretreated with TGF-b1 and TGF-b2 (10 ng/ml for 1 h) and stimulated with flagellin (100 ng/ml for 24 h). Data are presented as
mean � standard error of the mean (SEM) of 2 independent experiments. A-B. The mRNA expression of genes from flagellin unstimulated
(open bar) and stimulated (closed bar) samples were evaluated. *p < 0.05 indicates significant differences from unstimulated group. C.
Representative Western blot analysis of MMP-9 and MMP-13 with pretreated and stimulated sample. D. Effect of flagellin on
Wnt/b-catenin signaling pathway.
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MMP13 and Wnt/b-catenin signaling are
upregulated in response to flagellin

MMP is of specific interest due to its regulation of
airway fibrosis and airway remodeling after release
fromepithelial cells and fibroblasts.22 Todetermine
whether MMPs are induced by flagellin to promote
airway remodeling, the mRNA and protein
expression of transcriptionally upregulated MMP-9
and MMP-13 were assayed with or without stimula-
tion with TGF-b1 and TGF-b2. Flagellin enhanced
the mRNA expression of MMP13, but not MMP9 in
NHBE cells. However, pretreated with TGF-b1 and
TGF-b2 did not significantly promote the mRNA
expression of MMP9 and MMP13 (Fig. 3A and B).
MMP-13 protein expression was increased after
flagellin stimulation, which were augmented by
pretreatment of TGF-b1 and TGF-b2 (Fig. 3C). To
reveal the impact of flagellin on Wingless/
Integrase-1 (Wnt)/b-catenin signaling, western
blots ofWnt/b-catenin signalingmolecules in NHBE
cells were assessed after stimulation. Flagellin
induced the production of phosphorylated
glycogen synthase kinase 3 beta (pGSK3B) and b-
catenin in NHBE cells (Fig. 3D).
DISCUSSION

P. aeruginosa-derived flagellin is an important
stimulator for activating the expression of inflam-
matory markers in human bronchial epithelial cells.
In this study, we applied an ALI culture of primary
bronchial epithelial cells that recapitulate the
morphological and physiological features of the
airway epithelia. Air-exposure of the cultured
NHBE cells is essential for the ciliogenesis, and
ALI-cultured NHBE cells have similar transcrip-
tional profiles and protein compositions to the
human bronchial epithelium.19,23,24 We also
conducted RNA sequencing analysis to identify
transcription profiles of bronchial epithelial cells
induced by TLR5 ligand flagellin and
experimental study to verify the differentially
expressed genes of transcriptomics.

In transcriptome analysis, flagellin stimulation in
differentiated bronchial epithelial cells upregu-
lated the expression of chemokines, host defense
molecules and metalloproteinases involved in im-
mune response/inflammation, and airway remod-
eling, but in addition, other regulatory genes were
also found to be modulated. This finding together
with the previous study of transcriptomic and
secretomic analysis25 suggests that the most
predominantly upregulated genes in response to
flagellin were chemokine genes which play a
pivotal role in orchestrating both the innate and
adaptive immunity. Our functional annotation
analysis of the transcriptome revealed that the
upregulated differentially expressed genes were
enriched in the gene sets of the cytokine-
cytokine receptor interaction, IL-17 signaling, TNF
signaling, TLR signaling, and chemokine signaling
pathway. IL-17 induces the expression of chemo-
kines or b-defensin in human airway epithelial
cells, and might cooperate with other cytokines
such as TNF to promote the expression of inflam-
matory genes that contribute to the chronic airway
inflammation.26 IL-17 and TLR signaling coordi-
nate to synergistically induce proinflammatory
gene expression in the human airway epithelium,
and may exacerbate infection-induced chronic
lung diseases.27

In the experimental study, we observed differ-
ences in gene expression and protein secretion of
epithelial cytokines along with chemokines in
response to flagellin in bronchial epithelial cells.
Enhanced gene expressions of CSF2, CXCL8, IL33,
and TNF and release of GM-CSF were observed in
the stimulated cells. In the airways, epithelial cells
are a source of IL-8 which recruits neutrophils into
the infected airways and prevents a bacterial inva-
sion.28 On the other hand, excessive neutrophil
influx into airways contributes to the development
of chronic airway inflammatory diseases, including
asthma and chronic obstructive pulmonary
disease. GM-CSF is a strong antigen-presenting
cell activator in response to a variety of environ-
mental stimuli,29 and GM-CSF secreted from
flagellin-activated nasal epithelial cells contributed
to TLR5-mediated dendritic cell activation and IgA
enhancement.30 Furthermore, GM-CSF induces
intracellular IL-33 expression in the lung, and GM-
CSF/IL-33 pathway may increase the susceptibility
to develop allergic asthma precipitated by envi-
ronmental exposures.31 We also observed
increased expression of TNF mRNA and transcript
of TNFa-induced protein TNFAIP2 which provides
further evidence of the role of these markers in
flagellin-induced airway inflammation. In addition,
the mRNA expression of TSLP was enhanced at a
lower dose at early exposure, followed by a decline
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at the higher dose. In a previous study, low-dose
lipopolysaccharide (LPS) induced Th2 cytokines
and recruitment of eosinophilic and neutrophilic
inflammation, while high-dose LPS exhibited Th1
immune response and neutrophil accumulation in
murine asthma.32,33 These findings suggest that
TLR ligands have a distinct immunoregulatory
effect based on exposure level, resulting in
different clinical outcomes.

Pretreatment of TGF-b1 and TGF-b2 in flagellin-
stimulated bronchial epithelial cells promoted the
expression of MMP-13, which was one of the
upregulated metalloproteinases in transcriptome
analysis. TGF-b is released from damaged epithe-
lial cells and plays a central role in tissue fibrosis
and remodeling in the asthmatic lung.34 TGF-b
activation interfere with other pro-repair signaling
pathway Wnt/b-catenin, that synergistically affects
lung epithelial repair.35 In the current study, Wnt
pathway antagonist DKK3 (dickkopf Wnt signaling
pathway inhibitor 3) was downregulated in
transcriptome analysis, and b-catenin protein
expression was dose dependently increased in
response to flagellin. Taken together, these
results show that Wnt/b-catenin signaling might
be involved in the flagellin-induced inflammation
in airway epithelial cells.

A better understanding of the role of airway
epithelium playing in early immune responses is
critical to the future development of microbiome-
targeted therapeutic interventions. The present
study has some potential limitations. Firstly, genes
and cytokines of interest were selected from
differentially expressed genes based on their
involvement in asthma pathogenesis. However,
these markers play an important role in orches-
trating the inflammatory processes and structural
changes of the airway in both asthma and COPD.
Secondly, current study used NHBE cells derived
from normal donors to evaluate how the immune
response induced by bacterial flagellin could
promote airway inflammation. Further studies are
needed to clarify their interaction with other in-
flammatory and structural cells obtained from do-
nors with healthy and diseases state. In conclusion,
TLR5 ligand flagellin is an active inducer of a vari-
ety of gene expression, including proinflammatory
cytokines, chemokines, host-defense proteins and
metalloproteinases that may result in prolongation
of the inflammatory phase and airway remodeling
of bronchial epithelial cells in airway diseases.
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